
Merging G-Grid P2P Systems While Preserving

Their Autonomy

Gianluca Moro1, Gabriele Monti1, and Aris M. Ouksel2

1 Department of Electronics, Computer Science and Systems
DEIS, University of Bologna

Via Venezia, 52, I-47023 Cesena (FC), Italy
gmoro@deis.unibo.it gmonti@deis.unibo.it

2 Department of Information and Decision Sciences
University of Illinois at Chicago

2402 University Hall, 601 South Morgan Street
M/C 294 Chicago, IL 60607-7124, USA

aris@uic.edu

Abstract. Peer-to-Peer (P2P) systems share and manage huge amounts
of data and resources distributed across a large number of machines.
In pure P2P environments the control is totally decentralized in peers,
which are autonomous, perform the same roles and do not have a global
view of the entire system. Several P2P solutions have been deployed and
proposed in literature managing data within a single P2P system with a
variety of different features and performances. But in all cases a single
P2P system conceptually corresponds to a single database containing
a unique relational table and all functions, such as querying, routing
and content location, are defined to properly work just within such a
single system. Existing solutions cannot support several databases, which
originate and grow separately, or simply just one database with several
tables, because it would be necessary many distinct P2P systems. In
this paper we present a solution to merge G-Grid P2P systems, which
are multi-dimensional distributed structures for P2P data management,
preserving their own autonomy and identity. Thanks to this users and
applications can view the merged systems both as a single environment
and also as a set of distinct systems. As P2P systems merge, all their
functions, such as complete and partial range querying, content routing
and so on, adapt naturally to efficiently work in the multi-grid P2P
system.

1 Introduction

Though the P2P developments are still at the beginning we can already dis-
tinguish between two P2P system generations [1]. The first one regards the
unstructured deployed P2P systems, like Gnutella [2, 3] and its descendants, in
which the contents is not organized and the message flooding is the only way

2 Research partially supported by NSF grant IIS-0326284

to locate data. In this kind of systems it is not guaranteed to find searched
data, in fact they have to limit the number of hops since search costs, in term
of messages, are exponential. The second generation is formed by proposals and
prototypes which distribute data, in particular data record keys, across a P2P
network according to predefined logical structure, some examples are Chord [4],
CAN [5], Pastry [6], P-Grid [7], PeerDB [8]. In all these solutions the number of
messages/hops to locate a record key is in general logarithmic in the number of
peers.

They distinguish by employing different data structure, network topologies,
levels of robustness and so on, but all of them support a single P2P system
corresponding conceptually to a database containing a unique relational table
with only one search index3; all functions, such as querying, routing and content
location, are defined to properly work just within such a system. In particular,
P2P data searches occur thanks to that index and each query must always involve
all the indexed attributes. In other words, except CAN, the mentioned above
solutions cannot support arbitrary partial range queries just because are based
on mono-dimensional data structure.

A second limitation, on which this paper is mainly focused, regards the im-
possibility to support several databases originated and grown separately with
distinct P2P systems, which at a given moment must start working together as
an unique system.

In this paper we present an original solution to merge G-Grid P2P systems [9],
which are multi-dimensional distributed data structure for data management
in a P2P system, preserving their own autonomy and identity. Thanks to the
preservation of the system identities users and applications can view a single
resulting environment and/or an environment of distinct systems. Moreover,
preserving the autonomy of merged systems means that each must be able to
work singularly as it did before merging, namely its functioning must not be
compromised by failures or changes in other systems. As distinct P2P systems
merge all their functions, such as complete and partial range queries, content
routing and so on, adapt naturally to efficiently work in the resulting multi-grid
P2P system.

The merging operation is useful to self-integrate different P2P systems (i.e.
databases) within an organization, but also among distinct organizations man-
aging data with their own P2P systems. For instance, in business-to-business
e-commerce companies need to integrate parts of their information systems pre-
serving their identity and autonomy; the same holds also among scientific insti-
tutions interested in sharing some data, such as hospitals and research centers.
For instance, preserving the system identities allows users and applications to
decide if some operations, such as some queries, must be restricted within a
single hospital or a subset of them.

We highlight that the merging it is important also in case of failures which
partition logically the P2P network originating several isolated systems. In fact,
the merging can restore the network integrity by self-reintegrating the com-

3 In most systems the index can be defined by only one attribute

ponents. In this paper we study the basic merging operation for P2P systems
managing databases with the same data schema.

Section 2 introduces some basic G-Grid principles. Section 3 and 4 present
the merging algorithm and the routing mechanism. Section 5 reports some the-
oretical results about the completeness of the merging, efficacy, efficiency and
costs, including two examples of merging scenarios. Section 6 discusses related
works and Section 7 concludes the paper.

2 G-Grid Distributed Data Structure: Basic Principles

G-Grid [9] is a grid file data structure and algorithms for data management in a
dynamic P2P environment where autonomous machines, connecting/disconnecting
arbitrarily, have only a limited view of the entire resulting system. G-Grid is a
novel structure developed from preceding works on multi-dimensional data struc-
ture for centralized systems [10, 11], which extends another novel P2P structure
designed for cluster P2P computing called the Generalized Grid File (GGF) [12].
A survey on centralized multi-dimensional data structures is in [13].

G-Grid operates in a d -dimensional space where each record is represented
as a point with d coordinates in such a space. The point coordinates correspond
to the record key attributes on which searches are performed. Each key attribute
is bounded into its own domain range [min,max], but without loss of generality
all of them can always be scaled in the same interval, for instance [0,1]. In this
way any record can be seen as a point of the hypercube Ud = [0, 1]d which forms
the whole data space.

As points fill the space it is split into hyper-rectangular sub-volumes of Ud

called regions, which store a maximum number b of records (bucket size); it is
also contemplated a minimum number of records, namely b

3
. Each peer manages

one or more of these regions. At the beginning a single region covers the whole
space Ud (see the region (0,0) in Figure 1); as record are inserted the bucket
size is reached and the region is split into half along one of the d dimensions.
The split generates temporarily two nested regions, but then the one with more
records is collapsed into its parent region. With reference to Figure 1, the region
(0,0) has been split in (0,1) and (1,1), and then (0,1) has been collapsed in (0,0).

Of course, if the two generated regions do not satisfy the min or max bucket
constrains the split continues until it finds a more nested solution4. This split
mechanism has been introduced in [11] and subsequently reutilized in GGF.
Other researchers have also adopted it, but for the single dimensional case, as
for example in [7]. The split mechanism in [11] did not need to collapse the region
with more records in its father region because they all remained always in the
same centralized machine.

In general all the algorithms of the structure in [11], which was designed for
a centralized system, assume both a centralized control on the structure and
the existence of a global knowledge about the data structure itself. For instance

4 the splitting mechanism always converges to a solution because the overflowing region
is recursively partitioned into sub-regions geometrically smaller.

1

 (7,3)

 (0,0)

0

0 0 1

1

(0,2) (1,2)

 (1,1)

 (0,2) (1,2)

(1,1)
 (7,3)

 (0,0)

Fig. 1. Example of a 2-dimensional space partitioning and its correspondent tree

they make use of global variables to store several critical information about the
topology of the data structure itself and when the structure topology changes
these information there can be immediately updated. This corresponds to say
that the system assumes to know completely and perfectly all its parts.

Viceversa in a dynamic distributed environment, like a pure P2P networks of
autonomous participants, no central coordination can be assumed, no global or
complete knowledge can be kept. This means that all algorithms to manage and
querying the structure in P2P networks are different. In fact they have to take
into account several issues in addition: for instance unreliability of peers, network
costs and contents location, which, among other things, changes continuously due
to unpredictable connections and disconnections of peers.

Moreover, in P2P environment the entire split procedure must be executed
locally within the peer managing the overflowing region in order to avoid any
network communication. Net traffic is only generated when some of the records
are moved to another peer, which becomes responsible for the new nested region.

As depicted in Figure 1 the multi-dimensional space can be mapped into a
binary search tree, where each node represents a region and each link (labeled
with a bit zero or one) is a relationship between a region and its nested child
region. The identifier of each region, which is directly achieved by the tree, is
composed by a pair of integers (π, l) in which π is the decimal conversion of the
juxtaposition of bits along the path in the binary tree to get to the region, while
l indicates how many times the space Ud has been split to obtain that region
(see Figure 1).

By comparing the binary conversion of π it is possible to determine if a region
r is an ancestor of another region r′. For instance the region (1,1) in Figure 1,
which corresponds to 1, is an ancestor for (1,2), which is 01, because they share
the post-fix 1. Differently (0,2), which corresponds to 00, is not an ancestor for
(7,3), which corresponds to 111, because they don’t share any post-fix.

G-Grid gives rise to data structures which preserve the two following prop-
erties:

(4,3)
100

1
(1,1)

Existing links

Learned links

Query response

Fig. 2. Learning of links due to a query issued by the peer of region (1,1) for a record
in the peer of region (4,3).

– Spatial property. Regions in the same level of the tree do not intersect each
other;

– Coverage property. Each region is always nested in another one, its parent
or in some ancestor, except for the root region which is nested in itself.

Each G-Grid peer maintains a local routing table containing couples [re-
gion,peer], namely links towards its parent/ancestor peer (i.e. parent region)
and its children/descendant peers (i.e. nested regions). The routing table of a
peer contains also all peers that it discovers by querying and inserting data in
the structure.

In G-Grid, operations like queries, insertions, deletions and updates occur
in two steps. Here for space reasons we refer to exact match queries and range
queries.

At the first step the peer calculates locally the region identifier π of the
potential smallest region containing the searched records. This occurs according
to any typical function which maps a multi-dimensional space to a straight line,
namely to a mono-dimensional space. For an exact match query the function
takes in input all the d attribute values of the searched record, which represent its
coordinates, and returns the corresponding π. A range query is resolved simply
calculating in the same way the corners of the hyper-rectangle determined by
the intervals specified by the query; the region that contains all the corners is the
target one and the records inside the hyper-rectangle represent the result set.
The target region is determined locally by simply taking from all the corners
the maximum common post-fix among them. At the second step p sends a query
message to the peer that manages the target region, if p knows it, otherwise to
the closest relative of the target peer that p knows. In the worst case the query
follows a path along the tree by traversing parent-child links (see Figure 1), so
the cost is at most logarithmic.

However the worst case is almost unrealistic, in fact each peer learns new
couples [region,peer] which adds to its knowledge, namely its own routing table,

on the basis of the following self-learning capability. Each peer traversed by a
query, or by any other operation, adds to the message its reference (i.e. the
couple [region,peer5]); of course the first reference appended is the one of the
peer issuing the query.

If the path followed by the query is p1, ., ph, .., pt, where p1 and pt are the
issuing peer and the target one respectively, the number of hops is H = t−1 and
the new couples/links globally learnt by the peers in the path are

(

H

2

)

. This allows
peers to increase their knowledge about the topology of the overall structure
guaranteeing better search costs. In a dynamic situation, where the structure
and the number of peers grow, analyses show [9] that any record is located on
average with less than 2 hops if the rate insertions

queries
ranges like Θ(N−2) (N is the

number of peers); for greater rate the average no. of hops grows logarithmically.
The routing remains efficient even if each peer has millions of references6 in its
routing table, in fact it can be maintained in RAM and indexed with an usual
tree structure that guarantees logarithmic search costs. The learning capability
is another new feature not present in [11].

3 Self-Merging of Distinct G-Grid P2P Systems

In G-Grid when any peer connected to a physical network cannot contact any
existing P2P systems to which join in, it sets itself as the root of the multi-
dimensional structure. Local data of the peer are represented as points in its
root region. The impossibility to contact any existing P2P system is high in
the Internet because peers connect/disconnect arbitrarily changing also their IP
address, and in any case the bootstrap of a system must be able to deal with
this scenario.

In other situations it is reasonable that distinct P2P systems may have grown
up intentionally separated, for instance internally to an organization with several
departments or branches, like it happens with several autonomous databases.

The merging algorithm presented in this paper works in both cases as fol-
lows. Let us denote two existing structures G′ and G′′ with roots r′ and r′′

respectively. The two structures can be identified by using the IP address of r′

and r′′ together with their local time-stamp generated when they created the
respective structures. The aim of this identifier is to distinguish the links stored
in the routing table of every peer in such a way that each one is aware of links
towards other P2P systems. This preserve the identity of the two P2P systems.
When two peers p′ and p′′ meet they straight away realize if they belong to the
same structure or not, in this last case they start merging.

The basic idea is to allow p′ and p′′ to exchange part of their knowledge (see
Fig. 3), namely part of their routing tables. Then p′ and p′′ can propagate the
merge by contacting other peers of G′ and G′′ according to the new knowledge
just received, and in turn they can contact other peers and so on. The data in the

5 for instance each peer can simply be addressed by its IP
6 each reference is a couple [π,IP] of 8 bytes

knowledge p’ p’’

G’ G’’

Fig. 3. First step of the merging algorithm.

two structures are not moved, moreover pre-existing links within each structure
remain unchanged. This allows each system to keep its own autonomy, namely
they can continue to work independently on each other even after the merging.

The two systems can regulate the grade/speed of their merge and hence the
costs of their integration by simply limiting the number of propagations between
them. This is useful to manage different situations with different requirements,
from the case in which network costs have priority over the speed of the merge,
such as in the Internet, to the opposite case of the full integration of systems in
the shortest possible time, such as within an enterprise network.

As depicted in Figure 3 in the first step the peers p′ and p′′ will send each
other a message containing a certain number L of links (of the kind [p, (π, l)])
taken randomly from their own routing table. Choosing them randomly we avoid
to overload some parts of the tree, especially during the first moments after the
merging when the number of links between the grids are at the lowest level.

At the second step (see Figure 4a) p′ and p′′ randomly choose, from their
routing table, the I peers to which the received message will be forwarded. Once
that the messages are delivered, the informed peers update their routing table
and the structures will appear like in Figure 4b.

4 Routing and Querying Algorithms in Merged Systems

Basically the merging of two structures does not entail changes in the splitting
procedure. The only difference involves the routing, in fact every time that a
crossed peer pa has links to another grid(s), apart from the one it belongs to,
it will forward the message also to them. Obviously this will happen only if
the message has not been already forwarded by another peer before in the path
followed by the message. This is possible because when a peer forward a message
to another grid it appends the identifier of that grid and the pair [peer, region]
identifying the recipient node.

Once that more grids exist, if a new record must be inserted, it is possible
to decide to store it only in one or in all of them. The second option has higher
computational costs but improve the system robustness as creates as many copies

G G’

p’
 p

p p’

G G’ a)

b)

Fig. 4. a) Second step of the algorithm, b) new links between G and G
′ thanks to the

merging algorithm

as the number of the existing grids. In case of data redundancy the consistency
must be guaranteed by updating all the copies using the support of transaction.

5 Merging Efficacy and Efficiency: Theoretical Analysis

To measure the grade (i.e. the efficacy) of merging of two structures the approach
we use is to calculate the probability that a generic operation (query, insertion,
etc.) issued in one of them reaches the other one. Considering the structures G′

and G′′, right after the merging there are I peers belonging to G′ that know/link
at least one peer of G′′ and vice versa; henceforth they are called aware peers.
Supposing that the average number of hops necessary to perform the operation in
G′ is equal to H then H +1 peers are crossed by the message and the probability
to explore G′′ starting from G′ is:

P (G′ → G′′) = 1 − (1 −
I

N
)H+1 (1)

where N is the number of peers and I
N

is the rate of aware peers in G′.The
idea in the equation (1) is to compute the inverse probability, that is 1 minus
the probability of H + 1 unsuccessful tries.

From the (1), knowing the number of peers N , the average number of hops H

and the desired probability P (G′ → G′′) of immediate merging, it is possible to
calculate the number I of peers to which the merging message must be forwarded.

I = N(1 − H+1
√

1 − P (G′ → G′′)) (2)

It may happen that p′ does not know enough peers to reach that result. In
this case it is possible to propagate to other peers the merging just described
allowing them to propagate it in cascade for a given number of levels/times. This
number must be the smallest necessary to achieve I aware peers and can ben
computed in advance.

To measure how fast (i.e. merging efficiency) the knowledge spreads through
peers and completes the merging, we have defined the function ∆I below which
estimates the expected increase of aware peers of G′ after executing any opera-
tion:

∆I =

H
∑

h=1

h · P (h) (3)

Where P (h) is defined as the probability that h unaware peers are crossed
during the query, insertion, etc. It is obtained using a binomial distribution:

P (h) =

(

H + 1

h

)

(1 −
I

N
)h(

I

N
)H−h+1 (4)

Where I
N

is the rate of aware peers in G′. The rationale of the formula (3) is
that given an average number of hops H , the number of unaware peers crossed
may vary between 0 and H +1. Obviously these two extremes are not considered
when ∆I (h goes from 1 to H) is evaluated since no unaware peers are crossed.
For the other cases, the probability of their occurrence depends on the number
h of informed peers as shown in (4).

5.1 Performance Evaluations in Some Significative Scenarios

Theoretical analysis of the G-Grid behavior showed that in several realistic sce-
narios the structures presents on average features typical of regular graphs. Hence
the average number of hops H from the number of peers N is approximately as
follows:

H = logT N (5)

where T = E
N

is the number of links on average per peer while E = N
H+1

H is the
total number of links.

Now we are able to define different scenario and for each of them to evaluate
the performances of our merge algorithm and to estimate how quickly the merg-
ing gets complete We can also evaluate whether T is big enough for the network
to achieve the desired P (G′ → G′′) and if the merging is propagated to other
peers. In the two examples below we consider two grids/systems having both
N = 5000 and different values for H or T . The difference between them is that
the first one is a scenario where each peer has a lower number of neighbors and
an higher average number of hops. Then we want to obtain in both examples a
P (G′ → G′′) = 0.5.

0

0,25

0,5

0,75

1

0 500 1000 1500 2000 2500 3000 3500 4000
Number of operations

H = 3; I = 18 H = 6; I = 5 H = 3; I = 280

Fig. 5. Growth of the merge probability by executing standard operations on G
′ with

b = 3 and insertions

queries
= 0.5

– Example 1: T = 4. Supposing we limit the maximum number of links in the
routing table to 4 per grid we obtain H = log4(5000) ≈ 6 and a required I:

I = 5000(1 − 7
√

1 − 0.5) = 471

In this situation it is not necessary to use the propagation to contact that
number of peers since Figure 5 (thickest curve) shows that P (G′ → G′′)
grows very quickly even starting with only 5 aware peers (4 plus p′ origi-
nating the merging). In fact P (G′ → G′′) = 0.5 with little more than 500
operations, which is very close to 471, namely the minimum number of re-
quired operations.

– Example 2: H = 3, this means that T = 17 while the required number of
links I is 795. The dotted curve of Figure 5, which is the growth of the
merging without the propagation, shows that P (G′ → G′′)=0.5 after about
2000 operations. This results can be improved by propagating the merging as
shown by the thin curve of Figure 5, in fact with only 2 levels of propagation
P (G′ → G′′)=0.5 after about 500 operations. The additional cost of the
propagation in terms of messages is 17 + (17 · 16) = 289 and the total cost
in term of operations is 289

3
+ 500 � 2000. 7

In general the features of G-Grid helps this kind of merging whatever is the
structures topology. In fact, the more H is low, the more T is on average high
and consequently the initial P (G′ → G′′) is high; vice versa if H is high, and
therefore T is low, the merging of the two structures can grow rapidly by simply
exploiting usual operations.

7 division by 3 because H=3 means that each operation costs on average 3 messages

6 Related Works

The issue of merging different structures seems not having been considered yet,
or at least it has not been treated explicitly. In fact the most significative works,
like CAN [5], Chord [4], P-Grid [7], Pastry [6], PeerDB [8] and the k-dimensional
search algorithm proposed in [14], do not deal with this feature. However it is not
so unlikely that different peers give rise to more than one structure, especially
in an unstable scenario like Internet and also in case of failures partitioning
the net. Hence, merging can be also seen as a procedure to restore the network
integrity. In general, the world is made of autonomous systems which evolves
and successively need to be integrated/merged, as it happens for instance with
database systems.

To compare our approach with existing proposals let us evaluate how they
could merge two distinct P2P systems. In all of them it would be necessary (i)
to elect one system as the resulting one and (ii) to move each peer from the
second to the first system. We highlight that this implies to lose the autonomy
and identify of each system involved in the merging. In any case the number
of messages is as follows: each disconnecting peer must release its K keys to a
neighbor peer in its home system; moreover when it enters in the new system it
receives new K keys from some other peer and transmits its own record keys,
which we assume for simplicity equals to K. Each insertions costs as a search,
namely LogN with N the number of peers. In short, to compare the result to
our initial message exchange let us assume to move N

2
peers into a system with

already N peers, then the cost in term of messages is the following:

C(N, K) =
2 ∗ N ∗ K

2
+ K ·

N+N

2
∑

i=N

Log i ≈ Θ(K(N + Log N !)) (6)

This value is much higher than the one required by the solution proposed in this
work which is always lower than N and no record must be moved. What is also
different is that in our solution, after this initial low cost to start the merge,
then the merge increases spontaneously by exploiting the normal execution of
operations such queries, insertions etc.

7 Conclusions

In this paper we introduced a solution for merging G-Grid P2P Systems, which
are multi-dimensional data structure for dynamic P2P environments, preserving
their own autonomy and identity, and giving to users and applications the view
of a unique resulting system.

The main properties of a G-Grid structure, such as the capability to execute
both complete and partial range queries, the self-organization of the structure
which emerges from local P2P interactions, holds also in the resulting multi-grid
system.

Concerning the scalability, the performances of merged systems does not
deteriorate as the number of peer increases. The merging operation has been
designed in such a way that all mechanisms, such as content routing, querying
and data manipulation, adapt naturally as distinct P2P systems meet each other.

Merging only occurs at a logical level by creating links among distinct struc-
tures and once that some links are generated, peers incrementally improve their
knowledge completing the merge spontaneously by means of usual operations.

The solution its simple and the network traffic generated can be adapted to
the available bandwidth and to the desired merging rapidity.

References

1. Moro, G., Ouksel, A.M., Sartori, C.: Agents and peer-to-peer computing: a promis-
ing combination of paradigms. In: Proceedings of the 1st International Workshop
on Agents and Peer-to-Peer Computing, Bologna, Italy, July 2002. Volume 2530.,
Springer (2003) 1–14

2. Jovanovic, M.A., Annexstein, F.S., Berman, K.A.: Scalability issues in large peer-
to-peer networks - a case study of gnutella. Technical Report Technical Report,
University of Cincinnati (2001)

3. Kan, G.: 8. In: Peer-to-Peer: Harnessing the Benefits of Disruptive Technologies.
O’Reilly & Associates (2001) 94–122

4. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, ACM
Press (2001) 149–160

5. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: Proceedings of ACM SIGCOMM 2001. (2001) 161–172

6. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. LNCS 2218 (2001) 329–340

7. Aberer, K., Cudr-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva,
M., Schmidt, R.: P-grid: A self-organizing structured p2p system. SIGMOD Record
2 (2003)

8. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.Y.: PeerDB: A P2P-based System for
Distributed Data Sharing. In: Proceedings of ICDE. (2003) 633–644

9. Ouksel, A.M., Moro, G.: G-Grid: A class of scalable and self-organizing data struc-
tures for multi-dimensional querying and content routing in p2p networks. In: Pro-
ceedings of the 2nd Internat. Workshop on Agents and Peer-to-Peer Computing,
Melbourne, Australia, July 2003. Volume 2872., Springer (2004) 123–137

10. Ouksel, A.M.: The interpolation-based grid file. In: Proceedings of the ACM
Symposium on Principles Of Data Base Systems, ACM (1985) 20–27

11. Ouksel, A.M., Mayer, O.: A robust and efficient spatial data structure: The nested
interpolation-based grid file. Acta Informatica 29 (1992) 335–373

12. Ouksel, A.M., Moro, G., Litwin, W.: GGF: A Generalized Grid File for Dis-
tributed Environments. Technical report, DEIS Univ. of Bologna, Univ. of Illinois
at Chicago (2002)

13. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30 (1998) 170–231

14. Pasquale, A.D., Nardelli, E.: Distributed searching of k-dimensional data with al-
most constant cost. In: Proceedings of 4th East European Conference on Advances
in Databases and Information Systems. Volume 1884., ADBIS (2000) 239–250

