
Implementation and Evaluation of Forgetting In
ALC-Ontologies

Patrick Koopmann and Renate A. Schmidt

The University of Manchester, UK
{koopmanp, schmidt}@cs.man.ac.uk

Abstract. We implement and evaluate a recently introduced method to
compute uniform interpolants for ontologies specified in the description
logic ALC. The aim of uniform interpolation is to reformulate an ontol-
ogy such that it only uses a specified set of symbols, while preserving
consequences that involve these symbols. Uniform interpolation is use-
ful to applications in ontology engineering and modular ontologies. It is
known that uniform interpolants of ontologies in ALC cannot always be
presented in a finite way, and that their size can in the worst case be
triple exponential in the size of the original ontology. These properties
leave the question on how practical computing uniform interpolants is.
The aim of this paper is to approach this question by implementing our
recently presented method that always computes a finite representation
of the uniform interpolant – either by using fixpoint logics or by extend-
ing the signature – and by undertaking an experimental evaluation of
the method on a larger set of real-life ontologies.

1 Introduction

Ontologies represent information about concepts and relations (roles) using de-
scription logics, fragments of first-order logic, to allow reasoning systems to de-
rive implicit information automatically. The signature of an ontology is the set
of symbols used by the ontology. In forgetting, the aim is to remove concept
or role symbols from an ontology in such a way that all logical consequences
over the remaining symbols are preserved. The result of forgetting is a uniform
interpolant, the original ontology restricted to a smaller signature, such that all
consequences over that signature are preserved.

Uniform interpolation and forgetting have several potential applications that
are interesting in the context of ontology engineering and modular ontologies.
For example, an ontology to be published contains confidential parts that should
not be accessible by the public. A solution to this problem is predicate hiding [4],
which can be performed by forgetting the confidential concepts from the ontol-
ogy. A related application is ontology obfuscation [7]. Here again, the aim is to
share an ontology for re-use by other parties without giving away all of its infor-
mation. Obfuscation is a technique known in the context of software engineering
which transforms a program into a functionally equivalent progam that is dif-
ficult by human users to read and understand, to prevent reverse engineering.

Often, ontologies contain terms whose main function is to give structure and
make the ontology accessible. By forgetting these terms, one can create an on-
tology whose structure is destroyed and which is not accessible by human users,
while it can still be used for deriving logical entailments over the remaining
concepts.

Other applications aim at analysing ontologies or ontology changes. One such
application is exhibiting hidden relations. Often relations between different con-
cepts are not stated explicitly but are only deducible with the help of reasoners.
To get a better understanding how certain concepts relate to each other, one can
compute the uniform interpolant over a signature of interest. Uniform interpo-
lation can also be used to compute the logical difference between two versions
of an ontology. Extending or modifying an ontology can lead to unintended re-
sults. Checking whether consequences over a specified signature are preserved
in a new version can be performed by computing its uniform interpolant and
testing whether it is entailed by the original ontology.

Despite these applications, there has not been much work yet to develop
practical algorithms for uniform interpolation on real-life ontologies in expressive
description logics. A reason for this might be that the known theoretical proper-
ties of uniform interpolation cast doubt on whether such practical methods even
exist: it is known that for ontologies expressed in ALC, uniform interpolants
are not always expressible in a finite way, if ALC is also used to represent the
uniform interpolant. Also, in the worst case, the size of the uniform interpolant
can be triple exponential in the size of the original ontology [8]. These prop-
erties already hold for general ontologies expressed in EL [10,9]. The method
presented in [7] is a first approach towards practical uniform interpolation for
ALC-ontologies, but it only ensures termination if the uniform interpolant is
approximated by a given bound.

In [6], we present a method for uniform interpolation on ALC-ontologies that
always computes finite representations of uniform interpolants with the help of
fixpoint operators. The target language ALCµ, which is ALC enriched with fix-
point operators, has the same complexity properties on the common reasoning
tasks as ALC [2], but is currently not supported by most description logic reason-
ers. Fixpoint operators are also not supported by OWL, the standard language
for representing web ontologies. The method presented in [6] gives a solution
to this by simulating fixpoints using ‘helper concept symbols’ in the forgetting
result. This way, the uniform interpolant is approximated signature-wise us-
ing a finite representation, and still preserves all consequences over the desired
signature. If helper concept symbols are used in the result, the approximated
interpolant is not entailed by the original ontology anymore, which limits the
application of our method for computing the logical difference between ontolo-
gies. Our experimental results suggest however that this only happens for specific
combinations of ontologies and signatures. For the other mentioned applications,
these helper-concepts do not pose a major problem.

In order to approach the question as to whether the method is also practical
for the mentioned applications, we present an experimental evaluation of the

method on real life ontologies. The results suggests that, while for some ontolo-
gies uniform interpolants are still hard to compute, there are a lot real-world
cases for which the method can be used.

2 Preliminaries

Let Nc, Nr be two disjoint sets of concept symbols and role symbols. Concepts
in ALC are of the following form:

⊥ | > | A | ¬C | C tD | C uD | ∃r.C | ∀r.C,

where A ∈ Nc, r ∈ Nr and C and D are arbitrary concepts. >, C uD and ∀r.C
are defined as abbreviations: > stands for ¬⊥, C uD for ¬(¬C t¬D) and ∀r.C
for ¬∃r.¬C.

A TBox is a set of axioms of the forms C v D and C ≡ D, where C and D
are concepts. C ≡ D is a short-hand for the two axioms C v D and D v C.
Since we are only dealing with the TBox part of an ontology, we will use the
terms ‘ontology’ and ‘TBox’ interchangeably.

We write C[A] to denote a concept that contains a concept symbol A, and
denote the result of replacing A by a different expression E by C[E]. For a
TBox T , T [A7→C] denotes the result of replacing every A in T by C.

The semantics of ALC is defined as follows. An interpretation is a pair
I = 〈∆I , ·I〉, where the domain ∆I is a nonempty set and the interpretation
function ·I assigns to each concept symbol A ∈ Nc a subset of ∆I and to each
role symbol r ∈ Nr a subset of ∆I×∆I . The interpretation function is extended
to concepts as follows:

⊥I := ∅ (¬C)I := ∆I \ CI (C tD)I := CI ∪DI

(∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}.

C v D is true in an interpretation I iff CI ⊆ DI . I is model of a TBox T if
all axioms in T are true in I. A TBox T is satisfiable if there exists a model
for T , otherwise it is unsatisfiable. T |= C v D holds iff in every model of T we
have CI ⊆ DI .

In order to define ALCµ, we extend the language with a set Nv of con-
cept variables. ALCµ extends ALC with concepts of the form µX.C and νX.C,
where X ∈ Nv, and C is a concept in which X occurs as a concept symbol only
positively (under an even number of negations). µX.C is the least fixpoint of C
on X, νX.C the greatest fixpoint.

A concept variable X is bound if it occurs in the scope C of a fixpoint
expression µX.C or νX.C. Otherwise it is free. A concept is closed if it does not
contain any free variables. Axioms in ALCµ are of the form C v D and C ≡ D,
where C and D are closed concepts.

Following [3], we define the semantics of fixpoint expressions. Let V be an
assignment function that maps concept variables to subsets of ∆I . V[X 7→W]
denotes V modified by setting V(X) = W . CI,V is the interpretation of C

taking into account this assignment, and when V is defined for all variables
in C, CI,V = CI . The semantics of fixpoint concepts is defined as follows:

(µX.C)I,V :=
⋂
{W ⊆ ∆I | CI,V[X 7→W] ⊆W}

(νX.C)I,V :=
⋃
{W ⊆ ∆I |W ⊆ CI,V[X 7→W]}.

A signature Σ is a subset of Ns ∪ Nr. sig(E) denotes the concept and role
symbols occurring in E, where E ranges over concept descriptions, axioms and
TBoxes. Given two TBoxes T1, T2 and a signature Σ, we say T1 and T2 are
Σ-inseparable, in symbols T1 ≡Σ T2, iff for every concept inclusion α with
sig(α) ⊆ Σ, T1 |= α implies T2 |= α and vice versa. Given a TBox T and a
signature Σ, T ′ is a uniform interpolant of T if sig(T ′) ⊆ Σ and T ≡Σ T ′(Note
that in contrast to conservative extensions and deductive modules no syntactical
constraints are given[12]). From this definition follows that uniform interpolants
for a given TBox and signature are unique modulo logical equivalence. For a given
TBox and signature, we will therefore speak of the uniform interpolant and de-
note it by T Σ . Given a TBox T and a concept symbol A, the result of forgetting
A in T , denoted by T −A, is the uniform interpolant T Σ , where Σ = sig(T)\{A}.
Since T −A entails exactly the same consequences as T that are not using A, it
is easy to verify that (T −A)−B ≡ (T −B)−A. In other words forgetting a set of
concept symbols one after the other always yields an equivalent TBox, regardless
of the order in which symbols are processed.

3 The Method

In the following we give a brief overview of our method for computing uniform
interpolants. For a more detailed description see [6]. We reduce computing of
uniform interpolants to the problem of forgetting single concept symbols. In
order to compute the uniform interpolant for a generic signature Σ, we forget
the symbols which are not in Σ one after the other.

Given a TBox T , the clausal form of T , denoted by clauses(T), is a TBox T ′
with T ≡sig(T) T ′, such that every axiom is of the form > v L0 t ...tLn, where
every Li is of the form A,¬A, ∃r.D or ∀r.D, with A ∈ Nc, r ∈ Nr and D ∈ ND.
ND ⊆ Nc \ sig(T) is a set of designated concept symbols called definer symbols.
Any TBox can be transformed into its clausal form using standard structural
transformation and conjunctive normal form transformation techniques. We will
refer to axioms of a clausal form TBox as clauses and just write L0 t ... t Ln
omitting the leading > v. We also assume that clauses are represented as sets
(that is, no disjunct occurs twice in a clause and the order of the disjuncts does
not matter).

Our method to compute T −A consists of five phases:

1. Set N=clauses(T).
2. Saturate N using the rules in Figure 1.
3. Filter out unnecessary clauses and group clauses of the form ¬DtCi, where
D ∈ ND, into concept inclusions D v

d
Ci.

Resolution:
C1 tB C2 t ¬B

C1 t C2

where B is the symbol A we want to forget or a definer symbol and provided
C1 t C2 does not contain more than one negative definer literal.

Role Propagation:
C1 t ∀r.D1 C2 t Qr.D2

C1 t C2 t Qr.D3

where Q ∈ {∃, ∀} and D3 is a (possibly new) definer symbol representing D1 uD2

and provided C1 t C2 does not contain more than one negative definer literal.

Fig. 1. Rules for forgetting concept symbol A

Non-cyclic definer elimination:

T ∪ {D v C}

T [D 7→C]
provided D 6∈ sig(C)

Definer purification:

T

T [D 7→>]
provided D occurs only positively in T

Cyclic definer elimination:

T ∪ {D v C[D]}

T [D 7→νX.C[X]]
provided D ∈ sig(C[D])

Fig. 2. Rules for eliminating definer concept symbols

4. Apply the rules in Figure 2 exhaustively to eliminate introduced symbols.
5. Apply simplifications and represent clauses as proper concept inclusions.

The rules in Figure 1 derive all consequences based on the selected concept
symbol A we want to eliminate, rendering clauses containing A superfluous for
the uniform interpolant. The role propagation rule is special since it may in-
volve the introduction of new definer symbols. Because we want to preserve the
clausal form in Phase 2, in order to represent a concept conjunction D1uD2, we
introduce a new definer symbol D3 and add two clauses ¬D3tD1 and ¬D3tD2

to the current clause set. In order to restrict the introduction of new definer
symbols, we keep track of each introduced definer symbol and reuse them as
much as possible. By doing this wisely it is possible to restrict the number of
introduced definer symbols to maximally 2|ND|.

It can be shown that if a set of clauses is saturated using the rules in Figure 1,
all clauses containing the selected concept symbol A and all clauses containing

positive definer symbols that do not occur under a role restriction can be re-
moved, and the resulting set is still Σ-inseparable with the original TBox [6].
The new definer symbols that are introduced in Phase 1 and 2 are eliminated in
Phase 4 using the rules in Figure 2. These rules are motivated by Ackermann’s
Lemma and its generalised form, first published in [1] and [11], respectively.

If the desired target language is ALC, the cyclic definer elimination rule
cannot be applied, since it introduces fixpoint operators. In this case the cyclic
definers remain in the result, which means the resulting TBox is not a uniform
interpolant. It does, however, not contain A and preserves all consequences not
containing A. The remaining cyclic definers can be seen as ‘helper concept sym-
bols’ that help keep the result finite without using fixpoint operators. The result
of applying only non-cyclic definer elimination and definer purification can be
viewed as signature-wise approximation of the uniform interpolant. It should be
noted though that the existence of cyclic definers in the returned result does not
necessarily imply that there is no finite representation of the uniform interpolant
in ALC.

In [6] is it proven that our method always terminates and computes the
uniform interpolant in ALCµ, or a signature-wise approximation.

4 Implementation

We implemented our forgetting method in Scala1 using the OWL API.2 Since
fixpoint operators are not supported by most standards and reasoners, for prac-
tical applications it is of interest to compute only results that are expressible
in ALC. For this reason, our method does not eliminate definer symbols where
this would lead to a fixpoint operator in the result. In order to make the method
practical, we implemented several optimisations.

Restricting the Role Propagation Rule. Though in its presented form
the calculus works correctly, in order to make the method practical, it is necces-
sary to apply further restrictions on the role propagation rule. The main role of
the role propagation rule is to derive new clauses between which resolution on
the symbol we want to forget is applicable. In order to avoid the unnecessary
introduction of new clauses and definer symbols, we check beforehand whether
applying role propagation contributes to any further resolution rule applications.
If not, we omit its application.

Redundancy Elimination. From the proofs in [6] one can see that stan-
dard redundancy elimination techniques like tautology and subsumption deletion
are compatible with our method. We also take into account subsumptions be-
tween introduced definer symbols: Note that ¬D1 tD2 implies D1 v D2. With
every newly introduced definer symbol we build up a subsumption hierarchy
for definer symbols, which enables us to check for subsumption between literals
of the forms ∃r.D1 and ∀r.D2. On the basis of this extended subsumption no-
tion, we implement eager subsumption deletion and condensation as in classical

1 http://www.scala-lang.org
2 http://owlapi.sourceforge.net

http://www.scala-lang.org
http://owlapi.sourceforge.net

resolution-based theorem provers. The correctness of these simplifications can
be proven by adaptions of the proofs for the original method in [6].

Structural Transformation. Since the resolution rule and the role prop-
agation rule only apply to a restricted subset of literals in the clause set, the
number of clauses can be significantly reduced by using further structural trans-
formations. For a clause C, let CA denote the literals on which our rules apply,

and CA the remaining literals. We replace each set of clauses {C0, ..., Cn}, such
that CAi = CAj for all i, j < n, by a single clause X t CA0 , where X is a new

concept symbol, and store the information that X ≡ CA0 u ... u CAn . As soon as
a clause is added to the result set, we undo this transformation and apply eager
subsumption deletion on the current result set. This optimisation is influenced
by the uniform interpolation method presented in [7].

Simplifications. The simplifications performed in Phase 5 are the follow-
ing. Following an arbitrary ordering defined on concept symbols, we select the
maximal literal of the form ¬A, if existent, and transform the clause into an
axiom of the form A v C. We then group all concept inclusion axioms that
have the same concept A on the right hand side into a single concept inclusion.
We apply several replacement rules to remove tautological or unsatisfiable sub-
expressions. We also detect tautological fixpoint-expressions. For any fixpoint
expression νX.C[X], if C[>] is a tautology, > is the greatest fixpoint of C[X],
and we can replace νX.C[X] by>. Tautological and unsatisfiable sub-expressions
are detected using sound but incomplete syntactic criteria. Since the number of
introduced definer symbols can be exponential in the number of role restrictions
of the input ontology, it is also wise to minimise their occurrences. This is accom-
plished in Phase 5 by transforming disjunctions of the form ∃r.C0 t ... t ∃r.Cn
into single existential role restrictions ∃r.(C0 t ... t Cn) and conjunctions of the
form ∀r.C0 u ... u ∀r.Cn into single universal role restrictions ∀r.(C0 u ... u Cn).

Module extraction. To restrict the number of symbols we have to forget,
we first extract the syntactic locality based >⊥∗-module [12] for the selected
signature. This module is a subset of the original ontology that preserves all
consequences over the signature, but may still contain thousands of additional
symbols.

Purification. Before applying our method, we compute the negation nor-
mal form TNNF of the input ontology T . If a concept symbol A occurs only
positively in TNNF , then T −A = T [A 7→>]. If A occurs only negatively in TNNF ,
then T −A = T [A7→⊥]. We call this transformation purification of A. The sound-
ness of purification follows from the fact that in these cases the resolution rule
would never be applied, what effectively means we only remove clauses con-
taining A. Purification of A leads to an equivalent result as removing clauses
containing A, but can be performed much faster. When computing uniform
interpolants for our experimental evaluation, we observed that in some cases
already thousands of concept symbols could be eliminated using purification.

5 Experimental Evaluation

In order to evaluate how our implementation behaves on real-life ontologies,
we selected a set of ontologies from the NCBO BioPortal ontology repository.3

The ontologies of this corpus are known to be diverse in complexity, size and
structure [5]. From this corpus we selected all ontologies for which it is pos-
sible to download uncorrupted files of ontologies that could be parsed using
the OWL API. We further noticed that on some ontologies, extracting >⊥∗-
modules using the OWL API caused a runtime exception. Ontologies for which
this was the case were excluded from our corpus as well.

Since our method is designed for ALC-ontologies, we restricted the ontolo-
gies to their ALC-fragments in the following way. Axioms that can be rewritten
into ALC axioms in a unified way (equivalent concepts, disjoint concepts, dis-
joint union axioms, property range axioms and property domain axioms) were
rewritten, the remaining axioms that are not in ALC were removed from the
TBox. We further removed all ontologies where the ALC-fragment of the TBox
contained less than 5 concept symbols or consisted only of axioms of the form
A v B and A ≡ B, where A and B are concept symbols. This way, we extracted
a corpus of 207 ontologies for our experiments.

In these ontologies, on average 5.75% of the TBox axioms had to be re-
moved in order to generate an ALC-TBox, while 54 ontologies were completely
expressible in ALC.

The ontologies of the resulting corpus contain between 2 and 187,514 con-
cept symbols (on average 5,728). The average number of axioms per ontology
is 21,821.20 and the average axiom size is 4.61. The size of an axiom is defined
recursively as follows: size(A) = 1, where A is a concept symbol, size(¬C) =
size(C) + 1, size(∃r.C) = size(∀r.C) = size(C) + 2, size(C tD) = size(C uD) =
size(C) + size(D) + 1, and size(C v D) = size(C ≡ D) = size(C) + size(D) + 1.

The experiments were run on an Intel Core i5-2400 CPU with four cores
running at 3.10 GHz and 8 GB of RAM. Since our implementation does not
make use of multi-threading, we ran several experiments in parallel in order to
make full use of the multiple processors.

Depending on the application, it might either be interesting to forget a small
set of concept symbols from the ontology (predicate hiding, ontology obfusca-
tion, logical difference), or to restrict the ontology to a small signature (exhibit
hidden relations, sharing restricted parts of an ontology). We first considered
how our method performed on forgetting small sets of concept symbols. For this
we selected random subsets of 5, 10, 50 and 150 concept symbols, 10 subsets in
each case, from the signature of each ontology, for which we applied our method.
Since the average number of concept symbols per ontology is 5,728, in most cases
this represented a small subset of the overall signature. If, however, the signa-
ture of an ontology contained less than the selected number of concept symbols,
we omitted the corresponding experiments. This was the case for 4, 21 and 60
ontologies for the signature sizes 10, 50 and 150, respectively.

3 http://bioportal.bioontology.org

http://bioportal.bioontology.org

Ontologies |sig(T) \Σ| Timeouts Definers Left
Average Nr. Average Size Average
of Axioms of Axioms Duration

All

5 0.3% 1.6% 18,772.61 12.81 1.1 sec.
10 1.0% 2.2% 19,233.38 9.21 1.1 sec.
50 1.1% 11.3% 20,577.60 23.14 6.0 sec.
150 3.6% 17.5% 24,627.58 60.29 18.5 sec.

NCI
50 0% 0% 138,216.99 5.37 23.5 sec.
100 2% 0% 138,170.44 6.22 117.9 sec.
150 3% 0% 138,127.78 6.26 121.5 sec.

Table 1. Results for forgetting small sets of concept symbols.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 10 100 1000

N
u
m

b
e
r

o
f

E
x
p
e
ri

m
e
n
ta

l
R

u
n
s

Time (sec.)

Fig. 3. Cumulative distribution of the duration of each forgetting experimental run.

We used a timeout of 1,000 seconds for each experimental run. In order
to evaluate how our method performed on larger ontologies, we applied the
same procedure on the ALC-fragment of Version 13.05d of the National Cancer
Institute Thesaurus (NCI), which was part of our corpus. The ALC-fragment of
this ontology, represented only using the operators presented in the Preliminaries
Section, has 138,260 axioms of average size 5. Here, we set a higher timeout of
an hour, as well as higher numbers of concept symbols, and performed 100 runs
for each number.

Table 1 summarises the results of these experiments. It shows the percentage
of experimental runs that could not be completed within the given time limit,
the percentage of successful runs in which cyclic definer symbols remained in the
results, the average number of axioms in the resulting ontology, the average size
of the axioms in the result and the average duration per experimental run.

Ontologies |Σ \Nr| Timeouts Definers Left
Average Nr. Average Size Average
of Axioms of Axioms Duration

All

5 3.5% 17.1% 3.70 627.13 5.4 sec.
10 4.6% 20.1% 7.98 623.88 7.7 sec.
50 8.8% 22.7% 54.84 180.48 11.8 sec.
150 12.7% 23.1% 336.83 216.09 31.8 sec.

NCI
50 0% 15% 141.66 3,115.43 594.5 sec.
100 4% 12% 335.28 1,876.51 927.0 sec.
150 7% 15% 568.69 1,751.58 1,389.2 sec.

Table 2. Results for computing uniform interpolants over small signatures.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

U
n
if
o
rm

 I
n
te

rp
o
la

n
t

S
iz

e

Input Size

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

U
n
if
o
rm

 I
n
te

rp
o
la

n
t

S
iz

e

Input Size

Fig. 4. Sizes of extracted modules and corresponding uniform interpolants.

The size of the ontologies remained mostly unchanged, which was due to the
fact that a major part of the ontology was not touched by the method if the
concept symbols were only used in a small subset.

With an increasing number of forgotten concept symbols the number of cases
in which definer symbols are left in the result rose slightly, but in 93% of the
cases the result could be represented finitely without definer symbols. In 99%
of the cases our method was able to compute the forgetting result in the set
time limit. The average duration suggests that a much smaller timeout could
already have led to similar results. Figure 3 shows the cumulative distribution
of the durations of each experimental run. It shows that nearly 6,000 out of
7,426 experimental runs could be performed within less than one second, which
suggests that for most cases, forgetting small sets of concepts is actually a cheap
operation.

Next we wanted to evaluate how good our method performed on restricting
the signature of an ontology to a small set of concept symbols. Since computing
uniform interpolants for small signatures is much more computationally expen-
sive as forgetting small sets of concept symbols, we performed the experiments
only on a subset of the original corpus, for which we randomly selected 170 on-
tologies, and performed 5 experimental runs for each ontology and sample size.
The results are summarised in Table 2.

The effect of uniform interpolation was more apparent in these cases. In
20.1% of the cases, the computed uniform interpolant would have used fixpoint

operators. Even if only 5 concept symbols were used in the result, the average
axiom size was 627. In case of the NCI ontology, the average size of an axiom
was even higher. The main reason for this is that much more information about
the role structure of the ontology and disjointnesses between concepts had to be
represented in fewer axioms.

Figure 4 plots the sizes of input ontologies and the sizes of the extracted mod-
ules against the sizes of the signature-wise approximated uniform interpolants.
Interestingly, in most cases the computed uniform interpolant was of similar size
or smaller than the corresponding module. In 90.0% of the cases, the result-
ing ontology was smaller than the input ontology, and in 75.9% of the cases,
it was smaller than the corresponding >⊥∗-module. In the most extreme case
the uniform interpolant was however 559 times bigger than the corresponding
>⊥∗-module.

The performance on our method strongly depended on how distributed the
concept symbols to be forgotten are in the ontology, and how many additional
symbols remained in the module. The biggest effect on computation time and
output size was caused if the concept symbols to be forgotten occurred in high
numbers nested under role restrictions, since the role propagation rule had to
be applied more often in these cases. This lead to a high number of clauses and
seemed to be the main cause for timeouts.

The corpora used for the experiments, as well as the implementation, can be
found under http://www.cs.man.ac.uk/~koopmanp/womo_experiments.

6 Conclusion

We implemented and evaluated a recently presented method to compute uni-
form interpolants of ALC-ontologies. Uniform interpolation has a lot of potential
applications in ontology engineering and modular ontologies. It is known that
uniform interpolants of ALC-ontologies cannot always be represented in a finite
way in ALC, and their size is in the worst case triple exponential in the size of
the input ontology. We evaluated an implementation of uniform interpolation to
investigate how these theoretical properties affect uniform interpolation of ALC-
fragments of real-life ontologies. Our method computes uniform interpolants for
ALCµ, which is ALC extended with fixpoint operators, to enable the finite rep-
resentation of uniform interpolants in all cases. Since fixpoint operators are not
supported by most standards and reasoners, our implementation uses helper con-
cept symbols in the result, which means the computed ontologies approximate
the uniform interpolant signature-wise. Our experiments showed however, that
in a majority of cases this was not needed, since the uniform interpolant could
be represented without fixpoint operators. Our experiments suggest that, even
though the worst case complexity of the size of uniform interpolants is triple
exponential, in reality, the situation where the interpolant is exponential rarely
occurs. In fact, in most cases uniform interpolants could be computed in a few
seconds, and were even smaller than the input ontologies. These results suggest

http://www.cs.man.ac.uk/~koopmanp/womo_experiments

that, even though computing uniform interpolation for complex ontologies can
be expensive, there are a lot of applications where it is practical.

In contrast to the earlier approaches on uniform interpolation ofALC-ontologies
presented [13,8], our method proceeds in a focused way in the sense that only
derivations on the currently selected symbol to be forgotten are computed. This
enables our method to perform efficiently on larger ontologies, but a trade-off
is that our method will not always compute an interpolant in ALC without
fixpoint operators if it exists. To illustrate the problem, consider the TBox
T = {A v ∃r.A t B,B v ∃r.B}. When forgetting B, our method computes
the TBox T −B = {A v ∃r.A t νX.∃r.X}, since it only considers derivations on
B. The fixpoint expression in this ontology is however redundant, since A v ∃r.A
already entails all consequences of the form A v ∃rn.>. Note that while in this
example the redundancy is quite obvious, in general it will be more hidden. In
future it would be desirable to find an efficient way to deal with these kind of
situations.

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathemati-
schen Logik. Mathematische Annalen 110(1), 390–413 (1935)

2. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, Studies
in Logic and Practical Reasoning, vol. 3, pp. 721–756. Elsevier (2007)

3. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. IJCAI ’99. pp.
84–89. Morgan Kaufmann (1999)

4. Grau, B.C., Motik, B.: Reasoning over ontologies with hidden content: The import-
by-query approach. J. of Artificial Intelligence Research 45, 197–255 (2012)

5. Horridge, M., Parsia, B., Sattler, U.: The state of bio-medical ontologies. Bio-
Ontologies 2011 (2011)

6. Koopmann, P., Schmidt, R.A.: Uniform Interpolation of ALC-Ontologies Using
Fixpoints. In: Proc. FroCoS’13. Springer (2013), to appear.

7. Ludwig, M., Konev, B.: Towards Practical Uniform Interpolation and Forget-
ting for ALC TBoxes. http://lat.inf.tu-dresden.de/research/papers/2013/LuKo-
DL-2013.pdf

8. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proc. IJCAI ’11. pp. 989–995. AAAI Press (2011)

9. Nikitina, N.: Forgetting in General EL Terminologies. Proc. DL ’11, CEUR-WS.org
(2011)

10. Nikitina, N., Rudolph, S.: ExpExpExplosion: Uniform interpolation in general EL
terminologies. In: Proc. ECAI’12. pp. 618–623. IOS Press (2012)

11. Nonnengart, A., Sza las, A.: A fixpoint approach to second-order quantifier elimi-
nation with applications to correspondence theory. In: Logic at Work, pp. 307–328.
Springer (1999)

12. Sattler, U., Schneider, T., Zakharyaschev, M.: Which Kind of Module Should I
Extract? In: Proc. DL’09. CEUR-WS.org (2009)

13. Wang, Z., Wang, K., Topor, R., Zhang, X.: Tableau-based forgetting in ALC on-
tologies. In: Proc. ECAI ’10. pp. 47–52. IOS Press (2010)

	Implementation and Evaluation of Forgetting In ALC-Ontologies
	Introduction
	Preliminaries
	The Method
	Implementation
	Experimental Evaluation
	Conclusion

