
Proc. Kieker/Palladio Days 2013, Nov. 27–29, Karlsruhe, Germany
Available online: http://ceur-ws.org/Vol-1083/
Copyright c© 2013 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Towards Automated Software Project Planning

Extending Palladio for the Simulation of Software Processes

Oliver Hummel

Software Design and Quality
Karlsruhe Institute of Technology (KIT)

oliver.hummel@kit.edu

Robert Heinrich

Software Design and Quality
Karlsruhe Institute of Technology (KIT)

robert.heinrich@kit.edu

Abstract: In every non-trivial software project a significant amount of effort
must be devoted to project planning and management. However, project managers
steering such projects are often still doing this based on relatively vague heuristics
and/or their experience. Various studies and numerous project outcomes have con-
tinuously been demonstrating that this is not good enough as it frequently leads to
budget and schedule overruns or even completely failed projects. In other engi-
neering disciplines it is common, to simulate complex processes in order to miti-
gate such risks. Since the Palladio approach already provides functionality for
architecture simulations and has been successfully extended for the simulation of
business processes, it seems feasible to derive, simulate, and even optimize a pro-
ject plan based on the Palladio model of an architecture. In this position paper, we
sketch how Palladio could be used in order to become a useful tool for project
managers that may help to avoid common planning pitfalls. Furthermore, we pre-
sent initial ideas how its existing modeling elements can be mapped on the soft-
ware development process and which extensions are still necessary.

1 Introduction

Budget and schedule overruns or even completely failed projects in software develop-
ment are still rather common than an exception. During the so-called “software crisis” in
the late 1960s, this was mainly attributed to poor tool support and a lack of knowledge in
developing complex software systems. Although, these challenges have clearly been
mitigated over the last decades as today sophisticated development environments and
other tools have improved software development significantly, the ratio of challenged or
failed software projects has not changed much. According to the current Standish Group
chaos report [Sta12], only 16 percent of all software projects are successful, roughly 50
percent are “challenged”, i.e. either delayed, more expensive, or both and around 30 per-
cent are even prematurely aborted completely. Consequently, renowned researchers such
as Robert Glass have proclaimed that today a “software estimation and planning crisis”
[Gla06] endangers software projects far more than the previously mentioned lack of
technical development skills. Under such circumstances, it is clearly surprising that
many project managers still plan software projects with the same primitive techniques
that have already been used some thirty years ago. Bar charts or similarly simple nota-
tions continue to be the predominant way for scheduling large-scale software projects

20

(cf. e.g. [Som10]) potentially requiring dozens of person years. Their project plans are
often not even based on the simplest armamentarium, such as work breakdown structures
or rudimentary effort estimations for the tasks contained, but rather driven by business
goals. Although buffers are regularly used to mitigate the risk of failure, usually no
what-if analyses are used to simulate and better understand the impact of unforeseen
events (such as unexpected dependencies, staff turnover or similar challenges [You03])
or just a sub-optimal progression of projects. Even worse from an engineering perspec-
tive is the fact that the current trend towards agile software development [Sch09] has
widely led to an ignorance towards upfront project planning and purely relies on effort
estimates created “on sight” during the course of the project. Since agile approaches pri-
oritize the requirements of their customers they are usually able to deliver usable and
useful software, quickly, though. However, this seems to have created a trend towards
developing software systems until the budget is exhausted and not until all requirements
are implemented (so-called design to budget). From an engineering standpoint, this is
obviously not satisfactory, especially for larger projects, as it introduces a severe risk of
an unsatisfying outcome into the development process.

Taking a look over the rim of the software engineering tea cup reveals that other disci-
plines with similar challenges have been using sophisticated simulation tools for numer-
ous years. They plan, simulate, and optimize not only their products such as airplanes or
cars, but also their business and production processes before they implement them in the
real world. In software engineering, however, simulation techniques have been used only
recently to predict the quality of software products, e.g. with the Palladio approach
[BKR09]. Although the idea of simulating (or at least analysing) the software develop-
ment process itself is also not completely new, existing approaches and tools, mainly
presented in the 1990s [KMR99], are rather high-level and treat the development process
as black-box. In other words, it is not possible to model the structure of the project team
and dependencies between architectural elements, for instance. Moreover, the relation-
ship between software development effort and technical characteristics of the software
product, such as its architecture, is usually not considered from a project management
perspective.

Business process simulation approaches on the other hand typically allow for the model-
ling of workflows consisting of activities and dependencies between them. Some of them
also allow representing “human resources” involved in the processes while characteris-
tics related to the software product, such as the architecture, can only be represented in
software product simulation approaches such as Palladio. The relation between devel-
opment process and product, however, is completely uncovered in simulations today. We
believe that the Palladio tool suite and recent extensions [HHP12] that successfully inte-
grated the simulation of business processes open up a new realm of possibilities: it will
allow fine-grained simulations of complex software development projects (see section 2)
in the near future. This would not only enable project managers, technical leaders, and
other decision makers to carry out what-if analyses of software projects (cf. section 3)
before they kick them off, it would also be a valuable tool in software engineering edu-
cation as it can help to illustrate the difficult trade-offs involved in such decisions. The
main contribution of this position paper is presenting this novel application idea for Pal-

21

ladio in section 4 and 4.1. Moreover, a first juxtaposition of modelling elements current-
ly available in Palladio and elements required for development process simulations as
well as suggestions for Palladio extensions derived from this comparison (in 4.2 and 4.3)
are also presented.

2 Foundations

In this section we prepare the stage for presenting our vision by explaining various foun-
dations of software project planning, software simulation, and activity prediction ap-
proaches in three subsections.

2.1 Project Planning Foundations
Software development processes have often been illustrated by using the (over-) simpli-
fying waterfall model [Som10] that basically comprises five consecutive development
phases, namely requirements elicitation, architecture and software design, program-
ming, testing, and deployment. In this model, a new phase can only begin once its prede-
cessor has been completed, which in theory allows a relatively simple upfront project
planning based on a reasonable understanding of the project requirements. Under these
prerequisites, project managers “merely” need to take three fundamental elements into
account for planning: they start by identifying the artefacts that must be created to build
the system. Once these are identified, the tasks required to create them can be derived,
estimated in terms of required effort and assigned to developer roles respectively the
people that fill them in a project.

Practical experience has shown, however, that upfront requirements understanding is
seldom complete or unambiguous so that it is impossible to foresee all eventualities that
may occur in a large project perhaps running for a couple of years. Even worse, on aver-
age at least between one and three percent of all requirements are estimated to change
each month of the project duration [Jon08]. Therefore, simply put, more recent agile
development approaches (such as Scrum [Sch10]) propose to analyse and implement
prioritized requirements one after the other in order to mitigate the risks of the waterfall-
like “big-bang approach” just described. Nevertheless, effort estimation [Boe81] and
schedule creation [Som10] remain a challenging topic in its own right for both, waterfall
as well as iterative projects.

In his seminal book “The Mythical Man-Month” [Bro75], Frederik Brooks has described
other important foundations for fine-grained simulations of software development pro-
cesses that shall be briefly discussed in the following. He recognized that development
tasks can typically be instances of three different archetypes: they can either be perfectly
partitionable, such as picking cotton; not partitionable at all, such as bearing a child; and
partitionable to a certain degree of parallelisation. Once the threshold is reached, the
latter archetype tends to take more time the more people are assigned to complete it. This
is known as a diseconomy of scale and has also been the basis for Brooks’ famous law:
Adding manpower to a late software project makes it later [Bro75]. However, as simple

22

as this “law” appears at a first glance, as often it is ignored in practice even by experi-
enced project managers. Software engineering has been relatively ignorant against anal-
ysis and simulation of the software development process so far. Apart from a number of
relatively high-level approaches developed in the 1990s, described in more detail in the
section on related work, there has not been much momentum in this direction.

2.2 Software System and Business Process Simulation Foundations
In general, simulation is a method to evaluate a model numerically, through executing it
for a set of inputs in order to see how the output measures evolve [Law06]. It has already
been applied in numerous domains to analyse different kinds of models including soft-
ware architectures, business processes models and even simple software process models.
Palladio is a software architecture simulation approach that originally addressed the sim-
ulation and analysis of architectural quality characteristics such as performance and reli-
ability. The Palladio Component Model (PCM) [BKR09] allows for the description of
component-based software architectures and their hardware environments which form
the central input of the simulations. Recently, the original PCM has been extended with
concepts for business process modelling and simulation by Heinrich et al. [HHP12] in
order to allow the analysis of business processes that are heavily depending on IT sys-
tems. Among other concepts, the PCM has therefore been augmented to simulate actions
completely performed by human actors.

Moreover, the PCM has been extended with the possibility to represent the organization-
al environment of a business process so that it can also represent human actors and their
properties, such as availability and organizational role. Likewise, the underlying simula-
tion engine EventSim [MeH11] has been extended by a novel scheduling policy reflect-
ing the behaviour of human actors in a simulation. Based on queuing networks [LZG84],
the extended simulator is able to predict the utilization of human actors and the execu-
tion times of the actions performed by them. This allows the identification of potential
bottlenecks and other design flaws in IT-supported business processes.

2.3 KAMP: Karlsruhe Architectural Maintainability Prediction
KAMP [StR09] is a quantitative architecture-based prediction method for estimating the
effort of changes to a given Palladio model of a software architecture. KAMP for the
first time uses concrete architectural models to evaluate software maintainability for po-
tential change requests. Based on these findings, the method estimates change efforts for
a semi-automatic derivation of work plans and bottom-up effort estimation. The overall
effort of change requests is determined by also taking re-implementation activities as
well as re-deployment and upgrade activities into account. Thus, in a nutshell, KAMP
supports the identification of a list of activities necessary for software architecture
change and is another important building block for a fine-grained simulation of software
processes as well as for an automatic derivation of project plans.

23

3 Related Work and Open Challenges

In this section we give a brief overview of related work that has been targeting the simu-
lation of software processes in recent years and summarize their shortcomings for using
them in the fine-granular simulation of software processes. Based on these shortcomings
we collect the main open challenges we intend to address with our envisaged Palladio
extension presented in section 4.

3.1 Related Work
Mainly influenced by Boehm’s seminal work on software estimation, there has been a
constant interest in developing tools that support software estimation. Barry Boehm and
his group have also packaged the knowledge collected in their COCOMO 81 and CO-
COMO II methods into easy to use software tools that are freely available on the Web1.
The former tool is “merely” a simple calculator that derives the estimated work force
needed to implement a system of a given size (in lines of code) in a given environment
specified by so-called cost drivers. In addition, the latter tool offers some rudimentary
simulation capabilities in order to derive a probability distribution for likely personnel
efforts. Numerous other tools based on or inspired by Boehm’s works are available to-
day. For example, Steve McConnell’s company Construx offers a tool called Estimate
(see Figure 1) that is able to execute simulations in order to find the most likely out-
comes for a given project configuration [Hum11].

Figure 1: Screenshot of simulated project outcomes in Construx Estimate.

1 COMOMO 81 calculator: http://sunset.usc.edu/research/COCOMOII/cocomo81_pgm/cocomo81.html

COCOMO II calculator: http://csse.usc.edu/tools/COCOMOII.php (both accessed in September 2013)

24

In other words, the various tools similar to Estimate such as the ones developed by
Northrop Grumman [RVM99] or by Abdel Hamid [AbH89] merely aim on creating
probability distributions for the most important effort indicators or error distributions of
software projects through so-called monte-carlo simulations. In order to achieve this,
simulations are executed numerous times with different random values in order to get a
better understanding on how they influence the final project outcome. However, beyond
some basic cost drivers such as personnel capabilities or performance requirements, it is
neither possible to influence the internal workflow nor the dependencies of requirements
and architectural components within the simulated software process.

In addition to project planning, the publication of Kellner et al. [KMR99], which is also
a good starting point for more related work, identified five further motivations for the
use of software process simulation approaches:

• Project planning

• Strategic management

• Process control and operational management

• Process improvement and technology adoption

• Process understanding

• Training and learning

There is also a group of educational software process simulators that can be used to train
future project managers. Probably the best known example in this category is SESAM
that was developed by the group of Ludewig at the University of Stuttgart [DrL00]. On
the one hand, SESAM is a very powerful tool that allows a lot of fine-grained manage-
ment decisions during the simulated development project. On the other hand, however, it
is not usable for extended what-if analyses since it is designed as a game requiring con-
tinuous interaction and decision making of the player as well as several hours of playing
time. Moreover, there is also a variety of “classic” process simulation tools available in
business administration and other domains such as ADONIS [HJK97] etc. that also seem
well suited for software process simulations at a first glance. However, they currently
neither support software process specific roles or artefacts, nor do they have obvious
connection points to architectural models so that a significant amount of effort would be
necessary to tailor them for the simulation of software processes.

3.2 Open Challenges
In summary, the approaches presented so far have only limited expressiveness when it
comes to modelling software development processes. For example, activities are typical-
ly limited to the coarse-grained phases found in the waterfall model and the only artefact
that is modelled is the final system. “Access" to intermediate documents is typically not
possible; neither there is a way to influence the ordering of necessary development activ-
ities or potential dependencies between them. Moreover, it is also not possible to assign
one of Brooks’s three task partitioning archetypes to the activities so that this important
aspect remains completely unsupported so far.

25

The behaviour or experience of human actors in various activities is typically also not
reflected by simulation tools. This implies that it is for example not possible to compare
the effects of implementing a system based on a sequential flow of activities, as manda-
tory when a sequential process model is used, with an iterative one. Moreover, since
existing systems do not target such a fine-granular analysis of the software process, it is
also not clear, how a user-friendly interface to such systems could look like.

4 Vision

We believe that a sophisticated simulation tool that offers capabilities to model software
development processes on a detailed level with activities, artefacts and people involved
could lead to a significant improvement in project planning quality. Since software pro-
cesses are typically complex, we advocate that as many elements as possible should be
automatically arranged, ideally based on a model of the requirements. We envisage a
simulation tool that should be able to derive a probability distribution for the effort of the
planned project similar to existing tools. Moreover, it should also be able to generate a
work breakdown structure of the activities needed to implement these requirements
based on the findings of KAMP. And finally, a project plan that brings these activities
into a meaningful order and assigns the available developers respectively other stake-
holders to them should also be supported. In order to simplify the arrangement of arte-
facts and activities during the process, we envisage the creation of a set of predefined
process templates that enable the simulation tool to automatically schedule activities
according to a selected process model, such as Scrum [Sch09] etc. Other important pa-
rameters include an estimate of the complexity of the system’s requirements as well as of
the capabilities of the developers implementing it, as it is common practice in proven
effort estimation approaches (such as COCOMO [Boe81]) and the high-level simulation
tools based on them.

4.1 Medium-Term Approach

Admittedly, the previous vision and especially the derivation of a project plan from a
requirements model will be very challenging since those models are mostly created in
textual form today. However, we believe, that with the considerable foundations availa-
ble within the extended PCM and KAMP, a solution based on architectural models is
within reach. Hence, we are confident that a wide automation of the following process
should be feasible.

Starting with a Palladio model of the desired system’s architecture, it comprises the fol-
lowing phases:

Phase 1: Apply KAMP, respectively an extended version of it, to derive a list of neces-
sary activities required to implement the designed architecture. Or in other words, create
a work breakdown structure for the implementation.

26

Phase 2: Automatically derive a project plan and a Palladio process model (cf. PCM pro-
cess extension) of it by arranging the activities derived from phase 1 according to the
desired development process. Several processes can be compared by representing each
of them as a process model and conducting a simulation study for each paradigm.

Phase 3: Conduct a Palladio process simulation for each process model: The simulation
predicts various performance aspects such as the execution times of the process and the
activities within the process or the utilization of each human actor involved in it. In addi-
tion, it may also evaluate temporal constraints. For each simulation study, the results are
compared in order to find a process model that fits best into the given context. Ideally,
the generated models are optimized automatically, e.g. by applying search-based optimi-
zation techniques. Moreover, what-if analyses may be conducted by predicting the im-
pact of changes to the models. For example, it may be interesting how allocating addi-
tional human actors or rearranging activities changes the overall process performance.

4.2 Mapping SE Process Elements to Palladio Business Process Elements
In order to underline the short-term feasibility of the vision presented in the last subsec-
tion, let us present a juxtaposition of modelling elements already available in the extend-
ed PCM and the central elements required to model software development processes.

Table 1: Comparison of Software Process Elements and Business Process Elements

Software Process Element Appropriate Palladio BP Extension Model-
ling Element

Artifact/Document n/a

Human Resources Human actor

Role Organizational role (of a human actor)

Developer Task (Action/Activity) Actor step, activity

Task Type n/a

Communication Dependency Process control flow

Clustering of activities into phases Hierarchical composition of steps/activities

Team n/a

Execution time for an activity Processing time of an actor step

Deadline n/a

As illustrated by the table 1, Palladio already offers various modelling elements that can
be used with relative ease for supporting the modelling of software development pro-
cesses. However, as is also visible, there are some elements that are still missing to date,
namely – artefacts, task types, teams and deadlines. An additional layer for grouping

27

developers and other stakeholders into teams is also required. This can probably be cre-
ated easily through extending the existing organization environment model (cf.
[HHP12]) with a corresponding structure.

The business process model can be extended by model elements to represent artefacts
and their dependencies, i.e. the necessary communications and artefact flows, between
potentially parallel activities that may slow down the process. Finally the three arche-
types of different activity parallelisation characteristics as identified by Brooks must also
be integrated for a proper modelling of software processes. The existing simulation be-
haviour can be easily extended or adapted by specifying new so-called traversal strate-
gies (e.g. for a new model element) and registering it in the simulator framework.
Whenever, the simulation encounters a model element (e.g. an activity) in the process
model, the simulation behaviour specified in the corresponding traversal strategy is exe-
cuted. For example, the activity may be assigned to an actor who is suitable to perform
the activity. Therefore, the behaviour related to the aforementioned model elements,
such as different activity types or dependencies between artefacts and activities can be
reflected easily by adapting existing traversal strategies and creating new strategies
where necessary. Similarly, the behaviour specification of human actors can be adapted.
A human actor can be seen as a special kind of processing resource (cf. [HHP12]). Thus,
merely the corresponding scheduling policies need to be adapted. Deadlines correspond
to constraints in process execution, for example, the deadline of a certain activity may be
5 time units after its processing has been started. This can be evaluated for each simula-
tion run in retrospective by comparing simulation results, i.e. the execution time of the
activity in this case, with the constraint, i.e. the deadline. Such verification is already
possible using the existing tooling, however, currently, the comparison has to be con-
ducted manually. In the future, a sensor tailored for the identification of deadline viola-
tions can be implemented based on the existing sensor framework.

4.3 Practical Usability
With the enhancements just described, the medium-term vision should be implementable
relatively quickly. However, in order to provide a practical and usable tool, some addi-
tional preparation works need to be executed. First, usability is certainly an important
issue that needs to be dealt with, since simulation models will be complex and must be
usable for non IT experts. Thus, we envisage that templates for various process models
are created based on the activities identified by KAMP so that users do not need to mod-
el every project completely from scratch. Second, it will also be important, to calibrate
with realistic project data that can be obtained from seminal work in the area of software
cost estimation. Finally, prediction quality and usability must be evaluated, ideally with
the help of well documented finished projects that can be “reverse engineered” in order
to obtain simulation models that can be compared with the actual project outcomes.

28

5 Conclusion

In this position paper we have presented a vision for extending Palladio with additional
elements that would not only allow the simulation of software and business process per-
formance, but also the performance of a development process that aims on creating an
actual system from a given architectural model. We have demonstrated that with rela-
tively small extensions to the Palladio meta-model creating a unique software develop-
ment simulation tool should be possible: It would allow deriving and analysing fine-
grained simulation models for development processes based on architectural models
largely automatically. Since existing tools treat the software development process as a
black box where individual activities cannot be influenced by, and have no connection to
existing architectural models, we believe that this proposal is a significant step forward
towards a better support and control environment for project managers that goes far be-
yond the simple Gantt chart based tools available today.

References

[AbH89] T. Abdel-Hamid. The dynamics of software project staffing: a system dynamics based
simulation approach. IEEE Transactions on Software Engineering, Vol. 15, Iss. 2, 1989.

[BKR09] S. Becker, H. Koziolek, and R. Reussner. „The Palladio component model for model-
driven performance prediction”, Journal of Systems and Software, Vol. 82, 2009.

[Boe81] B. Boehm. Software Engineering Economics, Prentice Hall, 1981.
[Bro75] F. Brooks. The mythical man-month. Addison-Wesley, 1975.
[DrL00] A. Drappa, J. Ludewig. Simulation in software engineering training. Proceedings of the

22nd International Conference on Software Engineering, 2000.
[Gla06] R. Glass. The Software Estimation Crisis, in Ebert, & Dumke: Software Measurement,

Springer, 2006.
[HHP12] R. Heinrich, J. Henss, and B. Paech. “Extending Palladio by business process simula-

tion concepts”. In S. Becker, J. Happe, A. Koziolek, and R. Reussner, editors, Palladio
Days 2012 Proceedings, pages 19-27, Karlsruhe, 2012.

[HJK97] J. Herbst, S. Junginger, H. Kühn: Simulation in Financial Services with the Business
Process Management System ADONIS, 9th European Simulation Symposium, Society
for Computer Simulation, pp. 491-495, 1997.

[Hum11] O. Hummel: Aufwandsschätzungen in der Software- und Systementwicklung (in Ger-
man), Spektrum Akademischer Verlag, 2011.

[Jon08] C. Jones: Applied Software Measurement, McGraw-Hill, 2008.
[KMR99] M. Kellner, R. Madachy, D. Raffo. “Software Process Modeling: Why? What? How?”,

Journal of Systems and Software, Vol. 46, No. 2, 1999.
[Lar04] C. Larman. Applying UML and Patterns (3rd ed.), Prentice Hall, 2004.
[Law06] A.M. Law: Simulation Modeling and Analysis, Mcgraw-Hill, 2006.
[LZG84] D. Lazowska, J. Zahorjan, G. Graham, K. Sevcik. Quantitative System Performance –

Computer Systems Analysis Using Queuing Network Models, Prentice-Hall, 1984.
[MeH11] P. Merkle and J. Henss. “EventSim – an event-driven Palladio software architecture

simulator,” in Palladio Days Proceedings, Becker, Happe, Reussner, Eds., 2011.
[RVP99] D. Raffo, J. Vandeville, R. Martin: Software Process Simulation to Achieve Higher

CMM Levels, Journal of Systems and Software, Vol. 46, No. 2, 1999.
[Sch09] K. Schwaber: Agile Project Management with Scrum, Microsoft Press, 2009.
[Som10] I. Sommerville: Software Engineering (9th ed.), Addison-Wesley, 2010.
[Sta12] Standish Group, Inc. Chaos Report 2012.
[StR09] J. Stammel, R. Reussner. KAMP: Karlsruhe Architectural Maintainability Prediction.

Proc. of the 1. Workshop GI-Arbeitskreises Langlebige Softwaresysteme, 2009.
[You03] E. Yourdon: Death March (2nd ed.), Yourdon Press, 2003.

29

