Towards Automated Softwar e Project Planning

Extending Palladio for the Simulation of Softwar e Processes

Oliver Hummel Robert Heinrich
Software Design and Quality Software Design and Quality
Karlsruhe Ingtitute of Technology (KIT) Karlsruhe Institute of Technology (KIT)
oliver.hummel@kit.edu robert.heinrich@kit.edu

Abstract: In every non-trivial software project a significaamount of effort
must be devoted to project planning and managerkiEntever, project managers
steering such projects are often still doing thisda on relatively vague heuristics
and/or their experience. Various studies and nuuosepooject outcomes have con-
tinuously been demonstrating that this is not gendugh as it frequently leads to
budget and schedule overruns or even completelgdfgirojects. In other engi-
neering disciplines it is common, to simulate coempprocesses in order to miti-
gate such risks. Since the Palladio approach ajr@advides functionality for
architecture simulations and has been successfutgnded for the simulation of
business processes, it seems feasible to derivejate, and even optimize a pro-
ject plan based on the Palladio model of an archite. In this position paper, we
sketch how Palladio could be used in order to becamuseful tool for project
managers that may help to avoid common plannirfglisit Furthermore, we pre-
sent initial ideas how its existing modeling elemsecan be mapped on the soft-
ware development process and which extensiongilireesessary.

1 Introduction

Budget and schedule overruns or even completelgdfgirojects in software develop-
ment are still rather common than an exceptionifuthe so-called “software crisis” in
the late 1960s, this was mainly attributed to poot support and a lack of knowledge in
developing complex software systems. Although, éhekallenges have clearly been
mitigated over the last decades as today sophisticdevelopment environments and
other tools have improved software developmentifsogmtly, the ratio of challenged or
failed software projects has not changed much. Aling to the current Standish Group
chaos report [Stal2], only 16 percent of all sofevarojects are successful, roughly 50
percent are “challenged”, i.e. either delayed, neqgensive, or both and around 30 per-
cent are even prematurely aborted completely. Gpresgly, renowned researchers such
as Robert Glass have proclaimed that today a “soétvestimation and planning crisis”
[Gla06] endangers software projects far more then greviously mentioned lack of
technical development skills. Under such circumstan it is clearly surprising that
many project managers still plan software projedth the same primitive techniques
that have already been used some thirty yearsBayocharts or similarly simple nota-
tions continue to be the predominant way for schedguarge-scale software projects

Proc. Kieker/Palladio Days 2013, Nov. 27-29, Karlsruhe, Germany

Available online: http://ceur-ws.org/vVol-1083/

Copyright (©) 2013 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

20

(cf. e.g. [Som10]) potentially requiring dozensparson years. Their project plans are
often not even based on the simplest armamentasuah, as work breakdown structures
or rudimentary effort estimations for the taskstagred, but rather driven by business
goals. Although buffers are regularly used to naitggthe risk of failure, usually no
what-if analyses are used to simulate and bettdenstand the impact of unforeseen
events (such as unexpected dependencies, staffverror similar challenges [You03])
or just a sub-optimal progression of projects. Ewemse from an engineering perspec-
tive is the fact that the current trend towarddeagoftware development [Sch09] has
widely led to an ignorance towards upfront projeletnning and purely relies on effort
estimates created “on sight” during the courséhefgroject. Since agile approaches pri-
oritize the requirements of their customers they asually able to deliver usable and
useful software, quickly, though. However, thisrasgo have created a trend towards
developing software systems until the budget isaested and not until all requirements
are implemented (so-called design to budget). Fammengineering standpoint, this is
obviously not satisfactory, especially for largeojpcts, as it introduces a severe risk of
an unsatisfying outcome into the development pces

Taking a look over the rim of the software engifmagtea cup reveals that other disci-
plines with similar challenges have been using ®tighted simulation tools for numer-
ous years. They plan, simulate, and optimize nbt treir products such as airplanes or
cars, but also their business and production pseselsefore they implement them in the
real world. In software engineering, however, siioh techniques have been used only
recently to predict the quality of software produce.g. with the Palladio approach
[BKRO09]. Although the idea of simulating (or at &analysing) the software develop-
ment process itself is also not completely newstég approaches and tools, mainly
presented in the 1990s [KMR99], are rather higlellend treat the development process
as black-box. In other words, it is not possiblertodel the structure of the project team
and dependencies between architectural elememédtance. Moreover, the relation-
ship between software development effort and teetrdharacteristics of the software
product, such as its architecture, is usually motsaered from a project management
perspective.

Business process simulation approaches on the loéimet typically allow for the model-
ling of workflows consisting of activities and deykencies between them. Some of them
also allow representing “human resources” involirethe processes while characteris-
tics related to the software product, such as tbkitecture, can only be represented in
software product simulation approaches such asdiall The relation between devel-
opment process and product, however, is completedpvered in simulations today. We
believe that the Palladio tool suite and recengérsions [HHP12] that successfully inte-
grated the simulation of business processes openngw realm of possibilities: it will
allow fine-grained simulations of complex softwalevelopment projects (see section 2)
in the near future. This would not only enable pebjmanagers, technical leaders, and
other decision makers to carry out what-if analysesoftware projects (cf. section 3)
before they kick them off, it would also be a vddigatool in software engineering edu-
cation as it can help to illustrate the difficulade-offs involved in such decisions. The
main contribution of this position paper is pregamthis novel application idea for Pal-

21

ladio in section 4 and 4.1. Moreover, a first jypdaition of modelling elements current-
ly available in Palladio and elements required development process simulations as
well as suggestions for Palladio extensions derfueeh this comparison (in 4.2 and 4.3)
are also presented.

2 Foundations

In this section we prepare the stage for presemtimgrision by explaining various foun-
dations of software project planning, software datian, and activity prediction ap-
proaches in three subsections.

21 Project Planning Foundations

Software development processes have often beeatrdted by using the (over-) simpli-
fying waterfall model [Som10] that basically congms five consecutive development
phases, namelyequirements elicitation, architecture and software design, progranm+-
ming, testing, anddeployment. In this model, a new phase can only begin orepriéde-
cessor has been completed, which in theory allowslaively simple upfront project
planning based on a reasonable understanding girtject requirements. Under these
prerequisites, project managers “merely” need ke t@iree fundamental elements into
account for planning: they start by identifying #réefacts that must be created to build
the system. Once these are identified,ttsks required to create them can be derived,
estimated in terms of required effort and assigtwedeveloperr oles respectively the
people that fill them in a project.

Practical experience has shown, however, that opfrequirements understanding is
seldom complete or unambiguous so that it is imptesso foresee all eventualities that
may occur in a large project perhaps running fooaple of years. Even worse, on aver-
age at least between one and three percent oéqlirements are estimated to change
each month of the project duration [Jon08]. Thexefeimply put, more recent agile
development approaches (such as Scrum [Sch10]ogeofd analyse and implement
prioritized requirements one after the other ineorid mitigate the risks of the waterfall-
like “big-bang approach” just described. Nevertksjeeffort estimation [Boe81] and
schedule creation [Som10] remain a challengingctopits own right for both, waterfall
as well as iterative projects.

In his seminal book “The Mythical Man-Month” [Bro,3-rederik Brooks has described
other important foundations for fine-grained sintidlas of software development pro-
cesses that shall be briefly discussed in the Wiatlg. He recognized that development
tasks can typically be instances of three diffemnhetypes: they can either be perfectly
partitionable, such as picking cotton; not pantiéible at all, such as bearing a child; and
partitionable to a certain degree of parallelisati®nce the threshold is reached, the
latter archetype tends to take more time the meople are assigned to complete it. This
is known as a diseconomy of scale and has also theelpasis for Brooks’ famous law:
Adding manpower to a late software project makes it later [Bro75]. However, as simple

22

as this “law” appears at a first glance, as oftes ignored in practice even by experi-
enced project managers. Software engineering hers iedatively ignorant against anal-
ysis and simulation of the software developmentess so far. Apart from a number of
relatively high-level approaches developed in tB80k, described in more detail in the
section on related work, there has not been muahentum in this direction.

2.2 Software System and Business Process Simulation Foundations

In general, simulation is a method to evaluate dehaumerically, through executing it
for a set of inputs in order to see how the outpeasures evolve [Law06]. It has already
been applied in numerous domains to analyse diffiimds of models including soft-
ware architectures, business processes modelsvandsanple software process models.
Palladio is a software architecture simulation apph that originally addressed the sim-
ulation and analysis of architectural quality cleéesistics such as performance and reli-
ability. The Palladio Component Model (PCM) [BKRO&lJows for the description of
component-based software architectures and theiwaae environments which form
the central input of the simulations. Recently, thiginal PCM has been extended with
concepts for business process modelling and siiaoldty Heinrich et al. [HHP12] in
order to allow the analysis of business procedsaisare heavily depending on IT sys-
tems. Among other concepts, the PCM has therefeee hugmented to simulate actions
completely performed by human actors.

Moreover, the PCM has been extended with the pitigsito represent the organization-
al environment of a business process so that iatsmrepresent human actors and their
properties, such as availability and organizationdd. Likewise, the underlying simula-
tion engine EventSim [MeH11] has been extended hg\weel scheduling policy reflect-
ing the behaviour of human actors in a simulat®esed on queuing networks [LZG84],
the extended simulator is able to predict theaatilon of human actors and the execu-
tion times of the actions performed by them. THisves the identification of potential
bottlenecks and other design flaws in IT-suppoliesiness processes.

23 KAMP: Karlsruhe Architectural Maintainability Prediction

KAMP [StR09] is a quantitative architecture-baseddiction method for estimating the
effort of changes to a given Palladio model of &vgare architecture. KAMP for the
first time uses concrete architectural models @lwate software maintainability for po-
tential change requests. Based on these findihgsnethod estimates change efforts for
a semi-automatic derivation of work plans and buotigp effort estimation. The overall
effort of change requests is determined by alsingake-implementation activities as
well as re-deployment and upgrade activities irdooant. Thus, in a nutshell, KAMP
supports the identification of a list of activitiesecessary for software architecture
change and is another important building blockadine-grained simulation of software
processes as well as for an automatic derivatigr@jéct plans.

23

3 Reated Work and Open Challenges

In this section we give a brief overview of relatedrk that has been targeting the simu-
lation of software processes in recent years anthgrize their shortcomings for using
them in the fine-granular simulation of softwareqasses. Based on these shortcomings
we collect the main open challenges we intend tiress with our envisaged Palladio
extension presented in section 4.

3.1 Related Work

Mainly influenced by Boehm’s seminal work on softeastimation, there has been a
constant interest in developing tools that suppoftware estimation. Barry Boehm and
his group have also packaged the knowledge cotleictéheir COCOMO 81 and CO-
COMO Il methods into easy to use software tools #ina freely available on the Web
The former tool is “merely” a simple calculator ttderives the estimated work force
needed to implement a system of a given size fiesliof code) in a given environment
specified by so-called cost drivers. In additidme tatter tool offers some rudimentary
simulation capabilities in order to derive a prabgbdistribution for likely personnel
efforts. Numerous other tools based on or inspinedoehm’s works are available to-
day. For example, Steve McConnell’'s company Corstiffers a tool called Estimate
(see Figure 1) that is able to execute simulationsrder to find the most likely out-
comes for a given project configuration [Hum11].

& VLSDP - Construs Estimate —lol x|
Fle view Estimate Took Construx Help

(project not described) Schedule and Efort Simulation

Genersl Requiements Complete

Caibration Type: Picject Type (iom ndusty dala]
Scape (Lines of Code)

Expected 495,000

St Dev: 17563 (524%)
Min (Bth percentiel 297.000

b (95th percenile} 717,750
Mominal Plan 0l

(sl prsriies ecyaaly weihted)

Effort 447 st menths
Schedle: 28,1 morkhs

Peak Stalt: 24,7 staft

Cost nla

Effort (staft-months)

Optimum Plan
(priories set by estimator)

Effort 1,091 staftemorths
Schedule: 225 morths 3 a0
Pesk Stalf: 75,4 staft Schecluls (morths)

Cost nfa

Project planning s currently most constiained by the
schedule constraint, Planning Options

1000 .

Effort (staftmortns)
.

22 2 24 25 26 kg 2 El 32 3 34 3 £ ar

2 £
Sehedule (morths)

DelherngSotue Proec Succes:
Project labor cost needsto be defined [[[Estimate Gualiy: Fair 4

Figure 1: Screenshot of simulated project outcomesin Construx Estimate.

1 comomo 81 calculatorttp://sunset.usc.edu/research/ COCOMOIl/cocomo8h/@aromo81.html
COCOMO Il calculatorhttp://csse.usc.edu/tools/ COCOMOIl.pfigoth accessed in September 2013)

24

In other words, the various tools similar to Estienguch as the ones developed by
Northrop Grumman [RVM99] or by Abdel Hamid [AbH8®%herely aim on creating
probability distributions for the most importanfat indicators or error distributions of
software projects through so-called monte-carloutitions. In order to achieve this,
simulations are executed numerous times with differandom values in order to get a
better understanding on how they influence thel fimaject outcome. However, beyond
some basic cost drivers such as personnel cajebitit performance requirements, it is
neither possible to influence the internal workfloar the dependencies of requirements
and architectural components within the simulatstivare process.

In addition to project planning, the publicationkéliner et al. [KMR99], which is also
a good starting point for more related work, idiéedi five further motivations for the
use of software process simulation approaches:

e Project planning

» Strategic management

* Process control and operational management
* Process improvement and technology adoption
* Process understanding

e Training and learning

There is also a group of educational software m®sémulators that can be used to train
future project managers. Probably the best knovamge in this category is SESAM
that was developed by the group of Ludewig at tinvétsity of Stuttgart [DrL0O]. On
the one hand, SESAM is a very powerful tool th&dvad a lot of fine-grained manage-
ment decisions during the simulated developmerjeptoOn the other hand, however, it
is not usable for extended what-if analyses siht®designed as a game requiring con-
tinuous interaction and decision making of the ptags well as several hours of playing
time. Moreover, there is also a variety of “clagicocess simulation tools available in
business administration and other domains suchCEBMS [HIK97] etc. that also seem
well suited for software process simulations atrst glance. However, they currently
neither support software process specific rolegartefacts, nor do they have obvious
connection points to architectural models so thsigaificant amount of effort would be
necessary to tailor them for the simulation of wafe processes.

3.2 Open Challenges

In summary, the approaches presented so far hdydimited expressiveness when it

comes to modelling software development proce$smsexample, activities are typical-

ly limited to the coarse-grained phases found enwlaterfall model and the only artefact
that is modelled is the final system. “Access"riteimediate documents is typically not
possible; neither there is a way to influence ttteedng of necessary development activ-
ities or potential dependencies between them. M@neat is also not possible to assign
one of Brooks's three task partitioning archetyfethe activities so that this important
aspect remains completely unsupported so far.

25

The behaviour or experience of human actors inovariactivities is typically also not
reflected by simulation tools. This implies thaisitfor example not possible to compare
the effects of implementing a system based on aesgigl flow of activities, as manda-
tory when a sequential process model is used, aittiterative one. Moreover, since
existing systems do not target such a fine-grarautatysis of the software process, it is
also not clear, how a user-friendly interface torssystems could look like.

4 Vision

We believe that a sophisticated simulation toot tffers capabilities to model software
development processes on a detailed level witlviies, artefacts and people involved
could lead to a significant improvement in projplenning quality. Since software pro-
cesses are typically complex, we advocate thatasymlements as possible should be
automatically arranged, ideally based on a moddhefrequirements. We envisage a
simulation tool that should be able to derive abptaility distribution for the effort of the
planned project similar to existing tools. Moreqgviershould also be able to generate a
work breakdown structure of the activities needediniplement these requirements
based on the findings of KAMP. And finally, a prdjglan that brings these activities
into a meaningful order and assigns the availablelbpers respectively other stake-
holders to them should also be supported. In a@aimplify the arrangement of arte-
facts and activities during the process, we eneishg creation of a set of predefined
process templates that enable the simulation ma@utomatically schedule activities
according to a selected process model, such asng&ch09] etc. Other important pa-
rameters include an estimate of the complexityhefdystem’s requirements as well as of
the capabilities of the developers implementingad, it is common practice in proven
effort estimation approaches (such as COCOMO [Bhe1d the high-level simulation
tools based on them.

41 Medium-Term Approach

Admittedly, the previous vision and especially therivation of a project plan from a
requirements model will be very challenging sinleese models are mostly created in
textual form today. However, we believe, that wtie considerable foundations availa-
ble within the extended PCM and KAMP, a solutiorsdxia on architectural models is
within reach. Hence, we are confident that a widomation of the following process
should be feasible.

Starting with a Palladio model of the desired syssearchitecture, it comprises the fol-
lowing phases:

Phase 1: Apply KAMP, respectively an extended wersif it, to derive a list of neces-
sary activities required to implement the desigasthitecture. Or in other words, create
a work breakdown structure for the implementation.

26

Phase 2: Automatically derive a project plan arfth#adio process model (cf. PCM pro-
cess extension) of it by arranging the activitiesived from phase 1 according to the
desired development process. Several processelsecaompared by representing each
of them as a process model and conducting a siionlstudy for each paradigm.

Phase 3: Conduct a Palladio process simulatioedch process model: The simulation
predicts various performance aspects such as #autan times of the process and the
activities within the process or the utilizationezfch human actor involved in it. In addi-
tion, it may also evaluate temporal constraints.dach simulation study, the results are
compared in order to find a process model thatbist into the given context. Ideally,

the generated models are optimized automatically,ley applying search-based optimi-
zation techniques. Moreover, what-if analyses maydnducted by predicting the im-

pact of changes to the models. For example, it b&jnteresting how allocating addi-

tional human actors or rearranging activities clesrfpe overall process performance.

4.2 Mapping SE Process Elementsto Palladio Business Process Elements

In order to underline the short-term feasibilitytbé vision presented in the last subsec-
tion, let us present a juxtaposition of modellihgneents already available in the extend-
ed PCM and the central elements required to madet/are development processes.

Table 1: Comparison of Software Process Elements and Business Process Elements

Softwar e Process Element Appropriate Palladio BP Extension M odel-
ling Element

Artifact/Document n/a

Human Resources Human actor

Role Organizational role (of a human actor)

Developer Task (Action/Activity) Actor step, actiyi

Task Type n/a

Communication Dependency Process control flow

Clustering of activities into phases Hierarchicainposition of steps/activities

Team n/a

Execution time for an activity Processing time pfagtor step

Deadline n/a

As illustrated by the table 1, Palladio alreadyeddfvarious modelling elements that can
be used with relative ease for supporting the misdebf software development pro-
cesses. However, as is also visible, there are steneents that are still missing to date,
namely — artefacts, task types, teams and deadlkresdditional layer for grouping

27

developers and other stakeholders into teams asratfuired. This can probably be cre-
ated easily through extending the existing orgditina environment model (cf.
[HHP12]) with a corresponding structure.

The business process model can be extended by retmieénts to represent artefacts
and their dependencies, i.e. the necessary comationis and artefact flows, between
potentially parallel activities that may slow dowhe process. Finally the three arche-
types of different activity parallelisation charagstics as identified by Brooks must also
be integrated for a proper modelling of softwaregessses. The existing simulation be-
haviour can be easily extended or adapted by spegihew so-called traversal strate-
gies (e.g. for a new model element) and registeiinign the simulator framework.
Whenever, the simulation encounters a model eleife=gt an activity) in the process
model, the simulation behaviour specified in theregponding traversal strategy is exe-
cuted. For example, the activity may be assigneaihtactor who is suitable to perform
the activity. Therefore, the behaviour related e tforementioned model elements,
such as different activity types or dependencidgs/éen artefacts and activities can be
reflected easily by adapting existing traversahtefies and creating new strategies
where necessary. Similarly, the behaviour spedificaof human actors can be adapted.
A human actor can be seen as a special kind oepsirng resource (cf. [HHP12]). Thus,
merely the corresponding scheduling policies neeblet adapted. Deadlines correspond
to constraints in process execution, for exampie deadline of a certain activity may be
5 time units after its processing has been stafithis. can be evaluated for each simula-
tion run in retrospective by comparing simulatiesults, i.e. the execution time of the
activity in this case, with the constraint, i.ee tleadline. Such verification is already
possible using the existing tooling, however, cutlse the comparison has to be con-
ducted manually. In the future, a sensor tailodtltie identification of deadline viola-
tions can be implemented based on the existingpsdirzsnework.

4.3 Practical Usability

With the enhancements just described, the medium-¢ésion should be implementable
relatively quickly. However, in order to providepaactical and usable tool, some addi-
tional preparation works need to be executed. ,Firsability is certainly an important
issue that needs to be dealt with, since simulatiodels will be complex and must be
usable for non IT experts. Thus, we envisage #raptates for various process models
are created based on the activities identified BYIR so that users do not need to mod-
el every project completely from scratch. Seconhavill also be important, to calibrate
with realistic project data that can be obtainenfrfrseminal work in the area of software
cost estimation. Finally, prediction quality andabiity must be evaluated, ideally with
the help of well documented finished projects tet be “reverse engineered” in order
to obtain simulation models that can be comparel thie actual project outcomes.

28

5 Conclusion

In this position paper we have presented a visiwrektending Palladio with additional
elements that would not only allow the simulatidrsoftware and business process per-
formance, but also the performance of a developmestess that aims on creating an
actual system from a given architectural model. Ns#ge demonstrated that with rela-
tively small extensions to the Palladio meta-martehting a unique software develop-
ment simulation tool should be possible: It woulibwa deriving and analysing fine-
grained simulation models for development procedsesed on architectural models
largely automatically. Since existing tools trela¢ tsoftware development process as a
black box where individual activities cannot bduehced by, and have no connection to
existing architectural models, we believe that fiigposal is a significant step forward
towards a better support and control environmenpfoject managers that goes far be-
yond the simple Gantt chart based tools availaiday.

References

[AbH89] T. Abdel-Hamid. The dynamics of softwareojact staffing: a system dynamics based
simulation approach. IEEE Transactions on SoftvizargineeringVoal. 15, Iss. 2, 1989.

[BKRO9] S. Becker, H. Koziolek, and R. Reussner. ,Th#ade component model for model-
driven performance prediction”, Journal of Systemd Software, Vol. 82, 2009.

[Boe81] B. Boehm. Software Engineering Economics, fzerHall, 1981.

[Bro75] F. Brooks. The mythical man-month. Addisondléy, 1975.

[DrLOO] A. Drappa, J. Ludewig. Simulation in softeaengineering training. Proceedings of the
22nd International Conference on Software Engimgei2000.

[Gla06] R. Glass. The Software Estimation CrisisEbert, & Dumke: Software Measurement,
Springer, 2006.

[HHP12] R. Heinrich, J. Henss, and B. Paech. “Extegd®alladio by business process simula-
tion concepts”. In S. Becker, J. Happe, A. Koziolekd R. Reussner, editors, Palladio
Days 2012 Proceedings, pages 19-27, Karlsruhe,.2012

[HIK97] J. Herbst, S. Junginger, H. Kihn: Simulatia Financial Services with the Business
Process Management System ADONIS, 9th European|&iomw Symposium, Society
for Computer Simulation, pp. 491-495, 1997.

[Hum11] O. Hummel: Aufwandsschatzungen in der Safew und Systementwicklung (in Ger-
man), Spektrum Akademischer Verlag, 2011.

[Jon08] C. Jones: Applied Software Measurement, Me@lill, 2008.

[KMR99] M. Kellner, R. Madachy, D. Raffo. “Softwaradtess Modeling: Why? What? How?",
Journal of Systems and Software, Vol. 46, No. 3919

[Lar04] C. Larman. Applying UML and PatternsY@&d.), Prentice Hall, 2004.

[Law06] A.M. Law: Simulation Modeling and Analysisicgraw-Hill, 2006.

[LZG84] D. Lazowska, J. Zahorjan, G. Graham, K. SkevQuantitative System Performance —
Computer Systems Analysis Using Queuing Network N&yderentice-Hall, 1984.

[MeH11] P. Merkle and J. Henss. “EventSim — an é&kiven Palladio software architecture
simulator,” in Palladio Days Proceedings, Beckemppta Reussner, Eds., 2011.

[RVP99] D. Raffo, J. Vandeville, R. Martin: SoftwaRrocess Simulation to Achieve Higher
CMM Levels, Journal of Systems and Software, Vo|.M6. 2, 1999.

[Sch09] K. Schwaber: Agile Project Management v@tttum, Microsoft Press, 2009.

[Som10] I. Sommerville: Software Engineerind'@d.), Addison-Wesley, 2010.

[Stal2] Standish Group, Inc. Chaos Report 2012.

[StRO9] J. Stammel, R. Reussnher. KAMP: Karlsruhe Aedtural Maintainability Prediction.
Proc. of the 1. Workshop Gl-Arbeitskreises Langieb$oftwaresysteme, 2009.

[YouO3] E. Yourdon: Death March (2nd ed.), Yourdamess, 2003.

29

