
Proc. Kieker/Palladio Days 2013, Nov. 27–29, Karlsruhe, Germany
Available online: http://ceur-ws.org/Vol-1083/
Copyright c© 2013 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Hora: Online Failure Prediction Framework
for Component-based Software Systems

Based on Kieker and Palladio

Teerat Pitakrat

Institute of Software Technology
University of Stuttgart
Universitätstraße 38

70659 Stuttgart, Germany
pitakrat@informatik.uni-stuttgart.de

Abstract: Predicting failures in large systems at runtime is a challenging task as the
systems usually comprise a number of hardware and software components with com-
plex structures and dependencies. The state-of-the-art techniques approach the task
of failure prediction either by creating one separate prediction model for each cru-
cial parameter, or by aggregating parameters of all components in order to build one
prediction model. However, both approaches are not suitable for large-scale dynamic
systems. In this paper, we propose our envisioned approach Hora—an online failure
prediction approach for large-scale component-based systems. Our approach creates
a prediction sub-model for each component and combines them using component de-
pendencies obtained from an architectural model, e.g., PCM or SLAstic, into a model
that can predict failures of internal and external services at runtime. The framework
is built on the Kieker monitoring framework and other supporting tools, e.g., Weka,
R, ΘPAD, which allows suitable prediction techniques to be employed for different
components of the system.

1 Introduction

Preventing failures from occurring at runtime is one of the main goals when building a
system. There are many techniques which improve the system’s reliability during the de-
velopment to ensure that they can function properly under various circumstances However,
despite the effort put into the systems, the reliability still may not reach 100 percent. This
implies that there are occasions when the systems in production fail to deliver expected
services. The main reasons that cause the systems to fail are essentially the complex struc-
ture and inter-dependencies of the components. A failure or even a partial failure of one
service can cause other services that depend on it to malfunction. This incident can create
a chain of service failures that propagates until it reaches critical components and causes
the system to fail.

Online failure prediction [SLM10] is an approach that aims to foresee imminent problems
by analyzing the monitoring data collected from the system at runtime. The prediction is

39



based on the knowledge of previous failure occurrences and tries to learn which patterns of
events can lead to a problem. However, the techniques in this approach view the system as
a black box and create the prediction models without utilizing architectural information.

In this paper, we introduce our envisioned online failure prediction approach for component-
based software systems called Hora1. The primary concept of our approach is based on
the traditional online failure prediction which collects system parameters at runtime and
uses them to build a prediction model. However, we aim to include architectural models,
e.g., PCM [BKR09] or SLAstic [vH13], which provide the system architecture and the de-
pendencies between components into the construction of prediction models. Furthermore,
to improve the data collection capability, we employ Kieker [vHWH12] as a monitoring
tool to collect more detailed information from the system at runtime, and as a foundation
for Hora’s framework architecture. This paper extends and includes materials from our
previous work [PvHG13b] and focuses on the architecture of our online failure prediction
approach in details.

The rest of the paper is organized as follows. Section 2 presents the related work on
online failure prediction and architecture-based QoS prediction. Section 3 provides an
overview of our online failure prediction approach including the component- and system-
level prediction models. Section 4 describes the extraction of the architectural model from
a system and how they can be transformed into a prediction model. The architecture of
our prediction framework is detailed in Section 5. Section 6 draws the conclusions and
outlines future work.

2 Related Work

The related work can be grouped into two main categories. The first category is based
on an online failure prediction approach [SLM10] which creates prediction models from
observable parameters (e.g., response time, log files) of production systems and uses
the model to make predictions. The techniques used to create the prediction models
can be further divided into two subcategories. The first subcategory employs time se-
ries forecasting techniques to predict future observations of crucial system parameters,
e.g., response time [ACG12] or memory usage [GLVT06]. The second subcategory uses
machine learning and data mining techniques to create the prediction models and pre-
dict or classify whether the system in its current state is going to encounter a prob-
lem [LZXS07, PvHG13a].

The second category is architecture-based QoS evaluation which uses design-oriented
models to predict QoS parameters, such as, performance, reliability, or resource effi-
ciency. These techniques originally aim at predicting the QoS parameters during the de-
velopment phase before the system can be deployed or in offline mode where the data
are collected and analyzed at a later time. The prediction results of these techniques can
be obtained through analytical solution or simulations of the models. Brosch [Bro12]
predicts the system reliability by annotating PCM [BKR09] with reliability parameters.

1Hora comes from a Sanskrit word which means horoscope

40



The annotated PCM is then transformed into a discrete-time Markov chain and solved
using PRISM [HKNP06]. Although the approach aims at the prediction at design time,
the parameters of the models can be kept synchronized with the actual system at run-
time which also makes them applicable for online prediction and fault localization. Mar-
wede et al. [MRvHH09] localize the faulty component of the system by analyzing call
dependencies. An anomaly score of each component is calculated from the response time
that the component takes to process a request. When an anomalous component is iden-
tified, that component is further analyzed by inspecting the sub-components recursively
until the root cause is found. Even though this technique originally aims for on-demand
analysis, it can also be applied to production systems to diagnose failures at runtime.

3 Overview of the Approach

Our online failure prediction approach is based on an assumption that a failure can propa-
gate from one service to another if there is a dependency between them. As a consequence,
a failure can cause other dependent services to fail, which creates a chain of failures that
could propagate to the system boundary. If the failures can be predicted on the service
level, e.g., predicting failures of other services given that one service of a component has
failed, we can obtain the projection of the chain which shows the possible service failure
paths that can lead to a system failure. To be able to make such predictions, the knowledge
about the system architecture and component dependencies need to be integrated into the
failure prediction model. Hence, in our approach we split the prediction model into sub-
models where each one is responsible for predicting service failures of one component
of the system. The result of the sub-models are then combined into a system-level model
which analyzes and predicts whether the failures of some services will cause other services
or the whole system to fail.

Figure 1 illustrates an example component-based software system which is used through-
out the paper. The system is composed of three software components, C1, C2, and C3,
being deployed on two hardware components, H1 and H2. C2 and C3 each provides
a software service which is required by other internal components (C1 and C2, respec-
tively). On the other hand, C1 provides two services S1 and S2 to the users at the system
boundary. The failures considered in our approach concern all services of the components
which include both hardware failures (e.g., CPU, hard drives, network connections) and
software failures (e.g., bugs). For example, a failure of H2 can cause C3 to fail, which, in
turn, can cause C2 and C1 to fail resulting in a failure of services S1 and S2.

In order to create a prediction model of the system, our approach first obtains the architec-
tural model (e.g., PCM) which may be refined by dynamic analysis at runtime employing
the Kieker framework. The component dependencies are extracted from the model and
transformed into an intermediate representation in a form of component dependency table
(Table 1). The table acts as an intermediate step for different architectural models and
the prediction models. It provides a list of interface hardware and software component
services and their dependencies which are used during the construction of the prediction
model and the sub-models. It is also worth noting that when the system is reconfigured

41



Figure 1: Architectural model of an example system

at runtime which causes changes in the architecture, the component dependency table and
the prediction models are updated to keep the dependency information synchronized with
the actual system. The workflow of the approach is depicted in Figure 2.

PCM

SLAstic

...

Component
Dependency

Table

Component
Prediction
Models

System
Prediction
Model

Figure 2: Workflow of the approach

3.1 Component-level Prediction Model

The goal of a component-level prediction model is to predict whether and when the ser-
vices of a component of the system will encounter a problem in the near future. The
services can be monitored at runtime using Kieker which collects operational data such
as response times or error messages of the component. The collected data can reflect dif-
ferent states of a component’s services and can be used to create a prediction model. The
models can be constructed using techniques that are suitable to the available data. For
instance, if a component provides a service of which response time is crucial, time se-
ries forecasting techniques, such as ARIMA, can be used to create the prediction model
based on the historical observations. On the contrary, if the component produces log files,
the messages contained in the log can be used to create classification models by machine
learning techniques, such as naive Bayes classifier or decision trees.

3.2 System-level Prediction Model

When the component-level prediction models make a prediction regarding the failure of
the services, the results are fed into a system-level prediction model which analyzes the
propagation sequence of service failures and predicts whether this particular sequence can
lead to larger problems. The sequence of service failures could be modeled by a Markov
chain where each state represents one service failure and when a failure occurs, the model

42



transitions into the corresponding state. However, large systems can have many levels of
dependencies and a failure of one service can cause other services to fail in a particular
order. The sequence of the failures therefore becomes an important piece of information
which could reveal the root cause and predict which component may fail in the near future.
This leads to a limitation of a traditional Markov chain as the chain is memoryless and can-
not capture the sequence of length longer than two. Moreover, the chain allows the system
to be only in one state at any time. This means that the model cannot represent the scenar-
ios in which multiple services of the system are failing concurrently and independently.
For example, the hardware component H2 and software component C1 in Figure 1 can
encounter intrinsic problems which are not caused by the environment and fail at the same
time. To solve the aforementioned problems, our approach employs a continuous-time
transition system of order n where each state represents a sequence of service failures of
at most length n. The states of the model are determined from the component dependency
table extracted from the architectural models as shown in Table 1. The states that represent
service failure sequences which cannot occur according to the architectural model will not
be included, thus, reducing the size of the model. Furthermore, the transition system al-
lows multiple tokens, i.e., it can represent different states of independent services at the
same time.

S1 S2 C1.S1
C1.S2

C2 C3 H1 H2

S1 •
S2 •
C1.S1

• •
C1.S2

• •
C2 • •
C3 •
H1

H2

Table 1: Dependencies between architectural components

Healthy

CC2

C3H1

H2

S1

S2C2

C3CC3C2

H1

H1H1C2

H2C3

1.S2

1.S2

CC1.S1

C1.S2

CC1.S1 CC1.S1

Figure 3: System-level prediction model

After the structure of the model is determined, the system and its components are mon-
itored in order to obtain and learn the transition probabilities between the states. The

43



continuous-time transitions enable the model to make predictions with more precise tim-
ing, e.g., time window in which a service may fail. When failures of services can be
predicted individually by component prediction models, the system model can utilize this
information and predict which services are most likely to fail next and what is the proba-
bility of this failure leading to the failure of the services at the system boundary. Figure 3
illustrates a transition model of order two which considers sequences of at most two suc-
cessive service failures based on the example system in Figure 1. In a normal state when
all components and services are working properly, it stays in the healthy state which is the
initial state of the model. If the service of component C2 is predicted to fail, the model
transitions into state C2 and calculates the probability of the failure of C2 causing other
dependent services to fail, which, in this example, is the failure of service S1 of component
C1 (state C2C1.S1

).

At runtime when the system is in production, it is possible that the system may evolve,
resulting in architectural and configuration changes. To keep the prediction model syn-
chronized, the dependencies between components and services can be re-evaluated and
the system-level prediction model can be updated to represent the actual service depen-
dencies. As the transition system is transparent, it allows new states to be added or the
existing ones to be removed while affecting only a small part of the model, i.e., the adja-
cent states of the added or removed nodes.

4 Model Extractions and Transformations

The construction of component- and system-level prediction models described in Sec-
tion 3 requires that architectural information about the system, i.e., system components
and their dependencies, is available. We currently consider the use of two architectural
modeling languages for component-based software systems, namely PCM [BKR09] and
SLAstic [vH13]. Both languages provide similar modeling concepts split into architectural
viewpoints for types, system assembly, execution environment, and deployment. While
PCM is a full-blown approach for design-time performance prediction, SLAstic focuses
on architecture-based online adaptation using the models at runtime. This section provides
a description how architectural models can be obtained (Section 4.1) and how they can be
transformed into a failure prediction model (Section 4.2).

4.1 Extraction of Architectural Models

The intuitive way of obtaining architectural models is the manual creation. However, this
procedure is time-consuming and error-prone. Moreover, chances are high that the sys-
tem and the model diverge due to system changes, e.g., maintenance activities or system
evolution. As an alternative, approaches exist to extract architectural models using au-
tomatic techniques employing static analysis—e.g., based on source code artifacts—and
dynamic analysis—e.g., based on collected system traces— or by hybrid analysis, i.e., a

44



combination of both.

We plan to apply and, if needed, extend existing techniques to extract SLAstic and PCM
models from monitoring data even though we might combine them with static approach,
such as SoMox [BHT+10] or ArchiMetrix [PvDB12]. For SLAstic models, an automatic
extraction approach for Kieker-based monitoring data exists [vH13]. Due the integration
in the SLAstic framework, runtime changes of the system are supported. Moreover, the
SLAstic approach includes a transformation from SLAstic models to PCM models. These
models are not complete in that they can be used for PCM-based performance prediction;
however, they include the architectural information needed for our approach.

4.2 Model Transformations

The architectural information included in the PCM or SLAstic model can be used to gen-
erate a dependency table as shown in Table 1. Example dependencies extracted from the
architectural models are dependencies among software services obtained via service im-
plementation details (RDSEFFs in PCM) and the information about component assembly.
Dependencies from software components or services to hardware components are obtained
by taking resource demand and deployment information into account. The table serves as
an intermediate model that provides sufficient information for building the system-level
prediction model. We aim to employ the existing transformation of the PCM to Markov
chain for reliability prediction [Bro12] and extend it for the continuous-time transition
systems presented in Section 3.2.

5 Prediction Framework Architecture

Our online prediction framework, Hora, is currently being developed based on the Kieker
architecture as illustrated in Figure 4. The monitoring data is obtained through the Kieker
monitoring framework in form of monitoring records. As the prediction model is split into
sub-models, the records are forwarded to the corresponding component-level prediction
models. Each model makes a prediction, based on the monitoring data, whether and when
the component or the service is likely to encounter a problem and passes the prediction
result to the system-level prediction model. The system model collects the results from
all component models and predicts whether the sequence of service failures will affect the
entire system.

In this framework, the component-level prediction models are developed as filters in the
pipe-and-filter architecture of Kieker which make the approach flexible if new components
or services are added or the existing ones are removed. Various techniques or tools can
be employed as a component-level predictor, such as, ΘPAD [Bie12], WEKA [HFH+09],
or Esper [EE12]. We also aim to integrate our previous work on hard drive failure predic-
tion using machine learning [PvHG13a] into the Hora framework. Furthermore, we are
developing a failure prediction technique based on system event log using machine learn-

45



ing techniques (see, e.g., [GCK12, LZXS07]) which conforms to the framework as shown
in Figure 4 as event log analyzer.

The system-level prediction model is placed at the end of the prediction process to analyze
the prediction results of the component predictors and make a final prediction for the over-
all system. As described in Section 3.2, the system prediction model is a transition model
which allows concurrent and independent service failures. When a new set of monitoring
data is available, the component-level prediction models can predict failures and pass the
prediction results to the system model independently from other component models. The
system-level prediction model then analyzes the failure sequence of services and make a
prediction whether and when other services may fail.

In addition to predicting failures of the system, Hora also allows the architecture to change
at runtime. The new architecture can be obtained either by static or dynamic analysis de-
scribed in Section 4 and transformed to a new component dependency table. The system-
level prediction model, which includes the states and transition probabilities, is then up-
dated according to the new component dependencies.

Hora

System-level Predictor

Monitoring
Reader !

!

Kieker, Weka, R, PRISM, ESPER, ...

CDT

PAD

HDD Failure Predictor

Event Log Analyzer

Component-level Predictors

PCM

SLAstic
...

Figure 4: Hora architecture

6 Conclusion

Online failure prediction is an approach that predicts pending problems which may occur
in the near future causing the system to fail. Existing techniques create prediction models
either by considering only crucial parameters of the system, or by aggregating all of the
available parameters. However, the architectural knowledge of the system is rarely used
to create online failure prediction models. This paper presents our envisioned approach,
Hora, which constructs prediction models by integrating component dependency informa-
tion obtained from the architectural models of the system. The architectural models used

46



in this approach are PCM and SLAstic which can be created manually, or extracted from
the system using static or dynamic analysis provided by Kieker. The component depen-
dency information is used to create a continuous-time transition model which captures the
sequences of service failures and predicts whether it will affect the whole system. Fur-
thermore, the model provides not only failure warnings but also the probability, expected
time, root cause, and the possible manifestation of the failure.

As the next steps, we aim to realize the Hora framework which includes model extraction
and transformation of PCM and SLAstic to prediction models, and integrating prediction
algorithms and tools into the pipe-and-filter architecture. Simulations and lab experiments
will be carried out to evaluate the applicability and the prediction performance of our
approach.

References

[ACG12] Ayman Amin, Alan Colman, and Lars Grunske. An Approach to Forecasting QoS
Attributes of Web Services Based on ARIMA and GARCH Models. In Proceedings
of the 19th IEEE International Conference on Web Services, pages 74–81, June 2012.

[BHT+10] Steffen Becker, Michael Hauck, Mircea Trifu, Klaus Krogmann, and Jan Kofroň. Re-
verse Engineering Component Models for Quality Predictions. In Proceedings of
the 14th European Conference on Software Maintenance and Reengineering (CSMR),
pages 194–197, 2010.

[Bie12] Tillmann Carlos Bielefeld. Online performance anomaly detection for large-scale
software systems. Master’s thesis, March 2012. Diploma Thesis, Kiel University.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio Component Model
for Model-Driven Performance Prediction. Journal of Systems and Software, 82(1):3–
22, 2009.

[Bro12] Franz Brosch. Integrated Software Architecture-Based Reliability Prediction for IT
Systems. PhD thesis, Institut für Programmstrukturen und Datenorganisation (IPD),
Karlsruher Institut für Technologie, Karlsruhe, Germany, June 2012.

[EE12] Esper Team and EsperTech, Inc. Esper 4.9.0 Reference Documentation.
http://esper.codehaus.org/esper/documentation, 2012.

[GCK12] Ana Gainaru, Franck Cappello, and William Kramer. Taming of the Shrew: Modeling
the Normal and Faulty Behaviour of Large-scale HPC Systems. In Proceedings of the
26th IEEE International Parallel Distributed Processing Symposium (IPDPS), pages
1168–1179, 2012.

[GLVT06] Michael Grottke, Lei Li, Kalyanaraman Vaidyanathan, and Kishor S. Trivedi. Analy-
sis of Software Aging in a Web Server. IEEE Transactions on Reliability, 55(3):411–
420, 2006.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The WEKA data mining software: An update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

47



[HKNP06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM:
A tool for automatic verification of probabilistic systems. In Proceeding of the 12th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS06), volume 3920 of LNCS, pages 441–444. Springer, 2006.

[LZXS07] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra K. Sahoo. Failure Pre-
diction in IBM BlueGene/L Event Logs. In Proceedings of the 7th IEEE International
Conference on Data Mining, pages 583–588, 2007.

[MRvHH09] Nina Marwede, Matthias Rohr, André van Hoorn, and Wilhelm Hasselbring. Auto-
matic Failure Diagnosis Support in Distributed Large-Scale Software Systems Based
on Timing Behavior Anomaly Correlation. In Proceedings of the 13th European Con-
ference on Software Maintenance and Reengineering, pages 47–58, 2009.

[PvDB12] Marie Christin Platenius, Markus von Detten, and Steffen Becker. Archimetrix: Im-
proved Software Architecture Recovery in the Presence of Design Deficiencies. In
Proceedings of the 16th European Conference on Software Maintenance and Reengi-
neering (CSMR), pages 255–264, 2012.

[PvHG13a] Teerat Pitakrat, André van Hoorn, and Lars Grunske. A comparison of machine learn-
ing algorithms for proactive hard disk drive failure detection. In Proceedings of the 4th
International ACM Sigsoft Symposium on Architecting Critical Systems, pages 1–10.
ACM, 2013.

[PvHG13b] Teerat Pitakrat, André van Hoorn, and Lars Grunske. Increasing Dependability of
Component-based Software Systems by Online Failure Prediction. 2013. (Submitted
for review).

[SLM10] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction
methods. ACM Computing Surveys, 42(3):10:1–10:42, March 2010.

[vH13] André van Hoorn. Model-Driven Online Capacity Management for Component-Based
Software Systems. Kiel, Germany, 2013. Dissertation (work in progress), Faculty of
Engineering, Kiel University.

[vHWH12] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceed-
ings of the 3rd ACM/SPEC International Conference on Performance Engineering,
pages 247–248. ACM, April 2012.

48


