
Modeling Executable Architectural Design Patterns for  

Software Product Lines 

Julie Street Fant
1,2

, Hassan Gomaa
1
, and Robert G. Pettit

2 

 
1George Mason University 

Fairfax, Virginia USA 

{jfant, hgomaa}@gmu.edu
 

2The Aerospace Corporation 

Chantilly, Virginia USA 

{julie.s.fant, robert.g.pettit}@aero.org 

Abstract.  This paper addresses variability in software product line architec-

tures by addressing variability at a higher level of granularity through architec-

tural design patterns. This approach models three levels of executable architec-

tural design patterns to progressively address variability within the SPL and the 

member applications. The approach is intended for distributed real-time em-

bedded software domains and has been applied to a space flight SPL. 

 

Keywords: Software Product Lines, software modeling, software architectural 

design patterns, distributed real-time embedded software, space flight software. 

1 Introduction 

Many industrial software product lines (SPLs) have significant architectural 

variability.  The engineering of these SPLs emphasize architectural variability at the 

subsystem, component, and connector levels.  For architectures with significant 

variability, this can become cumbersome due to the multitude of variable components, 

connectors, and interactions that must be individually modeled.  This paper addresses 

the problem of variability in SPL software architectures by addressing variability at a 

higher level of granularity through architectural design patterns. Several different 

combinations of specific components, connectors, and interactions are abstracted into 

one design pattern.  Thus less modeling is required at the SPL level since features 

have dependencies on design patterns rather than multiple individual components and 

connectors.  The tradeoff is that the application engineering process requires 

additional modeling since the application specific components, connectors, and 

interactions must be derived from the design patterns.  The key to this approach lies in 

modeling three levels of architectural design patterns to progressively address 

variability within the SPL and the member applications, thereby providing the 

application developer the capability of customizing the patterns to the needs of the 

application. In addition, developing executable versions of these patterns promote the 



 

 

validation of the patterns and the architectures they are incorporated into prior to 

implementation. The approach is intended for distributed real-time embedded (DRE) 

domains.  The three levels of patterns are DRE level patterns, SPL level patterns, and 

application level patterns. This paper describes how the approach has been applied to 

and validated on an unmanned space flight software (FSW) SPL. 

This paper is organized as follows.  First it provides a summary of related work in 

section 2 and the background on the FSW case study in section 3.  Next, the three 

different levels of architectural design pattern modeling for SPL are described and 

illustrated using the FSW SPL case study in sections 4, 5, and 6.  Finally, validation 

of the approach is described in section 7 and a discussion on future work in section 8.     

2 Related Work 

There are many notable SPL approaches including [1], [2], [3]. Other related work 

includes approaches to build real-time software and embedded architectures from 

design patterns, such as [3], [4], [5] and software architectural design patterns, such as  

[6], [7].  These approaches do not explicitly capture variability in the pattern selection 

for a SPL and SPL member, and do not address variability within design patterns.   

This paper builds on the authors’ previous work in [3], [8], [9], [10], [11].  In [8] 

executable design patterns are used to build common features in FSW architectures.  

This paper extends this work by defining a SPL approach for distributed real-time 

embedded domains and how to address variability within design patterns.  In [9] the 

feature to design pattern mapping was briefly introduced at a very high level.  This 

paper extends [9] to capture variability in the design pattern selection for SPL mem-

bers and to provide a more detailed view of feature to design pattern mapping.   In 

[10] the overall approach and its successful application to the FSW domain are de-

scribed.  This paper extends [10] by providing the details on how to address variabil-

ity within design patterns and design pattern selection.  In [11] we compare our pat-

tern based SPL approach with traditional SPL approaches and how it can be applied 

in the FSW domain.  This paper builds on our previous work by emphasizing the 

architectural views and information captured at each of the three architectural levels.   

3 Space Flight Software SPL Case Study 

The Space Flight Software (FSW) SPL is used to illustrate the pattern based SPL 

approach.  The FSW SPL involves controlling unmanned spacecraft to achieve its 

mission.  All FSW systems perform similar functions such as command and data 

handling and attitude control.  However, the capabilities of  FSW SPL members can 

vary significantly.  For instance, a spacecraft may rely extensively on the ground 

station to control the spacecraft and require a small amount of hardware to perform its 

mission.  Another spacecraft may utilize onboard autonomy to control the spacecraft 

and may have extensive hardware to perform its mission.  The functionality of other 

spacecraft can vary between these extremes. Thus the FSW SPL is an ideal domain to 

apply this pattern-based design approach because of its architectural variability.   



 

 

4 Distributed RT Embedded Architectural Design Patterns  

The highest level of design patterns is the DRE level architectural and executable 

design patterns.  The DRE executable design patterns serve as the foundation for the 

other two levels of executable design patterns, and are reused across DRE domains.  

DRE patterns are specified using multiple architectural views. Additionally, an 

executable version of the design pattern is developed using communicating state 

machines.  This enables designers to validate the design patterns and to validate the 

executable architectures produced using these design patterns. All modeling is in 

UML and the executable version is built using IBM Rational Rhapsody.    

The first view is a collaboration diagram that captures the components that partici-

pate in the design pattern and their variability.  At the DRE level, the design patterns 

are composed of domain components that will be later customized to first the SPL and 

then the SPL member.  Variability is captured using SPL stereotypes from the PLUS 

method [3].  A collaboration diagram for the Centralized Control design pattern [12] 

is given in Fig. 1. This depicts the kernel Centralized Controller and optional Input, 

Output, and IO components, as well as the multiplicity of the associations.   

The second architectural view is interaction diagrams, which capture how the ob-

jects within the design pattern interact.  Because of the wide range of variability in 

which DRE design pattern can be applied, the interaction diagrams only capture a 

representative set of object interactions.   For instance, the interaction diagram will 

show the Centralized Controller receiving an input from an Input_Component and in 

response it will invoke an action on an Output_Component.     

 

Fig. 1. Collaboration diagram for DRE level Centralized Control executable design pattern 

The third architectural view is a component diagram that models the interconnec-

tion between components in the DRE design pattern.  The component diagram shows 

the components with required ports, provided ports, and connectors that interconnect 

the components.  Component variability is modeled with SPL stereotypes.   

An executable version of the design pattern is also created using communicating 

state machines.  The purpose of the executable version of the design pattern is to 

specify the internal behavior of a representative set of the pattern’s objects and to 

facilitate validation of the pattern.  Each executable design pattern is individually 



 

 

simulated and validated using Harel’s approach of executable object modeling with 

statecharts [13]. We created a total 21 DRE design patterns [8] using this approach.  

The approach enables architectures produced by interconnecting these design patterns 

to be fully executable and validated, as described in Section 7. 

A state machine is created for each active component in the design pattern.  The 

state machine captures the dynamic object’s internal behavior [13].  To make the state 

machines executable, the specific states, transitions, actions, and activities that an 

object performs must be defined.    An example of an executable state machine is 

given for the Centralized_Controller from the Centralized Control design pattern (Fig. 

2. ).  In the Controlling state, the input event is received from the input component 

and in response a command is sent to the appropriate output or I/O component.     

 

 

Fig. 2. State machine for Centralized_Controller component 

5 SPL Architectural Executable Design Patterns 

The next level of design patterns is at the SPL level; these patterns are created during 

the domain engineering phase.  The purpose of creating SPL level design patterns is 

to add SPL domain knowledge and variability to the DRE design patterns and to 

create SPL architectures from the SPL design patterns.  This section describes 

creating SPL design patterns for the FSW SPL.   

5.1 SPL Pattern-based Feature Modeling 

Features represent common and variable characteristics or requirements of the SPL.  

Features are analyzed and categorized as common, optional, or alternative. Related 

features can be grouped into feature groups, which constrain how features are used by 

a SPL member [3].  The feature model for a pattern-based SPL architecture needs to 

incorporate pattern-related features, so that specific patterns can be selected during 

application engineering. Features that are mapped to variable design patterns are 

called pattern specific features. Pattern specific features are coarse grained features 

that relate to a design pattern and differentiate among other related features.  Pattern 

variability features are fine grained features, which define the variability within a 

pattern specific feature. Alternative pattern specific features can be grouped into an 

exactly-one-of feature group, one of which must be selected for a given application. 

When feature modeling was applied to the FSW SPL Command and Data Handling 

(C&DH) subsystem, 52 features were identified.  A subset of the FSW C&DH feature 

model is shown in Fig. 3.  This feature model contains an «exactly-one-of feature 

group» called Command Execution, which addresses how spaceflight commands are 

processed.  This feature group has three «alternative» features.  The Low Volume 



 

 

Command Execution feature is used when a small amount of commands needs 

processing, the High Volume Command Execution feature is used when a large 

amount of commands needs processing, and Time Triggered Command Execution is 

used when commands must be executed with strict temporal predictability.   

 

 

Fig. 3. Subset of FSW C&DH feature model 

There is also a significant amount of variability in the amount and type of hardware 

that must be commanded, which are captured in variation points.  The optional Heater 

feature influences whether the FSW is required to execute commands to a heater.  

Finally, the last feature group in Fig. 3 is the Antenna Type «at-least-one-of feature 

group».  This group has three optional features and minimally one must be selected 

since all FSW have at least one antenna for communicating with the ground station.    

The next step is to create a feature to design pattern mapping.  The purpose of the 

feature to design pattern mapping is to determine which variable design patterns could 

be mapped to SPL features.  This step uses behavioral interaction modeling, as de-

scribed later. When this step was applied to the FSW SPL, a SPL interaction model 

was created for each of the pattern specific features, 24 in total.   

5.2 SPL Architectural Executable Design Patterns 

Next, the general purpose components in the DRE architectural design pattern are 

updated to be SPL specific. This includes identifying SPL components, their multi-

plicities, and variability.  This process is illustrated using the DRE Centralized Con-

trol design pattern (Fig. 1. ) in the FSW SPL (Fig. 4. ).  This design pattern captures 

the I/O devices the FSW interacts with based on the ground commands it receives. To 

realize this mapping, the Centralized Controller and the I/O components in Fig. 1.  are 

updated to give the CDH Centralized Controller and FSW I/O components in Fig. 4. 

SPL components are categorized as kernel, optional, or variant.  



 

 

 

Fig. 4. FSW SPL Centralized Control collaboration diagram 

For example, the SPL requires ground commands that adjust the spacecraft’s attitude 

by invoking actions on attitude control devices.  This is achieved by updating an Out-

put_Component in the DRE level design pattern to become an Atti-

tude_Control_Device_OC kernel component.    Since there can be different versions 

of attitude control in different missions, different attitude control devices are modeled 

as variants. Additionally, since a heating device is optional, another Out-

put_Component is updated to an optional Heater_OC.  The Centralized Control de-

sign pattern is only used when there are a small amount of commands to execute and 

hardware to control.  Therefore, when this pattern is customized to an application, 

only an application specific subset of the optional devices is selected.    

Next, the interaction diagrams must be updated to reflect the needs of the SPL. If 

the precise sequence of object interactions is known, then it should be modeled.  

However, in design patterns where there is high amount of variability in the object 

interactions, then only a representative set of object interactions is modeled.  In that 

case, detailed interaction modeling is deferred to application engineering. For the 

FSW SPL’s C&DH subsystem, 24 interaction diagrams were created, one for each of 

the pattern specific features described in section 5.1.   

Next, the executable version of the design pattern must also be updated for the 

SPL.  For the FSW SPL’s C&DH subsystem, a state machine was created for each 

active component in the FSW SPL’s 24 patterns.  This involves potentially adding 

SPL specific states, actions, and activities to the existing DRE level state machines.  

For example, if the SPL pattern specific behavior needs to be added, then this can be 

modeled in substates.  If a component needs to send a message to another component, 

then this is modeled as an action.  Finally, other application specific logic, such as a 

processing algorithm, can be model as activities.  This step is illustrated using the 

state machine for the CDH_Centralized_Controller from the Centralized Control De-



 

 

sign pattern (Fig. 5), which is derived from the DRE level Centralized_Controller 

component (Fig. 2. ). A requirement of the SPL feature is for this component to man-

age and account for the spacecraft mode.  Therefore the common modes, including 

launch, normal, and safe modes are added to the highest level in the state machine, as 

seen Fig. 5. Within each of the modes are Idle and Controlling states from the original 

Centralized Control state machine.  According to the feature, all ground commands or 

responses to onboard events must be validated and log any commands executed or 

rejected.  Since this is a refinement, this behavior is modeled as substates within the 

Controlling states, as shown  in Fig. 5. 

 

 

Fig. 5. State machine for FSW SPL CDH_Centralized_Controller 

6 Application Engineering  

After the FSW SPL is complete, applications can be derived from this FSW SPL 

architecture.  The process is applied to the Student Nitric Oxide Explorer (SNOE) and 

Solar TErrestrial RElations Observatory (STEREO) application case studies, which 

are real-world space programs [14], [15].  SNOE mission involves using a small spin 

stabilized spacecraft in a low earth orbit to measure thermospheric nitric oxide and its 

variability.  SNOE is a low earth orbit and relies heavily on the ground station to 

control the spacecraft’s small amount of hardware.  STEREO mission involves using 

two nearly identical three-axis stabilized spacecraft orbiting around the sun to study 

the studying the nature of coronal mass ejections.  Since STEREO is not in constant 

communication with the ground station, it relies on a significant amount of autonomy 

and stored ground commands to control the spacecraft.  These case studies were 

selected because they cover a wide variety of spacecraft in the FSW domain.   

This paper describes application engineering for SNOE, in which application fea-

tures are selected based on SNOE’s requirements.  For example, as SNOE is only 

required to process a low volume of ground commands, the Low Volume Command 

Execution feature is selected from the Command Execution feature group in Fig 3. 



 

 

The final level of design patterns are at the application level, which are created dur-

ing  application engineering.  The application’s executable design patterns are derived 

from the SPL executable design patterns.  This involves customizing the SPL design 

pattern specification and executable version based on the feature to design pattern 

mapping and feature selection for this application.  SNOE uses the Centralized Con-

trol design since it is mapped to its Low Volume Command Execution feature.      

First, the collaboration diagram is customized to reflect the application specific 

components.  This involves removing optional components that are not selected, up-

dating the component multiplicities, and selecting the appropriate variants based on 

the application’s features.  In some cases variants are unique to the application, in 

which case they must be defined at the application level.  This process is illustrated 

using SNOE’s Centralized Control executable design pattern collaboration diagram 

shown in Fig. 6, which is derived from the FSW SPL collaboration diagram (Fig. 4).  

Based on SNOE’s feature selection, it is determined that none of the optional compo-

nents are utilized and are removed.  Additionally, the SNOE specific variants are 

selected based on SNOE’s feature selection.  For example, instead of using Anten-

na_OC (Fig. 4), the Low_Gain_Antenna_OC variant, is used (Fig. 6). SNOE contains 

application unique payloads variants, such as Auroral_Photometer_IOC, and mi-

croGPS_IOC, which are are added to the collaboration diagram. 

Next, the interaction diagrams must be customized for the application based on the 

feature selections for the application.   Now, the specific set of object interactions is 

modeled rather than just a representative set.   For instance, consider an application 

specific sequence for SNOE’s Centralized Control interaction diagram is based on the 

FSW SPL interaction diagram.  However the application specific variants and specific 

interactions are used, rather than a just a representative set of interactions.   

 

 

Fig. 6. SNOE specific Centralized collaboration diagram 



 

 

Next, the executable versions of the design patterns were updated for the application.  

This involves potentially adding application specific states, actions, and activities to 

the SPL level state machines based on the application’s features.  For example, if the 

application features refines some behavior, then this can be modeled as substates.  If 

the component must send a message to an application specific variant or if application 

specific logic is required then this is modeled as an action or activity within a state or 

transition.  This process is illustrated using the state machine for the SNOE’s 

CDH_Centralized_Controller, which is a customized version of the FSW SPL’s 

CDH_Centralized_Controller (Fig. 5).  SNOE’s features require application specific 

logic to validate commands, to determine the appropriate response to commands, and 

to interface with SNOE unique payload variants.  This information is modeled as 

actions and activities within the states, which are updated in the appropriate states. 

7 Validation  

The approach to validate the DRE patterns, the FSW product line, and the SNOE and 

STEREO application case studies involved several validation steps throughout the 

development.  First, the individual DRE design patterns were validated by ensuring 

functional correctness of the individual executable design patterns.  This was 

accomplished by creating test cases to cover all states, transitions, and actions for the 

state machines of all the components in the DRE executable design pattern.  Input 

data to test cases included source states and event sequences that trigger a test case 

and output data including expected destination states and actions, as described in [8]. 

    Second, the FSW SPL individual design patterns were also validated for func-

tional correctness.    Again, test cases were created that covered all states, transitions, 

and actions for the state machines of all the components.  Then the expected results of 

the test cases were compared with the actual behavior of the state machines.   

Thirdly, the SNOE and STEREO design patterns were individually validated.  Again, 

test cases were created to cover all states, actions, and transitions for the design pat-

terns.   However, test cases are different from the FSW SPL test cases because they 

must test all of the application customizations, including data, logic, and additional 

states.  Then the test cases were compared with the actual behavior of the state ma-

chines.  Finally, the entire SNOE and STERO architectures, including the design pat-

tern interconnections, were validated.  To achieve this, a feature based validation 

approach based on CADeT [16] was applied.  This approach helps to reduce the over-

all validation effort by created reusable SPL test assets that can be customized for 

SPL applications.  This testing is different from validation of the individual design 

patterns because it tests how the design patterns are integrated together.  A total of 22 

feature-based test specifications were created and passed for SNOE and 32 feature-

based test specifications were created and passed for STEREO.   

8 Conclusions and Future Work 

This paper has described an approach for addressing SPL architectural variability at a 

larger degree of granularity using software architectural design patterns.  The key to 

this approach lies in modeling three levels of these patterns to progressively address 



 

 

variability within the patterns themselves and variability in the patterns selected for a 

member application. In addition, developing executable versions of these patterns 

allows the validation of the patterns and the architectures they are incorporated into.   

The approach described in this paper has several benefits.  First, the approach pro-

vides DRE patterns that can be applied in DRE product lines and systems.  Second, 

executable versions of the patterns are developed to allow the patterns to be validated. 

Third, providing three levels of patterns provides a systematic approach for incorpo-

rating executable architectural design patterns into the SPL architecture and member 

applications.  Furthermore, executable architectures produced from these patterns can 

be validated during the design phase for functional correctness.  For future work, this 

research can be applied to other DRE SPLs and to other application domains.   

References 

[1] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns. Addi-

son-Wesley Professional, 2002. 

[2] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line Engineering 

Foundations, Principles, and Techniques. Springer, 2005. 

[3] H. Gomaa, Designing Software Product Lines with UML: From Use Cases to Pat-

tern-Based Software Architectures. Addison-Wesley , 2005. 

[4] B. Selic, “Architectural Patterns for Real-Time Systems: Using UML as an Architec-

tural Description Language,” in UML for Real, Springer, 2004, pp. 171–188. 

[5] D. Bellebia and J.-M. Douin, “Applying patterns to build a lightweight middleware 

for embedded systems,” Proc. Pattern languages of programs Conf., 2006. 

[6] E. Gamma, R. Helm, R. Johnson, and V. John, Design Patterns: Elements of Reusa-

ble Object-Oriented Software. Addison-Wesley Professional Computing Series, 1995. 

[7] R. Pettit IV and H. Gomaa, “Modeling Behavioral Design Patterns of Concurrent Ob-

jects,” in International Conference on Software Engineering (ICSE), China, 2006. 

[8] J. Fant, H. Gomaa, and R. Pettit, “Architectural Design Patterns for Flight Software,” 

IEEE Wkshp on Model-based Eng. for RT Embedded Systems, CA, 2011. 

[9] J. Fant, “Building Domain Specific Software Architectures from Software Architec-

tural Design Patterns,” ICSE ACM Student Research Competition, Hawaii, 2011. 

[10] J. S. Fant, H. Gomaa, and R. Pettit, “Software Product Line Engineering of Space 

Flight Software,” in 3rd Int. Wkshp on Product LinE Approaches in Softwr Eng 2012. 

[11] J. S. Fant, H. Gomaa, and R. Pettit, “A Pattern-based Modeling Approach for Soft-

ware Product Line Engineering,” in 46th Hawaii Intl. Conf. on System Sciences 2013. 

[12] H. Gomaa, Software Modeling and Design: UML, Use Cases, Architecture, and Pat-

terns. Cambridge University Press, 2011. 

[13] D. Harel, “Executable object modeling with statecharts,” presented at the 18th Inter-

national Conference on Software Engineering, Berlin,1996. 

[14] Laboratory For Atmospheric and Space Physics, University of Colorado,Boulder, 

“Student Nitric Oxide Explorer Homepage,” http://lasp.colorado.edu/snoe. 

[15] Johns Hopkins University Applied Physics Laboratory, “STEREO Web Site,” 26-

Apr-2010. [Online]. Available: http://stereo.jhuapl.edu/index.php. 

[16] E. M. Olimpiew and H. Gomaa, “Reusable Model-Based Testing,” Proc 11th Interna-

tional Conference on Software Reuse, Falls Church, VA, Sept. 2009. 


