
Weighted and unweighted transducers for tweet normalization

Mans Hulden
University of Helsinki

mans.hulden@helsinki.fi

Jerid Francom
Wake Forest University

francojc@wfu.edu

Resumen: En este art́ıculo se presentan dos estrategias basadas en transductores
de estados finitos para la normalización de tweets. La primera de ellas se basa en
reglas de corrección creadas manualmente y diseñadas para capturar las erratas y
abreviaturas utilizadas más comúnmente, mientras que la segunda intenta construir
automáticamente un modelo de errores a partir de un corpus etiquetado (gold stan-
dard) de tweets previamente normalizados.
Palabras clave: Normalización de tweets, tranductores de estados finitos, reglas
fonológicas, canal con ruido.

Abstract: We present two simple finite-state transducer based strategies for tweet
normalization. One relies on hand-written correction rules designed to capture com-
monly occurring misspellings and abbreviations, while the other tries to automati-
cally induce an error model from a gold standard corpus of normalized tweets.
Keywords: Tweet normalization, finite-state transducers, phonological rules, noisy
channel

1 Introduction

We present two different finite-state trans-
ducer (FST) based strategies for correction
and normalization of tweets. While both
methods use FSTs in the recovery of normal-
ized forms of words, the two employ differ-
ent strategies for normalization. The first
method is entirely rule-based; that is, the
goal is that a linguist provides rules for cor-
rection and normalization of tweets based on
observations of commonly recurring patterns
of abbreviations or misspellings. This is ac-
complished by compiling correction rules into
unweighted FSTs in a hierarchical pattern
where simple corrections are attempted be-
fore more complex ones. The second method
attempts to induce the normalization pat-
terns from development data directly by as-
suming a noisy channel model. Here, an error
model of character-to-character transforma-
tions is learned from the data and, combined
with a language model also represented as a
transducer, the most probable correction can
be calculated.

2 Tools

We have employed two different toolkits in
our correction strategy. The unweighted
transducers for manually designed correc-
tion rules were compiled using the foma-
toolkit1 (Hulden, 2009). For manipulating
the weighted transducers employed in the
noisy channel model approach, the Kleene2

(Beesley, 2009) finite-state programming lan-
guage was used. Both approaches rely on
a dictionary taken from the FreeLing suite
(Carreras et al., 2004).

3 Correction rules as FSTs

The goal with handwritten FST correction
rules is to attempt a battery of corrections
to unknown input words to transform them
into normalized forms found in a dictionary.
The corrections are expressed as contextually
conditioned phonological replacement rules,
converted into transducers, and combined in
a hierarchical fashion in conjunction with a
dictionary. They reflect phenomena such as:

1http://foma.googlecode.com
2http://kleene-lang.org

• diacritic restoration (a→ á, ny→ ñ, . . .)

• commonly occurring spelling errors (v→
b, d → ∅, . . .)

• repetition removal (aaa. . .→ a)

• common abbreviations/errors (ke →
qué/que, tqm/tkm → te quiero mucho)

The correction rules themselves range
from the very specific to highly generic. For
example, a simple rule to attempt to restore
missing d-characters in past participles looks
in the foma notation as follows:

define RULEPart [..] (->) d || [a|i] _ o (s) .#. ;

reflecting the idea that d-characters are to
be inserted when preceded by a or i, and fol-
lowed by o, and optionally s at the end of a
word.

At the same time, a very specific rule that
only addresses the high-frequency word-form
Twitter and its various misspellings and al-
ternative forms appears as

define RuleTW1 [[t|T]+ [w|u]+ Vow+ t+ Vow+/h (r)]:

{Twitter};

in effect accepting such forms as Tuiter, tui-
itah, twittr, etc., and mapping all these to
Twitter.

In total, about 20 rules were designed.
Some rules count as single rules in the com-
bination hierarchy: for example, diacritic
restoration rules (a → á, e → é, etc.) are
considered a single rule for the purposes of
combination.

The rules themselves could be contextu-
ally conditioned outside the current word as
well. This may be useful for performing cor-
rections based on syntactic context. How-
ever, for the experiments conducted here, all
rules refer only to contexts within the same
word.

The rules in question are combined in a
hierarchical order using a type of if-then-else
logic. That is, we can, for example, first ap-
ply corrections to (1) known abbreviations. If
that fails to produce a legitimate word in the
dictionary, we (2) apply diacritic restoration.
If that fails, we apply some common error
pattern (3). Should that fail, apply both (2)

and (3), etc. etc. This type of a hierarchi-
cal replacement strategy can be implemented
through standard regular expression opera-
tors available in conjunction with a dictio-
nary encoded as an automaton (Beesley and
Karttunen, 2003).

4 Noisy channel FST modeling

The fundamental idea behind noisy chan-
nel modeling is to choose a w to maxi-
mize the probability P (w|s), where s is the
“scrambled” word and w the normalized, in-
tended form. This quantity is proportional to
P (s|w)P (w), where the first factor is called
the error model—the probability that a word
w was perturbed to yield s—and the second
factor the language model, the probability
that w occurs.

Weighted FSTs provide a convenient cal-
culus for addressing the above task, assum-
ing we can encode the probabilities of words
P (w) and perturbations P (s|w) as proba-
bilistic or weighted transducers somehow.
When the error model (EM), the language
model (LM), and a scrambled input word s
are available to us as weighted transducers,
we may calculate the composition

W = s ◦ EM ◦ LM (1)

and subsequently find the least-cost string in
the output projection of W . Here, the trans-
ducer s is simply an acceptor that repeats the
to-be-corrected input word with probability 1
(or cost 0, as we are operating with negative
log probabilities, or weights). Since trans-
ducer composition, projection, and least-cost
paths are easily calculated, what remains to
be done is to construct the transducers that
assign a cost (probability) to character per-
turbations (EM) and words (LM).

4.1 Inducing an error model

To assign probabilities to perturbations, we
first align the individual characters of word-
pairs in the development corpus using a Chi-
nese Restaurant Process (CRP) (Ferguson,
1973) aligner. This is very similar to align-
ing the word-pairs by minimum edit dis-
tance (MED). After the alignment is per-
formed, we work under the assumption that
the character-to-character correspondences

are all independent—that is, not conditioned
upon other transformations in the same word
or elsewhere—and estimate the probability of
each input symbol x being transformed to y
as:

p(x→ y) =
c(x : y) + α

N + |Γ|α
(2)

using the smoothing parameter α (set to 0.1)
to avoid zero counts, N being the number of
observed character pairs, and Γ our alphabet
of possible symbol pairs. Note that zeroes,
representing deletions and insertions are also
possible.

For example, our aligner outputs align-
ments such as:

pasa_o t__o
pasado todo

Tambien Adioos
También Adió_s

From this, we may calculate probabili-
ties of inserting an o (:o), inserting a d,
(:d), repeating a p (p:p), etc., and construct
a transducer representing the error model
(EM) that performs such perturbations with
the intended probabilities. Note that while
we assume a context-independent probabil-
ity for changes, there is no principled reason
why complex contexts could not be accom-
modated as well.3

4.2 Calculating corrections

For the language model, LM , we have chosen
to rely mainly on simple unigram frequen-
cies for words in the FreeLing lexicon, where
frequencies were collected from a Wikipedia
dump. Such a model is particularly simple to
produce a transducer from, but again, there
is no principled reason why more complex
models could not be used.

Assuming the existence of transducers la-
beled $word, representing the current word
to be corrected, an error model $EM, and a
language model $LM, as described above, the
correction can be described as a function in
the Kleene programming language as follows:

3For example, inserting a d to yield a past partici-
ple, as in pasao→pasado should reasonably be more
likely than inserting a d in other contexts.

$^correct($word) {
return $^shortestPath(
$^lowerside($word _o_ $EM _o_ $LM)

);
}

This reflects exactly the calculation given
in (1) and the entire function is equivalent
to finding argmax P (s|w) P (w) in the noisy
channel model presented above. That is, we
compose the input word with the error model
and language model, extract the output pro-
jection and find the least-cost (most proba-
ble) path.

When this strategy is employed, we also
need to establish a cutoff probability to
choose when to simply accept a word as is.
Obviously, the error model allows for any
word to change into any other word, albeit at
a low probability, and we do not want to allow
extreme changes to produce a word in the dic-
tionary, but rather accept the unknown word
without change.

Apart from calculating corrections based
on a language model and error model, we can
also incorporate previously “known” correc-
tions collected from a gold-standard set of
corrected words, if such a resource is avail-
able. If we assume access to a set of al-
ready known word-word pairs that represent
corrected input words, we can build another
transducer that directly maps such cases to
their correct form at a low cost. This can be
helpful because, for example, abbreviations
such as tqm → te quiero mucho would likely
produce a high cost using the character-
to-character based noisy channel corrector
because of the large number of character
changes required to produce the target form.
However, this can be addressed by building
a transducer EX that models such previously
known word-word pairs and assigns these cor-
rections a low cost, and the entire calculation
can be performed as:

W = s ◦ ((EM ◦ LM) ∪ EX) (3)

This would then model both a lookup from
a “known” list of cheap corrections as well as
the noisy-channel error-model and language
model corrections.

System Accuracy

Rules 63.1
Noisy Channel 61.4

Table 1: Results from development set.

System Accuracy

Rules 60.4

Table 2: Results from test set.

5 Evaluation

To evaluate the performance of the methods,
we divided the gold standard corpus into five
parts to be able to perform cross-validation.
This is necessary, in particular, for the noisy
channel model where the learning data must
necessarily come from a subset of the gold
corpus with normalized tweets.

The results are given in tables 1 and 2. As
is seen, the manual correction rules slightly
outperform the corrections produced by the
weighted transducer method.

6 Discussion & Future Work

We have compared and evaluated two differ-
ent approaches to tweet normalization, one
being more of an expert system developed
based on observation of tweets and the other
a statistical one based on inducing correc-
tion rules from a gold standard corpus. As
it stands, the noisy channel corrector suffers
from the difficulty of constructing a reliable
error model from the limited number of gold-
standard corrections and the fact that the
unigram language model is relatively poor.
This sometimes leads to drastically incor-
rect conclusions. For example, the corrector
would produce from the input cansao the
output casa and not the desired cansado,
since in a unigram context, the high likeli-
hood of casa outweighs the cost of having
to delete two characters. Such errors are fre-
quent and could probably be addressed by
both a richer language model and a more re-
fined error model.

Apart from obvious improvements to the
language model, there is also potential for

combining the hand-written and data-driven
approaches to yield a hybrid system.

One perhaps profitable avenue of further
experimentation is to use the contextual rules
developed by the linguist and learn probabil-
ities for those rules. For example, under the
current noisy channel model, the perturba-
tion ∅ → u (insert u) is learned without ref-
erence to context and deemed equally likely
regardless of context. However, the hand-
written rule allows that transformation pri-
marily following a q, reflecting errors such as
*qiero and *aqi.

Quick improvements also appear possible
by investing in a good dictionary of named
entities as tweets appear to contain proper
names with much higher frequency than in
running text in general. For the current
work, entities such as movie names, compa-
nies, celebrities, etc. were not used in the
development. Automatic induction of such a
database from large numbers of tweets should
also be considered.

References

Beesley, Kenneth R. 2009. The Kleene
language for weighted finite-state pro-
gramming. In Finite-state Methods
and Natural Language Processing: Post-
proceedings of the 7th International Work-
shop FSMNLP; Edited by Jakub Piskorski,
Bruce Watson and Anssi Yli-Jyrä, volume
191, page 27. IOS Press.

Beesley, Kenneth R. and Lauri Karttunen.
2003. Finite State Morphology. CSLI
Publications, Stanford, CA.

Carreras, Xavier, Isaac Chao, Lluis Padró,
and Muntsa Padró. 2004. FreeLing: An
open-source suite of language analyzers.
In LREC Proceedings.

Ferguson, T. S. 1973. A Bayesian analy-
sis of some nonparametric problems. Ann.
Stat., 1:209–230.

Hulden, Mans. 2009. Foma: a finite-state
compiler and library. In Proceedings of
the 12th conference of the European Chap-
ter of the Association for Computational
Linguistics,, pages 29–32. Association for
Computational Linguistics.

