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Abstract. Databases where relations have arity at most two, often
called graph databases, play a prominent role in many fields. Ontology
languages based on Description Logics (DLs) have been advocated to en-
rich such repositories (known as ABoxes in DL jargon) with ontological
information. Then, in Ontology Based Query Answering (OBQA), one
is interested in answering user queries over the data while taking into
account the ontology. However, the ontological layer has a significant ef-
fect on the query answering problem, and OBQA algorithms are usually
more involved than their counterparts in plain (graph) databases.
The development of OBQA algorithms and their implementation has
been the goal of significant research efforts in the DL community in the
last decade. Here we review some of the achieved results. We discuss
the main challenges to be overcome when the ontological knowledge is
expressed in different DLs, and when different query languages are con-
sidered. We give an overview of some of the algorithms developed so
far, and the computational complexity of the problem for the different
combinations of DLs and query languages.

1 Introduction

In many application areas, data can be naturally modeled and stored using
only unary and binary relations. Indeed, graph databases, which can be seen as
databases where only relations of these arities occur, have gained much attention
in the last years and are being applied in popular fields like the Semantic Web.
Description Logics are a family of languages for knowledge representation and
reasoning whose vocabulary is based on unary and binary relations, known as
concepts and roles in DL jargon [3]. This makes DLs very well suited for describ-
ing and reasoning about graph databases. Indeed, a DL data repository, known
as ABox, is essentially a graph database. Enriching an ABox with a DL ontology
allows to capture the intended semantics of an application domain by defining
relations between the concepts and roles in the data source, and possibly extend-
ing the vocabulary with additional terms. Then one can query the data using
the extended vocabulary, and taking into account all the relations implied by
the ontology. This is essentially the idea underlying Ontology Based Data Access
(OBDA) [6], although the OBDA setting is more general: rather than simply
having an ABox over the same vocabulary as the ontology, in OBDA arbitrary



relational data sources may be related to the concepts and roles in the ontology
via mappings. The simplified setting we consider here is suitable for focusing on
query evaluation, a crucial aspect of OBDA that has received much attention in
the DL community over the last decade. Hence, here we disregard the mappings
and simply assume that input queries are to be evaluated over a DL ABox (i.e.,
a graph database), in the presence of an ontology. This problem in often called
ontology based query answering (OBQA) or simply ontological query answering.

Example 1. For example, consider a simple graph database containing data from
the Mathematics Genealogy Project (MGP)1, like the one depicted in Figure 1.The
labels inside the nodes are the names of the constants, while the labels outside
are the concepts (unary relations) each node satisfies, and the labels on the arcs
are the roles (binary relations) that hold between two objects.
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Fig. 1: Example graph database of the Mathematics Genealogy Project

A DL ontology describing this domain is given in Figure 2. The first axiom
introduces the term CompScientist and ensures that everyone who works on the
CompScience field is a CompScientist . Axiom (2) states that every PhD holder
must have an advisor who is himself a PhD holder. Axioms (3,4) together ensure
that PhD holders are exactly those people that have written and submitted a
(PhD) thesis. Finally, axioms (5,6) together define the term SubmittedThesis as
the class of all thesis submitted to somela university.

(1) ∃worksOn.{CompSci}vCompScientist
(2) PhD v∃hasAdvisor.PhD
(3) PhD v∃wroteThesis.SubmittedThesis
(4) ∃wroteThesis.SubmittedThesis vPhD
(5)Thesis u ∃submittedTo.University vSubmittedThesis
(6) SubmittedThesis vThesis u ∃submittedTo.University

Fig. 2: An example MGP ontology

1 http://genealogy.math.ndsu.nodak.edu/



Now consider the following conjunctive queries:

q1(x, y) =ComputerScientist(x),ComputerScientist(y), hasAdvisor(x, y),

wroteThesis(x, z),wroteThesis(y, z′),

submittedTo(z, w), submittedTo(z′, w)

q2(x) =ComputerScientist(x), hasAdvisor(x, y),

wroteThesis(y, z), submittedTo(z, w),University(z′, w)

The query q1 asks for pairs (x, y) of computer scientists that submitted their
thesis to the same university w. The pair (JeffreyUllman,AlbertoMendelzon) is
one such pair. They both submitted their thesis to Princeton and they are both
instances of ComputerScientist . Note that the data does not explicitely state the
latter, but it is implied by axiom (1) and the fact that they both work on the
CompScience field.

The query q2 asks for computer scientists whose advisor submitted his thesis
to a university. The answer includes both AlbertoMendelzon and JeffreyUllman.
Even though the data contains nothing about the PhD advisor of JeffreyUllman,
the ontology implies that he must have one, who is a PhD holder and hence must
have submitted a thesis to some university.

In the absence of an ontology, OBQA coincides with standard query evalu-
ation over plain (graph) databases, but in general, the presence of the ontology
makes query answering more involved. As we have seen, to answer a query one
may need to take into account instances of concepts and roles not given in the
data, like for the concept CompScientist in query q1. More interestingly, we may
even need to consider variable assignments that map query variables to unknown
objects that are not named constants in the database: to obtain JeffreyUllman
as an answer to q2, we must map variables y, z, and w to objects we known
nothing about, but whose existence is implied by the axioms.

As we will see in the next section, the actual impact of the ontology on
(the computational complexity of) the query answering problem depends on the
specific description logic in which the ontology is written, and on the kind of
query that is to be answered. In this paper, we briefly discuss some of the main
challenges to be tackled when solving the OBQA problem, for different DLs and
query languages, and survey the complexity results obtained so far.

The rest of the paper is organized as follows. In the next section, we give some
DL and OBQA preliminaries. They are rather technical and given for the sake
of completeness, but it is not necessary to read them in detail for understanding
the rest of the material. Finally, section 3 is the core of the paper, where we
discuss the challenges that arise in the OBQA setting and complexity results.
The interested reader may refer to [21] for a more detailed survey of OBQA.



2 Preliminaries

We briefly recall of some popular DLs. We start giving the syntax and semantics
of concepts and roles, and then describe how they can be used to write ABoxes
and ontologies in different DLs.

A DL vocabulary consists of three infinite, countable, disjoint sets NC, NR,
and NI of concept names, role names, and individuals. Different DLs provide
different concept and role constructors, which can be used to combine the terms
in the vocabulary into complex concepts and roles. The only role constructor we
consider here is the inverse: for r ∈ NR, its inverse r− is also a role. We use NR

to refer to the set NR ∪ {r− | r ∈ NR} of all roles, and if R ∈ NR, we use R− to
mean r− if R = r and r if R = r−. The most popular concept constructors are
summarized in Table 1.

Constructor Syntax Semantics

negation ¬C ∆I \ CI

conjunction C u C′ CI ∩ C′I

disjunction C t C′ CI ∪ C′I

universal restriction ∀R.C {c | ∀d, (c, d) ∈ RI → d ∈ CI}
existential restriction ∃R.C {c | ∃d.(c, d) ∈ RI ∧ d ∈ CI}

nominal {a} aI

qualified number
restrictions

>nR.C
6nR.C

{c | card({d | (c, d) ∈ RI ∧ d ∈ CI}) ≥ n}
{c | card({d | (c, d) ∈ RI ∧ d ∈ CI}) ≤ n}

Table 1: Summary of most popular DL concept constructors. Here C, C ′ are
concepts, R is a role, a ∈ NI an individual, and n ≥ 0 a non-negative integer.

Semantics. As usual, the semantics of DLs is defined in terms of interpretations
of the form I = (∆I , ·I), where the domain ∆I is a non-empty set and ·I is an
interpretation function mapping each a ∈ NI to an object aI ∈ ∆I , each A ∈ NC

to a set AI ⊆ ∆I , and each r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . The
function ·I is inductively extended to general concepts and roles. For inverse

roles, we have (r−)
I

= {(d, c) | (c, d) ∈ rI}. The semantics of the concept
constructors in Table 1 is summarized in the last column.

2.1 ABoxes and Ontologies

A DL knowledge base consists of an ABox, and a TBox or ontology.2 In all the
DLs we consider, an ABox is defined a set of assertions which may take the
form A(b) or r(a, b) with A ∈ NC, r ∈ NR, and a, b ∈ NI.

2 Sometimes the term ontology is used to refer to a knowledge base. Here we use it as
a synonym of TBox.



The ontology is a set of axioms, whose form depends on the DL in question.
In this paper we mention the following DLs:

The DL-Lite family [7, 1] is a prominent family of lightweight DLs, specially
tailored in such a way that they can describe complex conceptual models, yet
the complexity of reasoning is low and query answering can be achieved by
efficient and scalable algorithms. DL-Lite is the most popular family of DLs
for OBDA, and it underlies the OWL 2 QL profile of the OWL standard.
Many dialects of DL-Lite are known, but we focus on the following three:
– The core dialect DL-Litecore .
– DL-LiteR, the extension of DL-Litecore with role inclusions of the form
Rv S and Rv ¬S, which is very closely related to OWL 2 QL.

– DL-LiteRDFS, a fragment of DL-LiteR that is probably less known, but
quite interesting for comparison purposes. It disables negation and exis-
tential quantification in the right hand side of axioms, and it is roughly
equivalent to RDF(S), the schema language for RDF [14].

The interested reader can find the full syntax of these languages in the first
block of Table 2. As usual for DL-Lite, we use unqualified existentials and
write ∃R rather than ∃R.>, where > is a shortcut for A t ¬A.

The EL family [2] is the other prominent family of lightweight DLs, and it
underlies the OWL 2 EL profile. The EL family is particularly popular for
life science ontologies. As we see below, like DL-Litecore , the EL family has
limited expressive power but allows for efficient reasoning. In Table 2, we
recall the syntax of two DLs in this family: the basic EL, and ELH, its
extension with role inclusions r v s.

Expressive DLs that fully support Boolean concept constructors and both
kinds of quantifiers have traditionally been the main focus of attention of
the DL community. Here we recall the well-known languages SHIQ and
SHOIQ, which roughly correspond the the OWL Lite and OWL DL profiles
of the first generation of OWL standards. Their syntax is defined in Table 2;
there is an additional syntactic requirement that disallows non-simple roles
(i.e., roles that have a transitive subrole) from occurring in number restric-
tions. The full OWL 2 is based on a logic called SROIQ, but we do not
include it in the table since its syntax is quite cumbersome to define.

Horn DLs that are obtained from expressive DLs by fully disallowing disjunc-
tion. The syntax of Horn-SHIQ and Horn-SHOIQ, in normal form [16], is
given in the last block of the table.

Semantics of ABoxes and Ontologies An interpretation I satisfies an as-
sertion A(a) (resp. r(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ rI), and I is a model of
an ABox A if it satisfies all assertions in A. For the TBox axioms, we have that
I satisfies an inclusion G v H (where G and H are either two concepts, or two
roles) if GI ⊆ HI ; it satisfies trans(R) if RI is a transitive relation. I is a model
of an ontology T if it satisfies all axioms in T , and I is a model of K = (T ,A)
if I satisfies all inclusions in T and all assertions in A.



DL TBox axioms

DL-Litecore B v C B ::=A | ∃R C ::=B | ¬B R ::= r | r−
DL-LiteR B v C, Rv S B ::=A | ∃R C ::=B | ¬B R ::= r | r− S ::=R | ¬R

DL-LiteRDFS B vA, Rv S B ::=A | ∃R R,S ::= r | r−

EL C vD C,D ::=A | C uD | ∃r.C
ELH C vD, r v s C,D ::=A | C uD | ∃r.C

SHIQ C vD,Rv S
trans(R)

C,D ::=A | ¬C | C uD | C tD | ∃R.C | ∀R.C |
>nR.C | 6nR.C

R,S ::= r | r−

SHOIQ C vD,Rv S
trans(R)

C,D ::=A | {a} | ¬C | C uD | C tD | ∃R.C | ∀R.C |
>nR.C | 6nR.C

R,S ::= r | r−

Horn-SHIQ B uB′ v C, ∃R.B v C, C v ∀R.B, C v ∃R.B B,B′, C ::=A
C v>nR.B, C v6 1R.B, Rv S, trans(R) R,S ::= r | r−

Horn-SHOIQ B uB′ v C, ∃R.B v C, C v ∀R.B, C v ∃R.B B,B′, C ::=A|{a}
C v>nR.B, C v6 1R.B, Rv S, trans(R) R,S ::= r | r−

Table 2: Summary of some popular DLs. Here A ∈ NC is a concept name, r, s ∈
NR are role names, a is an individual and n ≥ 0 is a non-negative integer. Special
restrictions apply to roles in number restrictions in (Horn)-SHIQ and SHOIQ.

2.2 Query Languages

Most work on OBQA and OBDA so far has considered conjunctive queries and
their unions as query languages. We also define instance queries, which are CQs
with only one atom.

Definition 1 (IQs,CQs,UCQs). Let NV denote a countably infinite set of
variables. A conjunctive query (CQ) (with answer variables x) is an expres-
sion q(x) = ∃y.ϕ, where x and y are tuples of variables from NV, and ϕ is a
conjunction of atoms of the forms

(i) A(t), where A ∈ NC is a concept name and t ∈ NI ∪ x ∪ y, and
(ii) r(t, t′), where r ∈ NR is a role name and t, t′ ∈ NI ∪ x ∪ y.

A query with x = 〈〉, that is, where all variables in ϕ are existentially quantified,
is called Boolean. If in a CQ q(x) = ∃y.ϕ we have that ϕ consists of only one
atom, we call it an instance query (IQ).

A union of conjunctive queries (UCQ) is a disjunction of CQs with the same
answer variables, that is, an expression q(x) = ∃y1ϕ1 ∨ · · · ∨ ∃ynϕn where each
ϕi is a conjunction of atoms as above, with arguments from NI ∪ x ∪ yi.

One of the fundamental differences between query answering with DL ontolo-
gies in contrast to plain graph databases, is that in the former setting researchers
have focused on CQs and UCQs, while for the latter setting the basic querying
mechanism are regular path queries (RPQs) and their extensions. These queries



enable the sophisticated navigation of paths that has long been considered cru-
cial for querying data on the web. Recent work has aimed at bridging this gap,
by developing OBQA algorithms for answering different forms of RPQs [5, 4],
like the ones we define next.

Definition 2 ((C)(2)RPQs). A conjunctive two-way regular path query
(C2RPQ) (with answer variables x) has the form q(x) = ∃y.ϕ where x and
y are tuples of variables from NV, and ϕ is a conjunction of atoms of the form
(i) above, and of the following form:

(ii’) ρ(t, t′), where ρ is a regular expression over the alphabet NR ∪ {A? | A ∈
NC}, and t, t′ ∈ NI ∪ x ∪ y.

Conjunctive (one-way) regular path queries (CRPQs) are obtained by disallowing
inverse roles from NR \ NR in atoms of type (ii). Two-way regular path queries
(2RPQs) consist of a single atom of type (ii), and regular path queries (RPQs)
further disallow inverse roles.

2.3 Query Answering

We now define formally the OBQA problem we discuss. In what follows, we use
the term query to refer to a query of any of the kinds defined above.

Definition 3 (Query match, (certain) answers). Let I be an interpretation.
A match for a query q(x) = ∃y.ϕ in I is a mapping π form the terms occurring
in q to the domain ∆I of I such that π(a) = aI for every individual a occurring
in q, and that satisfies:

(i) π(t) ∈ AI for every atom A(t) in ϕ,
(ii) (π(t), π(t′)) ∈ rI for every atom r(t, t′) in ϕ, and

(ii’) π(t′) is a ρ-successor of π(t) for every atom ρ(t, t′) in ϕ; where an element
d ∈ ∆I is called a ρ-successor of c ∈ ∆I in I if there is some chain
c1, . . . , cn of objects from ∆I and a chain R1, . . . , Rn−1 of roles in the
language of ρ such that c1 = c, cn = d, and (ci, ci+1) ∈ RIi for 1 ≤ i < n.

Let x = x1, . . . , xm. The answers to q in I are the tuples a1, . . . , am such that
there is a match π for q in I with π(xi) = ai for 1 ≤ i ≤ m.
Finally, let A be an ABox and T an ontology. The (certain) answers to q over I
are the tuples of individuals that are an answer to q in every model I of (A, T ).

We are interested in the decision problem associated to query answering,
sometimes called query output tuple (QOT) problem, which consists on deciding
whether a given tuple of individuals is a certain answer to a given query. For
Boolean queries, whose only possible answer is the empty tuple, one usually talks
about query entailment. Deciding query entailment amounts to deciding whether
there exists a query match in every model of the ABox and the ontology. It is
well known that the query output tuple problem for an arbitrary query reduces
linearly to the entailment problem of a Boolean query. We summarize the main
OBQA problems that we discuss in this paper in Table 3.



Problem Varying input Fixed input Problem definition

Data complexity

QueryAnswer A q, T , a Is a in the answers of q over (T ,A)?

QueryEntailment A q, T Is there a match for q
in every model of (T ,A)?

Combined complexity

QueryAnswer q, T , A, a Is a in the answers of q over (T ,A)?

QueryEntailment q′, T , A Is there a match for q
in every model of (T ,A)?

Table 3: Main OBQA problems. Here T is an ontology, A an ABox, a a tuple
of individuals, q an arbitrary query, and q′ a Boolean query.

Data and combined complexity We are interested in two measures of com-
plexity. First, since the size of the data repositories usually dominates over the
size of the ontology and the query, we are interested in measuring the complexity
in terms of the ABox only. This measure of complexity is called data complexity,
and like for traditional databases, for OBQA and OBDA it is considered the
most relevant in practice. The other notion is called combined complexity and
it takes all components as an input: the query, the ontology, the ABox, and
possibly the tuple of constants.

3 The challenges of OBQA

Recall that in OBQA we view the ABox as a database that may be incomplete
in at least two ways:

1. The existing objects may be instances of concepts and roles that do not show
up in the data.

2. The ontology may imply the existence of more objects, beyond the named
individuals that explicitely appear in the data. While these objects do not
participate in query answers, they do participate in query matches.

A näıve way to approach the problem would be to complete the data as pre-
scribed by the ontology, and then evaluate the query over the resulting structure.
However, this strategy may not work. We are interested in the certain answers
over all models, that is, over all ways to complete the data to satisfy the ontology.
But there may be too many ways to do this completion, and the completed struc-
tures (models) may be too large, and are often infinite. We discuss below how
these two problems make OBQA, in general, a computationally harder problem
that query answering over plain databases, as Table 4 shows. We remark that,
for all DLs, the complexity of IQs coincides with the complexity of standard
reasoning tasks (like subsumption and satisfiability).

Before discussing the results in the table in more detail, we want to point
out that most DLs are fragments of first order logic (FOL), and an ontology can



Combined complexity Data complexity

IQs CQs IQs CQs

Plain databases in AC0 NP-c in AC0 in AC0

DL-Lite(R) NL-c NP-c in AC0 in AC0

EL, ELH P-c NP-c P-c P-c

(2)RPQs C(2)RPQs (2)RPQs C(2)RPQs

Plain databases
DL-LiteRDFS

NL-c NP-c NL-c NL-c

DL-Lite(R) P-c† PSpace-c NL-c NL-c

EL, ELH P-c PSpace-c P-c P-c

IQs,(2)RPQs CQs,C(2)RPQs IQs,(2)RPQs CQs, C(2)RPQs

Horn-SHIQ,
Horn-SHOIQ ExpTime-c ExpTime-c P-c P-c

SHIQ ExpTime-c 2ExpTime-c coNP-c coNP-c

SHOIQ co-NExpTime-c open coNP-c open

Table 4: The complexity of QueryAnswer and QueryEntailment. The ‘c’
indicates completeness results. †P-hardness for RPQs applies only to DL-LiteR.
For references, see [21, 5].

be rewritten as a FOL formula in a straightforward way [3]. CQs and UCQs are
also special cases of FOL formulas, hence the (U)CQ query answering and query
entailment problems are special cases of logical consequence in FOL. Even when
the query (or the DL, in cases not discussed here) has regular expressions, there
is a natural way to view the problem as logical consequence in some extension
of FOL that supports transitive closure. However, there is no natural fragment
that is decidable and that allows to express both the ontology and the query,
hence we can not inherit decidability or complexity results easily.

3.1 Multiple Models

Query answering algorithms from databases usually evaluate the query over one
single input structure, the database. In the presence of DL ontologies, however,
the query has to be evaluated over all the structures that are models of the data
and the ontology. A knowledge base (T ,A) has, in principle, infinitely many
models. A trivial reason for this is that we can use arbitrary sets as domains
in interpretations, and we can add additional, possibly irrelevant information to
any model in a way that it is still a model. But even if we disregard these trivial
reasons and consider only the ‘meaningful’ differences between models, resulting
from different ways in which the data may be completed to satisfy all constraints
given by the ontology, we can still end up with a very large number of models.

To develop query answering techniques it is usually possible to show that a
finite subset of all the models suffices. In the case of Horn DLs, and in particular
for the lightweight DLs of the DL-Lite and EL families, we can go even further
and show the following key property:



Canonical model property: given a satisfiable knowledge base (T ,A), one
can construct a canonical model I(T ,A) such that, for every query q, the
answers to q over (T ,A) coincide with the answers to q in I(T ,A).

That is, the canonical model I(T ,A) suffices for answering all queries. This prop-
erty plays a central role in the data complexity of query answering. In fact, all
tractability results in the Table 4 (first two blocks and first row of the last block)
are for logics that have the canonical model property.

In contrast, the presence of any kind of disjunction in the ontology results
in the existence of models that differ in the queries they entail, and makes the
query entailment problem coNP hard in data complexity, even for the sim-
plest instance queries. This applies to SHIQ and SHOIQ, which support full
Booleans (see the last two rows of Table 4). It also applies to all other expressive
DLs, like SROIQ which underlies OWL 2. The need to consider several models
also has a big impact on the combined complexity of CQ answering: it makes
the problem exponentially harder than standard reasoning for SHIQ and most
expressive DLs (for SHOIQ, decidability of the problem remains open).

3.2 Large and Infinite Models

Unfortunately, identifying one model, or one set of models, that is sufficient for
deciding query entailment, is not enough to make query answering easy. Usually
we must overcome an additional difficulty: (the domain of) models can be, in
general, infinite. This is caused by existential concepts in the right hand side of
axioms, a feature that is considered fundamental in DLs and allowed in all the
logics we have mentioned, except for DL-LiteRDFS.

Many DLs enjoy the finite model property. That is, every satisfiable KB has a
model where the domain is a finite set. For lightweight DLs like DL-Lite and EL,
there is even a model where the domain’s cardinality is polynomially bounded
in the size of the KB. However, these positive properties are of limited use for
query answering. Small and finite models are usually built by ‘reusing’ domain
elements to satisfy existential restrictions. This creates cycles in models that
may not affect KB satisfiability, but often result in spurious query matches that
are not really implied by the KB. For example, one can avoid generating an
infinite R-chain of objects for satisfying an axiom Av∃R.A by simply ‘reusing’
one element e and making it an R-successor of itself. However, this would cause
the query ∃x.R(x, x) to be erroneously entailed.

Researchers have come up with a number of different query answering tech-
niques, which overcome the challenges above in different ways. We briefly discuss
some of them below, and refer to [21] for a more detailed discussion. In general,
the results obtained so far suggest that the size of models is easier to tame than
their number. For DLs that enjoy the canonical model property, even if canoni-
cal models are infinite, several query answering algorithms have been proposed
and implemented. Intuitively, algorithms can build on the fact that canonical
models, even if they are infinite, enjoy a relatively regular structure and can be
compactly represented. In contrast, for expressive DLs like SHIQ and SHOIQ



the need to consider multiple models for query answering, and the interaction
of these models with the query, results in much more complex algorithms that
have eluded implementation until now.

3.3 Query Answering Techniques

Most work on OBQA focuses on lightweight DLs and uses rewriting techniques.
The idea here is to get rid of the ontological knowledge in a first step, and
then use existing database technologies. That is, one reduces query answering in
the presence of an ontology to answering another query, possibly in a different
language, but over a single relational structure (a plain database).

Query Rewriting for DL-Lite The rewriting approach was first proposed
for DL-Lite, since this family of logics enjoys a remarkable property: given an
ontology T and a CQ q, we can compile all the knowledge from T that is relevant
for answering q into q itself, to obtain another query (a UCQ) that can be
valuated over the data only.

FOL Rewritability: Given a DL-Lite ontology T and a CQ q, one can
compute a FOL query qT such that, for every ABox A, the answers of q
over (A, T ) coincides with the answers of qT over A.

This means we can reduce the problem of answering a CQ over a DL-Lite
knowledge base to simply evaluating a FOL query, or equivalently, an SQL query,
over a standard database, a well understood problem for which efficient solutions
are readily available. Since the rewriting of q into qT does not depend on the
ABox A, this also implies that the data complexity of CQ answering over DL-
Lite KBs is not higher than the data complexity of evaluating FOL queries over
standard databases, namely in the class AC0 (see Table 4, first and second rows).

FOL Rewritability was first exploited to develop OBQA algorithms for DL-
Lite in [7], where the authors proposed the perfect reformulation (PerfectRef)
algorithm for reformulating a CQ q into a UCQ qT . Intuitively, the algorithm
uses T to replace concepts and roles in the query by concepts and roles that
imply them. For example, in the presence of an ontology containing axioms
B v C,∃R v B, the query q = A(x), C(y) can be rewritten into queries q′ =
A(x), B(y) and q′′2 = A(x), R(y, z), where z is a fresh, unbound variable. Different
choices for replacing a given concept or role result in different queries, and the
exhaustive application of the rewriting rules generates a set of CQs, that is,
a UCQ. To obtain a complete query that covers all possible ways of implying
the concept and roles in the input q, it is necessary to allow the unification of
query variables in different atoms. The algorithm shows that the problem is in
NP in combined complexity, which is not higher than for plain databases. Many
later works have focused on improving the PerfectRef algorithm, for example by
optimizing the unification step or rewriting into a more succinct language than
UCQs, e.g. into non-disjunctive Datalog [23].



Query rewriting beyond DL-Lite It is well known that CQ answering in
practically all DLs outside the DL-Lite family is at least LogSpace hard in data
complexity, and hence FO rewritability is the lost. This applies, in particular,
to the EL family and to all its extensions, like Horn-SHIQ and Horn-SHOIQ.
However, this kind of logics still have the canonical model property, and other
rewriting techniques have been proposed that rewrite the query and the ontology
into more expressive languages, like Datalog.

One such approach, developed for Horn-SHIQ in [11], removes query vari-
ables that can be mapped to unknown elements implied by the existential axioms,
and adds to the query concept atoms that imply the existence of these elements,
in every possible way. For example, in the presence of an ontology containing
an axiom B v ∃R.C, the query q = A(x), R(x, y), C(y) can be rewritten into
q′ = A(x), B(x). The exhaustive application of this kind of rewriting results in
a query that has a match where no unknown objects occur, and can in turn
be evaluated over the named individuals only. More specifically, it is evaluated
ABox using an additional set of Datalog rules to imply the concepts and roles
that each individual is an instance of. This approach yields a tight ExpTime
upper bound in combined complexity for Horn-SHIQ, which is already Exp-
Time-hard for instance queries and standard reasoning. In data complexity, it
is polynomial.

A similar approach had already been proposed for EL in [22], yielding tight
upper bounds of NP in combined and P in data complexity. Finally, the combined
approach, introduced in [18] is another interesting approach for EL, that yields
the same complexity bounds. It uses data completion to compile the TBox into
the data rather than into the query. After some polynomial rewritings, the query
can be posed over a completed ABox that is polynomially larger than the original
one, using standard relational database technologies.

Answering RPQs and their extensions in lightweight DLs As we have
mentioned, until recently most work on OBQA focused on CQs and UCQs. RPQs
and their extensions had only been explored for very expressive DLs, where they
have the same complexity as CQs (see Table 4), and can be answered using
techniques like the automata one described below [9, 10]. For lightweight DLs
they have only been studied recently. It is easy to see that since RPQs can
express reachability, the data complexity jumps to NL-complete even for plain
graph DBs, FO rewritability is lost for DL-Lite. In combined complexity, the
problem is NL-hard for (2)RPQs and NP-hard for C(2)RPQs, already for graph
databases. As soon as existential quantification is allowed on the right hand side
of axioms and unknown objects may participate in query matches, these bounds
increase to P-hard and PSpace-hard respectively. Matching upper bounds were
obtained in [5] with a non-trivial adaptation of the rewriting technique for SHIQ
mentioned above.

Techniques for expressive DLs Expressive DLs lack the canonical model
property. All algorithms developed so far focus on deciding the existence of a



countermodel, that is, a model where the query has no match. They also build
on the fact that one can restrict the search to interpretations that have a regular,
forest like structure. Techniques to find such a counterexample include automata
theoretic ones (which in fact work for C2RPQs) [9, 10], the so-called rolling-up [8,
15, 12, 13, 19], and modified tableaux [17, 20]. Some of them are surveyed in [21].
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