Evaluation of SPARQL Property Paths via
Recursive SQL

Nikolay Yakovets, Parke Godfrey, and Jarek Gryz

Department of Computer Science and Engineering, York University, Canada
{hush,godfrey, jarek}@cse.yorku.ca

Abstract. Property paths, a part of the proposed SPARQL 1.1 stan-
dard, allow for non-trivial navigation in RDF graphs. We investigate the
evaluation of SPARQL queries with property paths in a relational RDF
store. We propose a translation of SPARQL property paths into recursive
SQL and discuss possible optimization strategies.

1 Introduction

The Semantic Web aims to augment the information stored on the Web to-
day with structured, machine-readable, graph-like metadata via the Resource
Description Framework (RDF). Under RDF, resources are uniquely identified
by Internationalized Resource Identifiers (IRIs), and statements describe rela-
tionships between resources in the form of triples (subject, property, object).
Properties name the relationships; e.g., “created by” and “born in”. Thus, RDF
triples define a directed, edge-labeled graph.

SPARQL Protocol and RDF Query Language (SPARQL) [1] is a query lan-
guage for RDF. A SPARQL query consists of a set of variables and a graph
pattern used for matching within the RDF graph. In the SPARQL 1.0 stan-
dard, graph patterns only allow simple navigation in the RDF graph, by match-
ing nodes over fixed-length paths. Under the proposed SPARQL 1.1 standard,
the W3C working group has greatly extended the navigational capabilities of
SPARQL queries by allowing graph patterns that include regular expressions in
the form of property paths, which enable matching of nodes over arbitrary-length
paths, and which allow a limited form of negation.

We study the evaluation of property paths over a relational RDF store. Since
RDF data is stored in a relational database for us, a property path needs to
be translated into an SQL query. We define a translation strategy which, given
a SPARQL property path, generates an equivalent recursive SQL query. We
outline our vision of how the resulting SQL can be optimized. We believe this
is the first study of the evaluation of SPARQL property paths in the relational
setting.

2 Preliminaries

SPARQL Property Paths. We use the terminology from [2]. Consider the
following pairwise disjoint, infinite sets: I (IRIs), B (blank nodes), L (literals)

and V (variables). The proposed SPARQL 1.1 standard [1] defines a property
path recursively as follows: (1) any a € I; (2) given property paths p; and po,
p1/p2, p1lp2, "p1, p1*, p1+ and p17; and (3) given ay,...,a, € I, then lay, I"ay,
Nail...lan),!(Ca1]...|"an) and !(a4|. .. |a;|"a;41] .. .| a,). Hence, property paths
are regular expressions over vocabulary I of all IRIs, for which “/” is concatena-
tion, “|” disjunction, “”” inversion, “«” Kleene star (zero or more occurrences),
“4+” one or more occurrences, and “?” zero or one occurrence. Negated property
paths are not supported, but negation on IRIs, inverted IRIs and disjunctions
of combinations of IRIs and inverted IRIs is allowed. A property-path triple is
a tuple t of the form (u,p,v), where u,v € (I UV) and p is a property path.
Such a triple is a graph pattern that matches all pairs of nodes (u, v) in an RDF
graph that are connected by paths that conform to p.

Relational RDF Stores. A wide variety of RDF stores that rely on a rela-
tional back-end have been proposed. (See [3] for an overview.) Some implemen-
tations require intricate mechanisms that link the RDF and relational models
via schema, data, and query mappings. It is challenging to design such mappings
so they provide a correct SPARQL-to-SQL translation which results in SQL that
is also efficient to evaluate. We consider the simplest relational representation
of an RDF graph: the triples are stored in a single table triples(s,p,0). For each
triple in the RDF dataset, a single tuple is stored. SPARQL queries are trans-
lated into SQL that is evaluated by the relational system. Figure 1 shows such
a translation.

SELECT ?who SELECT T.s
{ FROM triples T
?who :wrote :Hamlet . WHERE T.p=":wrote" AND
} T.o=":Hamlet"
(a) SPARQL (b) SQL

Fig. 1: Sample SPARQL-to-SQL translation.

SQL Recursion. Recursion was introduced to SQL in the SQL99 standard [4].
This allows for linear recursion; i.e., the recursive definition may call itself at
most once in its definition. Despite this limitation, linear recursion is quite useful
in many practical settings. It allows for queries over hierarchical relationships,
to compute bill of materials, and to find paths in graphs. A recursive query is
written in SQL via common table expressions (CTEs). A recursive CTE has a
base and a recursive SELECT statement. This recursion is then achieved by a
join in the recursive SELECT with the CTE itself. This can appear only once
in the FROM clause, which is what limits the recursion to being linear. Figure 2
illustrates a query that computes the transitive closure of a graph stored as an
adjacency list.

WITH closure (i, j) AS (

SELECT G.i, G.j FROM graph G | base step
UNION ALL

SELECT C.i, G.7j FROM closure C, graph G | recursive
WHERE C.Jj = G.1 | step

)
SELECT DISTINCT i, j FROM closure

Fig.2: A recursion SQL query to compute the transitive closure of a graph.

One can limit the recursive depth in the WHERE statement in the recursive
SELECT to avoid infinite recursion over cyclic data. Some database systems im-
plement a CYCLE clause that will suppress duplicate matches caused by cycles.

3 Translation Strategy

We are solving the following evaluation problem. Given an RDF graph G =
(V,E) stored in the single relational table triples and a property-path triple
pattern (u,p,v), we want to generate an SQL query that returns all pairs of
nodes (u,v) : u,v € V such that there is a path between u and v matching
p. To produce a correct SQL mapping, we must first establish the semantics of
property paths; i.e., when does a path in a graph conform to a property path.

The problem of finding a constrained path between two nodes in a graph has
been well studied. Regular paths are a subclass of such. A path matches if the
concatenation of its edges matches the regular expression. Nodes along the path
may be visited more than once (regular paths), or at most once (simple paths).
The former notion is preferred over the latter, often for complexity reasons. In [5]
the authors showed that regular paths are computable in polynomial combined
(data and query) complexity, while simple paths are intractable, even for basic
regular expressions.

Initially, W3C had adopted simple path semantics for arbitrary-length prop-
erty paths in SPARQL 1.1 for the “*” and “4” operators. W3C had also required
paths to be counted; i.e., to report the number of duplicate pairs (a,b) that cor-
respond to a number of paths between a and b that conform to p. However, [2,6]
have shown that both of these requirements are computationally infeasible in
many cases. These observations led W3C to drop both simple path and path
counting requirements in favor of regular paths and existential semantics.

In [6], dynamic programming was shown to be a good approach to evaluate
regular path queries with existential semantics on graphs. We provide an SQL
implementation of the algorithm in [6] to translate a SPARQL property path p
into an equivalent SQL expression.

Definition 1 (SPARQL property path to SQL CTE translation) Let
G be an RDF graph, DB¢g be its database representation as a single relation
triples(s,p,0), and p be a property path. Then, trans (p) is a procedure that pro-

duces an SQL CTE P such that its database evaluation eval (P, DB¢g) produces
a relation R, that contains all pairs of nodes (s,0) that conform to p.

Translation procedure trans(-) works as follows. Let T(p) be the parse tree of
p, the nodes of which represent subexpressions of p. The hierarchy in T'(p) corre-
sponds to the operator precedence specified by the SPARQL standard. Figure 3
presents an example. We build up the SQL query by traversing T'(p) bottom-up.
For each node in T'(p) that corresponds to subexpression s, we generate an SQL
CTE S that computes all pairs of nodes Rs in the RDF graph that conform
to s. During the traversal of the parse tree, CTEs from its children nodes are
combined to generate a CTE for the parent node.

SELECT DISTINCT °?x °? /
{ Y ol (p2Hp3)
?x :pll| (:p2+/:p3+) ?y . 5
.
} p‘ RS3 pT+ RS4
p2 p3

Fig.3: A property path and its parse tree.

Let a € I and p, p; and ps be property paths. We assume set semantics for
property paths as advocated in [2,6,7]. Below, rules R1-R8 recursively define
the SQL translation for each of the operators that appear in the property path
parse tree:

R1: If p = a, then p is translated to P as in Figure 4a.

R2: If p=Yay | ... | an), then p is translated to P as in Figure 4f.

R3: If p = "p1, then p is translated to P given P1 as in Figure 4b.

RA4: If p = p17, then p is translated to P given P1 and P2 as in Figure 4e.
R5: If p = p1/p2, then p is translated to P given P1 and P2 as in Figure 4c.
R6: If p = p1 | p2, then p is translated to P given P1 and P2 as in Figure 4d.
R7: If p = p1*, then p is translated to P given P1 as in Figure 4g.

R8: If p = p1+, then p is translated to P given P1 similarly to R7.

Definition 2 (Property-path triple to SQL translation) Let G be the RDF
graph and DBg its database representation as a single relational table triples(s,p,0).
Let T be a property path triple. Then, procedure trans(-) is overloaded so that
giwven T, it produces a semantically equivalent SQL expression sqly =trans (T').

Overloaded trans(-) works as follows. Depending on the form of the property
path triple T', we generate a different final SQL statement. Rules R9-R11 (pre-
sented in Figure 5) cover the possible cases, assuming that SQL CTE P was
generated by trans(p).

WITH P(s,0) AS (
SELECT DISTINCT T.s,
FROM triples T
WHERE T.p = 'a’

(a) p=a.

WITH P(s,0) AS (

SELECT DISTINCT Pl.s,

FROM P1, P2 UNION
WHERE Pl.o = P2.s SELECT x* FROM P2
))
(c) p = p1/p2. (d) p = pilp2.
WITH P (s,0) AS (WITH P (s,0) AS (
SELECT T.s as s, T.s as o SELECT DISTINCT T.s, T.o
FROM triples T FROM triples T
UNION WHERE
SELECT Pl.s as s, Pl.o as o T.p NOT IN (’'al’,..,"an’)
FROM P1)
)
() p=m7. (£) p =X(au] ... |an).
WITH closure(s, o) AS (
SELECT Pl.s, Pl.o FROM P1
UNION ALL
SELECT C.s, Pl.o FROM closure C, Pl WHERE C.o = Pl.s
) CYCLE s SET cyclemark TO 'Y’ DEFAULT ’'N’ USING cyclepath,
P(s,0) AS (
SELECT DISTINCT s, o FROM closure
UNION

SELECT T.s as s,

WITH P (s,0) AS (
SELECT DISTINCT
Pl.o as s,
FROM P1

T.o

Pl.s as o

(b) p="p1.

WITH P (s,0) AS (

P2.0o SELECT * FROM Pl

T.s as o FROM triples T

(g) p=pi*.

Fig. 4: Translation of SPARQL property paths into SQL CTEs.

SELECT
?s as 7?X,
?0 as ?Y
FROM P

R9: T =(?X,p,?Y)

Fig. 5: Translation

SELECT SELECT

2?0 as ?Y ?s as ?X
FROM P FROM P
WHERE s = ’'s’ WHERE o = ‘o’

R10: T = (s,p,?Y) R11: T = (?X,p,0)

of SPARQL property-path triples into SQL.

4 Discussion

Our translation of SPARQL property paths into equivalent SQL queries follows
SPARQL 1.1 semantics closely. Showing correctness of this translation can be
reasonably straightforward. However, the resulting SQL might be not efficient
to evaluate. We envision optimization strategies to generate SQL queries that
are simpler and more efficient.

Even modest SPARQL property paths may result in a complex, highly nested
SQL queries. These are a challenge for present-day relational optimizers. Our
translations may be rewritten to use augmentation-based algorithms [8] to gen-
erate a “flat” SQL query for each of the regular path operators. Such flattened
SQL statements are typically processed more efficiently by relational query en-
gines than their nested counterparts.

We are studying the optimization of the recursive components in the gener-
ated SQL. First, we are investigating the optimizations that speed up the recur-
sion by filtering its base table. These include classical early selection rewrites [9],
as well as novel algorithms specific to regular path translation such as pushing
of the “/” operator into the “x” and “4” operators. Our preliminary evalua-
tion results indicate orders of magnitude improvement in query processing times
after incorporation of some of these techniques into the translation algorithm.
Second, we shall study more advanced recursion optimization techniques. We
are investigating the applicability of magic set transformations [10] that aim to
reduce the recursive step deltas.

Next, we shall study the problem of evaluating the resulting SQL on cyclic
RDF data. The adoption of regular path semantics by W3C for property paths
can lead to infinite computation due to cycles in the graph. Our SQL translation
and evaluation need a mechanism to handle cycles gracefully. In general, SQL99
includes a specification of a CYCLE clause which performs a memoization to “re-
member” matches considered so to suppress duplicates, avoiding unbounded re-
computation. While, in our translation, we use CYCLE clause to handle cycles, in
practice this approach has two important shortcomings. First, many open-source
and commercial databases do not implement support for this clause, thus limit-
ing the applicability of our approach. Second, our preliminary evaluation results
suggest that path memoization introduces a considerable amount of computa-
tional overhead. Hence, we need to investigate how to deal with these problems
efficiently. We consider alternative translations that deal with cycles such as
placing an upper limit on the recursion depth or performing manual path mem-
oization by using auxiliary data structures. Moreover, it has been shown in [6]
that it is possible to identify the cyclic data in polynomial time. We shall study
if we can incorporate this observation into SQL to decide when to use a cycle-
proof, but less efficient evaluation strategy, or a faster approach that assumes
acyclicity.

Finally, we shall compare the performance of our approach to other proposed
methods of property path evaluation. In particular, we consider the recently pro-
posed FEM framework [11]. FEM was originally developed to answer shortest
paths queries on graphs stored in a relational database by iteratively applying

Frontier-Expand-Merge operations. In our work, we plan to adapt FEM to an-
swer property path queries and to compare this adaptation to the recursion-based
approach presented in this paper. Additionally, we compare both of these ap-
proaches to native triplestores such as those included in Jena [12] and Sesame [13]
frameworks.

References

1.

2.

10.

11.

12.

13.

S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C Working Draft (8
Nov 2012). Available at http://www.w3.org/TR/sparqlll-query/.

M. Arenas, S. Conca, and J. Pérez. Counting beyond a Yottabyte, or how SPARQL
1.1 property paths will prevent adoption of the standard. In Proceedings of the
21st international conference on World Wide Web, pages 629-638. ACM, 2012.
Katja Hose, Ralf Schenkel, Martin Theobald, and Gerhard Weikum. Database
foundations for scalable RDF processing. Reasoning Web. Semantic Technologies
for the Web of Data, pages 202—249, 2011.

Jim Melton and Alan R Simon. SQL: 1999-Understanding Relational Language
Components. Morgan Kaufmann, 2001.

A.O. Mendelzon and P.T. Wood. Finding regular simple paths in graph databases.
SIAM Journal on Computing, 24(6):1235-1258, 1995.

K. Losemann and W. Martens. The complexity of evaluating path expressions in
SPARQL. In Proceedings of the 31st symposium on Principles of Database Systems,
pages 101-112. ACM, 2012.

M. Arenas, Gutierrez C., Miranker D., , J. Pérez, and Sequeda J. Querying Se-
mantic Web Data on the Web. Sigmod Record 41(4), pages 6-17, 2012.

B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z.M. Ozsoyoglu. A complete trans-
lation from SPARQL into efficient SQL. In Proceedings of the 2009 International
Database Engineering & Applications Symposium, pages 31-42. ACM, 2009.

C. Ordonez. Optimization of linear recursive queries in SQL. Knowledge and Data
Engineering, IEEE Transactions on, 22(2):264-277, 2010.

F. Bancilhon, D. Maier, Y. Sagiv, and J.D. Ullman. Magic sets and other strange
ways to implement logic programs. In Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 1-15. ACM, 1985.
Jun Gao, Ruoming Jin, Jiashuai Zhou, Jeffrey Xu Yu, Xiao Jiang, and Tengjiao
Wang. Relational approach for shortest path discovery over large graphs. Proceed-
ings of the VLDB Endowment, 5(4):358-369, 2011.

K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, et al. Efficient RDF storage and
retrieval in Jena2. In Proceedings of SWDB, volume 3, pages 131-150, 2003.

J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic architecture
for storing and querying RDF and RDF Schema. The Semantic WebISWC 2002,
pages 5468, 2002.

