
A Practical Query Language for Graph DBs

Renzo Angles1,2, Pablo Barceló3, and Gonzalo Rı́os3

1 Department of Computer Science, Universidad de Talca
2 Department of Computer Science, VU University Amsterdam

3 Department of Computer Science, Universidad de Chile

Abstract. Query languages for current graph DB systems lack clear syntax and

semantics, which difficults the understanding of its expressiveness and complex-

ity. In particular, many of them suffer from poor performance due to the inher-

ently high complexity of the queries they can express. We propose propositional

dynamic logic (PDL) as a yardstick query language for graph database engines,

based on the fact that it can express many relevant properties with very low com-

putational cost. We present an implementation of the language that shows its po-

tential applicability for querying massive graph databases by building on existing

graph database support.

1 Introduction

Some of the current systems for managing graph data implement APIs with special

functions for querying graph properties (e.g., Dex and Titan). Others include graph-

oriented query languages; e.g., Neo4j provides Cypher4, based on expressions of the

form start-match-where-return; OrientDB5 includes a SQL-style language extended for

querying graphs; InfiniteGraph6 allows navigation through the implementation of Java

classes; and RDF stores like AllegroGraph, Virtuoso and BigData support SPARQL7,

the standard query language for RDF.

But with the exception of SPARQL, none of the above languages provides a formal

syntax and semantics, which difficults the accurate evaluation of their expressive power

and complexity. Moreover, after some empirical experiments (not included here due to

lack of space), we found that many of them suffer from poor performance. This is not

due to the implementation, but to the inherently high computational complexity of the

queries they allow to express.

We propose a navigational language – originally designed for program verification

– as a yardstick for graph database engines. The language is propositional dynamic

logic [5], PDL, that extends several important graph database languages [3]. The reason

is that the language combines good properties of evaluation and expressiveness: It can

be evaluated in polynomial time, and even in linear time for an important fragment of

graph queries. In addition, it allows to express relevant properties of graph databases,

as we will see soon.

4
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

5
http://www.orientdb.org

6
http://http://objectivity.com

7
http://www.w3.org/TR/rdf-sparql-query/

We also present an implementation of the language that works reasonably well, but

decreases its performance for large graph databases in comparison with other engines

(more specifically, DEX) that have much better support. The conclusion we draw is that

implementation of PDL for querying massive graph databases seems promising, but it

can only be achieved by building on existing graph database engines.

2 The Query Language

We work with a simple graph data model that lies at the core of most graph data models

studied in the literature [2]. In essence, our graph databases are edge-labeled directed

graphs, in which each element (node) is attached a single attribute with its correspond-

ing value. We formalize this below.

Let V be a countably infinite set of node ids and Str the set of strings over some

alphabet. Let Σ be a finite alphabet. A graph database G over Σ is a tuple (V,E,@)
such that: (1) V is a finite set of node ids (i.e., elements in V), called the nodes of G, (2)

E ⊆ V ×Σ×V is the set of labeled edges of G, and (3)@Att : V → Str is the attribute-

value assignment of G. The intuitive interpretation behind an edge (u, c, v) ∈ E, for

u, v ∈ V and c ∈ Σ, is that there exists a c-labeled edge from u to v in G. Also,

@Att(v) = k, for a node v ∈ V and a string k ∈ Str, means that the single attribute

@Att of node v in G is assigned value k.

The query language for graph databases we propose is the extension of proposi-

tional dynamic logic [5], PDL, with the inverse operator [8]. This extension allows to

increase the expressive power of the language without computational cost. The syntax

of the language is as follows. Recall that V is a countably infinite set of node ids over

which nodes of graph databases are taken. Let Σ be a finite alphabet. The language

PDL with converse (PDL−) over Σ is defined by the following grammar, in which α

denotes programs and φ denotes formulas:

α := ǫ | c (c ∈ Σ) | c− (c ∈ Σ) | α ∪ α | α · α | α∗ | φ?

φ := ⊤ | [↓ v] (v ∈ V) | [@Att = k] (k ∈ Str) | φ ∧ φ | ¬φ | 〈α〉φ.

We now formalize the semantics. Let G = (V,E) be a graph database over Σ

(that is, V ⊆ V). Each program α defines a binary relation JαKG on V . Analogously,

each formula φ defines over G a subset JφKG of V . The definitions of JαKG and JφKG
are mutually inductive. We start with the case of programs. We assume that c belongs

to Σ, that α, α1 and α2 are programs, and that φ is a formula: (1) Basis cases: (a)

JǫKG = {(v, v) | v ∈ V }, (b) JcKG = {(u, v) | (u, c, v) ∈ E}, and (c) Jc−KG =
{(u, v) | (v, c, u) ∈ E}. (2) Inductive cases: (a) Jα1 ∪ α2KG = Jα1KG ∪ Jα2KG, (b)

Jα1 · α2KG = Jα1KG ◦ Jα2KG, (c) Jα∗KG = JǫKG ∪ JαKG ∪ (JαKG ◦ JαKG) ∪ · · · , and

(d) Jφ?KG = {(u, u) | u ∈ JφKG}. Here, ◦ denotes the usual composition of binary

relations. That is, Jα1KG ◦ Jα2KG is the set of pairs (u, v) such that (u,w) ∈ Jα1KG and

(w, v) ∈ Jα2KG, for some w ∈ V .

Let us provide some intuition for the semantics of programs: ǫ defines the identity

on V × V , the pairs of nodes linked by a c-labeled edge are defined by the expression

c, and c− defines the inverse of c. Definable binary relations are closed under union,

composition and transitive-reflexive closure, which are represented by operators ∪, ·
and ()∗, respectively. Finally, φ? defines the set of pairs (u, u) such that u satisfies the

formula φ.

The semantics of formulas is defined as follows. We assume that v ∈ V , k ∈ Str,

α is a program, and φ, φ1 and φ2 are formulas: (1) Basis cases: (a) J⊤KG = V , (b)

J[↓ v]KG = {v}, if v ∈ V , and J[↓ v]KG = ∅, otherwise, and (c) J[@Att = k]KG =
{v ∈ V | @Att(v) = k}. (2) Inductive cases: (a) Jφ1 ∧ φ2KG = Jφ1KG ∩ Jφ2KG, (b)

J¬φKG = V \ JφKG, and (c) J〈α〉φKG = {u | (u, v) ∈ JαKG, for some v ∈ JφKG}.

The intuition behind the semantics of formulas is as follows: ⊤ defines the whole

set of vertices, [↓ v] is true only at the node id v, and [@Att = k] defines the set of

nodes whose attribute value is k. Definable sets are closed under Boolean operations,

represented by operators ∧ and ¬. Finally, 〈α〉φ defines the set of nodes u from which

a node v that satisfies φ can be “reached” using program α.

Example 1. Let us consider a toy example of a social network over alphabet Σ =
{friend}, where nodes are persons and attributes denote their names. The query that

retrieves all friends of person p is definable in our language by the following expression:

〈friend〉[↓ p]. Intuitively, this expression defines the set of persons p′ in the social net-

work that are adjacent via a friend-labeled edge to another person p′′ (or, formally,

the pair (p′, p′′) satisfies the program 〈friend〉), and the id of p′′ is p (or, formally, p′′

satisfies the formula [↓ p]).
Closure of formulas under Boolean combinations allows us to express important

properties. For instance, the expression 〈friend〉[↓ p] ∧ 〈friend〉[↓ p′] defines the

common friends of p and p′.

The use of regular expressions helps expressing interesting navigational properties

of graph databases. For instance, the expression 〈friend∗〉[↓ p] defines the people that

is connected by a friendship sequence to person p, i.e., the people who knows someone

who knows someone ... who knows p.

The language also allows to talk about the inverse of a relation, which is useful when

relationships – unlike friendship in a social network – are not bidirectional. Assume, for

instance, that Σ is now extended with a new symbol parent, that defines the set of pairs

(p, p′) such that p is a parent of p′. Then the expression 〈parent− ·parent〉[↓ p] defines

the set of siblings of p.

Finally, the combination of features of the language and the use of attributes al-

lows us to express some sophisticated queries. For instance, the expression 〈
(

friend ·

(parent[@ = John])?
)

∗

〉[↓ p] defines the set of persons that are linked by a friendship

sequence to p, in such a way that each person in the sequence has a son named John. �

Expressiveness and complexity In the above sections we presented examples of rel-

evant properties of graph databases that can be expressed in PDL−. The language also

subsumes some important navigational query languages for graph databases that have

been studied in the literature, e.g., nested regular expressions [3], that were originally

proposed for querying Semantic Web data [7], and a tailored version of the XML query

language XPath for querying graph data [6].

Expressions in PDL− are acyclic, i.e., they cannot express interesting properties

about cycles in the underlying graph database. For instance, consider again the case of

social networks over alphabet Σ = {friend, parent}. There is no PDL− formula

φ such that for each graph database G over Σ it is the case that JφKG coincides with

the set of persons that have two friends, one of which is a parent of the other [3]. This

shortcoming of the language is at the service of efficiency: Allowing cycles in queries

easily leads to intractability of evaluation [1], while we will see next that evaluation of

expressions in PDL− is tractable.

The language PDL− has good properties in terms of evaluation complexity, that is,

the theoretical cost of computing JαKG and JφKG, for a PDL− program α and a PDL−

formula φ, respectively, over a graph database G. This is confirmed by the following

folklore result that can be proved using standard model checking techniques [4]. Here,

|G|, |φ| and |α| denote the size of a reasonable encoding of a graph database G, a PDL−

formula φ, and a PDL− program α, respectively:

Theorem 1. 1. The cost of computing the set JφKG, for G a graph database and φ a

PDL− formula over the same alphabet Σ, is O(|G| · |φ|).
2. The cost of computing the set JαKG , for G a graph database and α a PDL− pro-

gram over the same alphabet Σ, is O(|G|2 · |φ|).

In practice, specifications (formulas and programs) are much smaller than the data

where they are evaluated (the graph database). Under such view, the previous result

essentially tells us that PDL− formulas can be evaluated in linear time in the size of

the data, and that programs can be evaluated in quadratic time in the size of the data.

The quadratic running time for evaluating programs is optimal, since in the worst case

a program can define the whole set of pairs of nodes of a graph database.

3 Implementation and Evaluation

Implementation: We wanted our implementation to work on reasonably large graph

databases, and, thus, we decided to concentrate on the evaluation of PDL− formulas,

as they have linear time complexity. In fact, a quadratic running time for program eval-

uation may be rendered as unfeasible unless deep and novel optimization techniques

are used in the implementation. Our main assumption, based on the size of the graph

databases we want to query, is that main memory structures used in the implementation

must be of size at most O(|V |) (i.e., only boolean operations on nodes may be handled

there), while external memory structures are of size O(|G|) (that is, the graph database

is kept on disk).

In order to minimize the access to external memory, we identified a minimal set of

operations that have to be handled there. These are: Given a set V0 of nodes, compute

the set V1 of nodes that have a c-labeled edge to a node in V0, and the set V2 of nodes

that can be reached by a c-labeled edge from a node in V0. We used the following data

structure to implement these operations: For each label c we have an array that contains

an element for each node v ∈ V . Each such element is a linked list containing the

c-neighbors of the node. This structure can not be explicitly implemented in external

disk, but it can be emulated as follows (nodes are represented by long integers): (1) For

each label label we create two files: label.gdb y label.aux. These files consist of lines of

fixed size. (2) The k-th line of label.gdb stores data related to k-th node. (3) Each line

G1 G2 G3

Nodes 10.000 100.000 1.000.000

Edges 43.547 550.625 6.657.553

PDL 25462 ms / 18.4MB 212422 ms / 168MB 2329189 ms / 1.7GB

Dex 571 ms / 6.9MB 5522 ms / 47.6MB 77590 ms / 490MB

Neo4j 7569 ms / 4.4MB 54360 ms / 51.7MB 875406 ms / 587MB

Table 1. Results of loading graphs of three sizes in PDL, Dex and Neo4j. For each system we

show the loading time and the disk space used for data storing.

of label.gdb will have n consecutive longs, where the first and last long will be used as

a node identifier and a pointer to the auxiliary file, respectively. The n − 2 remaining

longs will store the neighboring nodes of the respective node. (4) Once these n − 2
longs are occupied, we create a new empty line with m longs at the end of label.aux,

and we assign the pointer of label.gdb to this new line. (5) The first m − 1 longs will

store the neighbors of the respective node, and the last one will be used as a pointer

in the same way than in the file label.gdb. (6) For the inverse label−, we analogously

create the files label .gdb y label .aux.

If pointers in the files were arranged so that the disk access was sequential, then

the algorithm would be optimal. Unfortunately, the way the data is ordered depends on

the order of insertion, which can not be known a priori. But notice that in label.aux

pointers are always higher than the line they point to, that is, if in the k-th line pointer

is p, then p > k. The idea of the algorithm is, thus, to keep in main memory a data

structure, called LazyP, that stores the “pending accesses” to the lines in label.aux. The

pseudo-algorithm is the following: (1) Read sequentially all lines in label.gdb, where

the k-th line corresponds to the k-th node. If any of the n− 2 nodes belongs to V0, add

the node k to the output, else if the pointer p is not 0, add the pair (p, k) to LazyP. (2)

Iterate LazyP in ascending order in p, and read the p-th line in label.aux. If any of the

m− 1 nodes belongs to V0, add the k-th node to the output, else if the new pointer p̄ is

not 0, add the pair (p̄, k) to LazyP.

In the first part of the algorithm the file label.gdb is read sequentially, and in the

second part the file label.aux is read sequentially, which is optimal.

Evaluation results : We present an experimental evaluation of the implementation of

our query language. The objective is to show the performance of PDL for loading and

querying several sizes of data, and a referential comparison with two well-know graph

databases, Dex and Neo4j.

All the experiments were conducted on a PC with 7 processors Intel Core i7-2600

of 3.4GHz, 15.6 GB RAM, running a Fedora Linux 64-bits. The execution of the java

programs were done by using the java -jar command with parameter -Xmx10000m in

order to set the maximum heap memory size used by Java.

We use a social network data use-case consisting of people and Webpages. A person

has attributes id and name, and a Web page has attribute id. Two people can be related

by an undirected edge friend, and a person can be connected with a Web page via a

directed edge like. The data follows a power-law distribution for both relations (e.g,

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total Time

G1

PDL 7 126 69 4 131 146 81 382 88 87 1121

Dex 1121 6 5 1 31 6 4 78 1 2 1255

Neo4j 343 282 322 84 5630 218 197 34 332 196 7638

G2

PDL 1421 201 260 41 3208 251 106 2182 150 109 7929

Dex 1503 25 50 1 117 30 14 162 2 2 1926

Neo4j 438 361 401 86 7537 221 225 1237 491 200 11197

G3

PDL 7014 2166 1237 1062 4704 416 891 30828 6835 6304 61457

Dex 8233 274 6698 2825 2127 281 83 3863 25 2 24411

Neo4j 5767 1897 4411 88 9115 210 270 12319 14070 291 48438

Table 2. Results of evaluating the query mix over graphs of 10K (G1), 100K (G2) and 1M (G3)

nodes. For each query we include the time (in milliseconds) of executing 100 instances of the

query. The last column shows the total time of executing.

there are a small number of people having a lot of friends, and most people have a

reduced number of friends). The datasets were created using the generator available at

http://dcc.utalca.cl/∼rangles/research/gdg/.

The evaluation considered loading and querying tests for graphs of three sizes. Ta-

ble 1 shows the number of nodes and edges for each size, the loading time and the

space on disk occupied for each system after data loading. Notice that PDL presents the

highest loading time, and it spends a lot of disk space for storing its data structures in

comparison with Dex and Neo4j that have better support for this task.

For the query processing test, we used the following query set:

– (Q1) Get people having name N: [@name = N].
– (Q2) Get people that likes a given Web page W: 〈like〉[@id = W].
– (Q3) Get the Web pages that person P likes: 〈likes−〉[@id = P].
– (Q4) Check if N is the name of person P: [@id = P] ∧ [@name = N].
– (Q5) Get the friends of the friends of person P: 〈friend〉

(

〈friend〉[@id = P]
)

.

– (Q6) Get the Web pages liked by the friends of a given person P:

〈like−〉
(

〈friend〉[@id = P]
)

.

– (Q7) Get people that likes a Web page which a person P likes:

〈like〉
(

〈like−〉[@id = P]
)

.

– (Q8) Is there a “friend” connection (path) between person P1 and P2?

[@id = P1] ∧ 〈friend∗〉[@id = P2].

– (Q9) Get the common friends between people P1 and P2:

〈friend〉[@id = P1] ∧ 〈friend〉[@id = P2].

– (Q10) Get the common Web pages that people P1 and P2 like:

〈like−〉[@id = P1] ∧ 〈like−〉[@id = P2].

This query mix is oriented to evaluate the support of essential graph queries, that is:

attribute searching (Q1 and Q4), node/edge adjacency (Q2 and Q3), fixed-length paths

(Q5, Q6 and Q7), reachability (Q8) and graph pattern matching (Q9 and Q10).

Table 2 shows the results of evaluating the test queries for the graphs G1, G2 and

G3. The table shows the time of evaluating each query 100 times, and the total time of

the query mix. According to this table we can see that PDL− works better than Dex

and Neo4j just one time (Q1 for G1), rarely is better than Dex (Q1 for G1, G2 and

G3), and several times is better than Neo4j. Note that Dex is the system with the best

performance in the test.

These results show that our current implementation of PDL works well for small

graphs, but its performance decreases when the data size grows. This suggests that a

potential application of PDL− for querying large graph databases seems promising,

but this has to be accompanied by the support of existing graph database engines.

4 Conclusions and Future Work

In this paper we have proposed a yardstick language for querying graph databases that

supports relevant graph queries and can be evaluated in linear time. In the future we plan

to consider the definition of a high-level syntax for the language, in order to facilitate the

construction and understanding of complex queries by the general user. Although the

simplest approach would be considering an extension of the well-known SQL syntax,

we hope to explore and design a more interesting syntax based on graph structures but

enforcing the restrictions of PDL formulas.

Acknowledgements: Angles is funded by Fondecyt grant 11100364 and Barceló by Fondecyt

grant 1130104.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.

2. Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM Computing

Surveys, 40(1), 2008.

3. Pablo Barceló, Jorge Pérez, and Juan Reutter. Relative expresiveness of nested regular expres-

sions. In Alberto Mendelzon Workshop, AMW, pages 180–195, 2012.

4. Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1st edition,

1999.

5. Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.

Journal of Computer and System Sciences, 18(2):194–211, 1979.

6. Leonid Libkin, Wim Martens, and Domagoj Vrgoc. Querying graph databases with xpath. In

International Conference on Database Theory, ICDT, 2013.

7. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. nSPARQL: A navigational language for

RDF. J. Web Sem., 8(4):255–270, 2010.

8. Moshe Y. Vardi. The taming of converse: Reasoning about two-way computations. In Logic

of Programs, pages 413–423, 1985.

