
An Approach for Efficient Querying of Large
Relational Datasets with OCL-based Languages

Dimitrios S. Kolovos, Ran Wei, and Konstantinos Barmpis

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK

{dimitris.kolovos, rw542, kb634}@york.ac.uk

Abstract. Relational database management systems are used to store
and manage large sets of data, subsets of which can be of interest in the
context of Model Driven Engineering processes. To enable seamless inte-
gration of information stored in relational databases in an MDE process,
the technical and conceptual gap between the two technical spaces needs
to be bridged. In this paper we investigate the challenges involved in
querying large relational datasets using an imperative OCL-based trans-
formation language (EOL) through a running example, and we propose
solutions for some of these challenges.

1 Introduction

Information that can potentially be of interest in the context of a Model Driven
Engineering process is often located within non-model artefacts such as spread-
sheets, XML documents and relational databases. As such, model management
languages and tools would arguably benefit from extending their scope beyond
the narrow boundaries of 3-level metamodelling architectures such as EMF and
MOF for MDE.

In previous work, we have demonstrated how OCL-based model manage-
ment (e.g. model validation, model-to-text and model-to-model transformation)
languages of the Epsilon platform [1] can be used to interact with plain XML
documents [2] and spreadsheets [3]. In this work we investigate the challenges
involved in using such languages to query large relational datasets and extract
abstract models that can be then used (e.g. analysed, validated, transformed) in
the context of MDE processes. In particular, we identify the challenges imposed
by the size of such datasets and the conceptual gap between the organisation
of relational databases and the object-oriented syntax of OCL-based languages,
and we propose some solutions.

The rest of the paper is organised as follows. In Section 2 we present a run-
ning example that involves querying a real-world large relational dataset and
extracting an EMF model from it using an OCL-based imperative transforma-
tion language, we identify the performance challenges involved in doing so, and
propose a run-time query translation approach that addresses some of these chal-
lenges. In Section 3, we review previous work on using OCL to query relational
datasets and compare our approach to it, and in Section 4 we conclude the paper
and provide directions for further work.

2 D. Kolovos et. al.

2 Querying Large Relational Datasets: Challenges and
Solutions

The Epsilon Object Language [4] is an OCL-based imperative model query and
transformation language. EOL is the core language of the Epsilon platform and
underpins a number of task-specific languages for model management tasks in-
cluding model validation, model-to-model and model-to-text transformation. As
such, by adding support for querying relational datasets to EOL, this capability
is automatically propagated to all task-specific languages of the platform. While
the discussion in the rest of the paper focuses on EOL, in principle the discussion
and solutions proposed are also relevant to a wide range of OCL-based model
management languages such as QVTo, ATL and Kermeta.

To experiment with querying relational datasets with EOL, we selected a
large real-world publicly-available dataset from the US Bureau of Transportation
Statistics1 that records all domestic flights in the US in January 2013. The
dataset consists of one table (Flight) with 223 columns and 506,312 rows and is
221MB when persisted in MySQL. Each row of the table records the details of
a domestic flight during that month, including the short codes of its origin and
destination airports, the flight’s departure and arrival time etc. An excerpt of
the Flight table appears in Figure 1.

Our aim in this running example is to transform this dataset into an EMF
model that conforms to the metamodel of Figure 2 and which captures the
incoming and outgoing routes for each airport as well as the volume of traffic
on these routes, so that we can then further process the EMF model to discover
interesting facts about the structure of the US airport network.

...

...

...

...

...

...

......

0915

depTime

AZA

ATL
arrTime

ABE
origin

ADQANC
12520735

1556

ABQ

dest

DEN
0804

1557 1812
BWI

1731

Fig. 1. Excerpt of the Flight table Fig. 2. Simple ATM System Metamodel

1 http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=
236&DB_Short_Name=On-Time

alfonso
Text Box

Querying Relational Datasets with OCL-based Languages 3

2.1 Finding the number of airports in the network

A reasonable OCL-like expression2 that can be used to retrieve the number of
all distinct airports3 in the Flight table would be:
Flight.allInstances.origin.asSet().size()

When such an expression is evaluated against an in-memory model (e.g. an
EMF model) the EOL execution engine performs the following steps:

1. It inspects the model and computes a collection of all model elements of type
Flight;

2. It iterates through the contents of the collection computed in step 1 and
collects the values of their origin properties in a new collection;

3. It removes all duplicates from the collection computed in step 2;
4. It computes the size of the collection computed in step 3.

To evaluate the same expression against the relational database discussed
above, we can assume that each table in the database is a type and each row
in the table is a model element that is an instance of that type. Under these
assumptions, the following issues emerge:

1. To compute the Flight.allInstances collection, the engine needs to execute the
following SQL query: select * from Flight. Due to the size of the Flight table,
the returned result-set cannot fit in a reasonable amount of heap space (we
experimented with up to 1GB), and as such it needs to be streamed from
the database to the engine instead. Streamed result-sets demonstrate the
following challenges:
– They support forward-only iteration;
– To calculate the size of a streamed result-set it needs to be exhaustively
iterated (in which case it becomes unusable as only forward iteration is
permitted);
– Each database connection cannot support more than one streamed result-
sets at a time.

2. Iterating through all rows of the Flight table through a streamed result set
and collecting the values of the origin column of each row is particularly
inefficient given that the same result can be achieved at a fraction of the
time using the following SQL statement: select origin from Flight ;

3. Eliminating duplicates by iterating the collection computed in step 2 is also
inefficient as the same result can be achieved using the following – more
efficient – SQL statement: select distinct origin from Flight ;

4. Finally, calculating the size of a streamed result-set is not trivial without
invalidating the result-set itself. By contrast, this could be computed in one
step using the following SQL statement: select count(distinct origin) from
Flight.

2 EOL does away with the ocl- prefixes (e.g. oclAsSet()) and the → OCL operator
and uses . instead for all property/method calls.

3 We assume that there are no airports with only incoming or outgoing flights and as
such, looking into one of origin, dest should suffice.

alfonso
Text Box

4 D. Kolovos et. al.

2.2 Finding adjunct airports

Assuming that we have computed a set containing the short codes of all airports
in the table, the next task is to find for each airport, which other airports are
directly connected to it, and then compute the volume of traffic between each
pair of adjunct airports. An imperative EOL program that can be used to achieve
this follows:

1 var origins = Flight.allInstances.origin.asSet();
2 for (origin in origins) {
3 var destinations = Flight.allInstances.dest.asSet();
4 for (destination in destinations) {
5 var numberOfFlights = Flight.allInstances.
6 select(f|f.origin = origin and f.dest = destination).
7 size();
8 }
9 }

The following observations can be made for the program above:

– Although the destinations result-set computed in line 3 does not change,
it needs to be re-computed for every nested iteration as the result of the
computation is streamed, and therefore only permits forward navigation;

– Unless care is taken to evaluate the right-hand side expressions in lines 1 and
3 using different database connections, the program will fail (as discussed
above, each MySQL connection only permits at most one streamed result-set
at a time);

– Iterating through all the rows of the Flight table in the select(. . .) method in
lines 5-7 is inefficient, particularly as the same result can be computed using
the following SQL statement select count(*) from Flight where origin=? and
destination=? (where ? should be replaced every time with the appropriate
origin/destination values).

2.3 Runtime SQL Query Generation

In this section we argue that while the naive way of evaluating OCL-like queries
on relational datasets can dramatically degrade performance (as shown in the
previous section), there are certain runtime optimisations that the execution en-
gine can perform to significantly reduce the execution time and memory footprint
of some types of queries.

After applying such optimisations, the following EOL transformation, can
transform the complete dataset (DB) in question to an EMF-based model (ATMS)
that conforms to the metamodel of Figure 2 in less than 45 seconds on average
hardware4. A visualisation of an excerpt of the extracted model appears in Figure
3.

The functionality of the transformation is outlined below:

– In line 1 it creates a new instance of the Model EClass in the ATMS EMF
(target) model;

4 CPU: 2.66 GHz Intel Core 2 Duo, RAM: 8 GB DDR3.

alfonso
Text Box

Querying Relational Datasets with OCL-based Languages 5

– In line 2 it computes a set of all origin airports in the Flight table;
– In line 4 it iterates through the set of strings computed in line 2;
– In line 5 it invokes the airportForName method defined in lines 21-30 which

returns an instance of the Airport EClass in the target model with a matching
name;

– In lines 6-7 it computes a set of adjunct airports to the origin airport;
– In lines 10-12 for each adjunct airport (destination), it computes the number

of flights between the two airports;
– In lines 13-16 it creates a new instance of the Route EClass in the target

model and populates its origin, destination and numberOfFlights properties.
– The airportForName() method in lines 21-30 is responsible for preventing

the creation of airports with duplicate names in the target model.

1 var m : new ATMS!Model;
2 var origins = DB!Flight.allInstances.origin.asSet();
3
4 for (origin in origins) {
5 var originAirport = airportForName(origin);
6 var destinations = DB!Flight.allInstances.
7 select(f|f.origin = origin).dest.asSet();
8
9 for (destination in destinations) {

10 var numberOfFlights = DB!Flight.allInstances.
11 select(f|f.origin = origin and f.dest = destination)
12 .size();
13 var route = new ATMS!Route;
14 route.origin = originAirport;
15 route.destination = airportForName(destination);
16 route.numberOfFlights = numberOfFlights.asInteger();
17 }
18
19 }
20
21 operation airportForName(name : String) {
22 var airport = ATMS!Airport.allInstances.
23 selectOne(a|a.name = name);
24
25 if (airport.isUndefined()) {
26 airport = new ATMS!Airport;
27 airport.name = name;
28 m.airports.add(airport);
29 }
30 return airport;
31 }

Listing 1.1. EOL transformation

To achieve an acceptable level of performance, we have extended the EOL
execution engine to use streamed lazy collections and a runtime OCL to SQL
query translation strategy for certain types of OCL expressions when the latter
are evaluated against relational datasets. Each lazy collection acts as a wrapper
for an SQL query generated at runtime and only starts streaming data from the
database if/when it needs to be iterated. This prevents unnecessary database
queries and enables multi-step query translation at runtime. An example of the
query translation process is illustrated in Figure 4 which calculates the average
delay of flights flying from JFK to LAX on Sundays. In particular, the following
OCL expressions are rewritten as SQL queries.

alfonso
Text Box

6 D. Kolovos et. al.

DTW ORD

SFO

AUS

550

518

620
589

161

126

Fig. 3. Visualisation of an excerpt of the model extracted using the transformation in
Listing 1.1

.allInstances Retrieving all the rows of a table in the database returns a
streamed lazy collection (ResultSetList) that is backed by a select * from
<table> SQL expression. For example, Flight.allInstances is translated to
select * from Flight.

.select(<iterator>|<condition>) ResultSetList overrides the built-in OCL
select operation, translates the EOL condition to an SQL expression, and
returns a new ResultSetList constrained by the latter. For example, Flight.
allInstances.select(f|f.origin = "JFK" and f.dayOfWeek=1) is translated into
select * from Flight where origin = ? and dayOfWeek = ? (the values of the
parameters – i.e. JFK and 1 – are kept separately and are only used if the
query needs to be executed). The condition can contain references to the
columns of the table, arithmetic, and logical operators at arbitrary levels of
nesting. The exists(), forAll() and reject() OCL operations behave similarly.

.collect(<iterator>|<expression>) ResultSetList overrides the built-in OCL
collect() operation to return a streamed lazy collection of primitive val-
ues (PrimitiveValuesList). For example, Flight.all.collect(f|f.dest + "-" +
f.origin) is translated to select origin + "-" + dest from Flight. In the spirit
of OCL, retrieving properties of collections is a short-hand notation for col-
lect(). For example, Flight.allInstances.dest is shorthand for Flight.allInstances.
collect(f|f.dest).

.size() Calls to the size() method of a ResultSetList/PrimitiveValuesList are
interpreted as count SQL queries. For example Flight.allInstances.size() is
translated to select count(*) from Flight.

asSet() Calls to asSet() method of a PrimitiveValuesList return a new Primi-
tiveValuesList backed by a distinct SQL query. For example, Flight.allInstances.
dest.asSet() returns a new PrimitiveValuesList backed by the following SQL
query: select distinct(dest) from Flight.

Streamed lazy collections also provide a fetch() method that executes their
underpinning query and returns a complete in-memory result-set which is navi-
gable in both directions. This is useful for small result-sets where the overhead
of maintaining the entire result-set is memory is preferable to the performance
overhead of streaming. To address the limitation of one streamed result-set per

alfonso
Text Box

Querying Relational Datasets with OCL-based Languages 7

Fig. 4. Multi-step SQL query generation process

connection, we are using a pool of connections for streamed result-sets: each
streamed result-set requests a connection from the pool when it needs to be
computed and returns it back to the pool when it has been fully iterated.

3 Related Work

Several researchers have proposed solutions for translating OCL to SQL. For
example, in [5], the authors demonstrate an approach for generating event-
condition-action (ECA) rules comprising SQL triggers and procedures from OCL
constraints attached to a UML class diagram, when the latter is translated into
a relational schema. In [6], the authors propose using OCL-derived views in re-
lational databases designed using UML, to check the integrity of the persisted
data. In this work each OCL constraint is translated into a view in the re-
lational database that contains reports of integrity violations. Such violations
can be handled using different strategies including rolling back the offending
transaction, triggering a data reconciliation action, or simply reporting the vio-
lation to application users. This approach has been implemented in the context
of the OCL2SQL prototype5. A similar approach is proposed by the authors
of [7]. In [8], the authors propose a framework for translating OCL invariants
into multiple query languages including SQL and XQuery using model-to-text
transformations.

All the approaches above propose compile-time translation of OCL to SQL.
By contrast, our approach proposes run-time generation and lazy evaluation of
SQL statements. While compile-time translation is feasible for side-effect free
OCL constraints that are evaluated against a homogeneous target (e.g. a rela-
tional database), for use-cases that involve querying and modifying models con-
forming to different technologies (e.g. a relational database and an EMF model),
this approach is not applicable. Another novelty of the approach proposed in this
paper is that it does not require a UML model that specifies the schema of the
database, and as such, it can be used on existing databases that have not been
developed in a UML-driven manner.

5 http://dresden-ocl.sourceforge.net/usage/ocl22sql/

alfonso
Text Box

8 D. Kolovos et. al.

4 Conclusions and Further Work

In this paper we have argued that it is important for model management lan-
guages to extend their scope beyond the narrow boundaries of 3-level metamod-
elling architectures such as MOF and EMF. In this direction, we have experi-
mented with using an OCL-based imperative transformation language to query
data stored in relational databases. We have reported on the identified chal-
lenges and proposed an approach for improving the performance of some types
of queries using run-time query translation.

In future iterations of this work, we plan to investigate the extent to which
compile-time static analysis and query rewriting can deliver additional benefits
in terms of performance. An obvious target is to use static analysis to limit the
number of columns returned by queries by excluding any columns that are never
accessed in the model management program, but additional optimisations are
also envisioned. We also plan to investigate supporting queries spanning more
than one tables by exploiting foreign keys.

Acknowledgements

This research was part supported by the EPSRC, through the Large-Scale Com-
plex IT Systems project (EP/F001096/1) and by the EU, through the Auto-
mated Measurement and Analysis of Open Source Software (OSSMETER) FP7
STREP project (318736).

References

1. Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, Fiona
A.C. Polack. The Design of a Conceptual Framework and Technical Infrastruc-
ture for Model Management Language Engineering. In Proc. 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, Potsdam, Ger-
many, 2009.

2. Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, James Williams, Richard
F. Paige. A Lightweight Approach for Managing XML Documents with MDE Lan-
guages. In Proc. 8th European Conference on Modeling Foundations and Applica-
tions, Copenhagen, Denmark, July 2012.

3. Martins Francis, Dimitrios S. Kolovos, Nicholas Matragkas, Richard F. Paige.
Adding Spreadsheets to the MDE Toolbox. In Proc. ACM/IEEE 16th International
Conference on Model Driven Engineering Languages and Systems (MoDELS), Mi-
ami, USA, October 2013.

4. Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C. Polack. The Epsilon Object
Language. In Proc. European Conference in Model Driven Architecture (EC-MDA)
2006, volume 4066 of LNCS, pages 128–142, Bilbao, Spain, July 2006.

5. D. Berrabah and F. Boufares. Constraints checking in uml class diagrams: Sql vs
ocl. In Roland Wagner, Norman Revell, and Ganther Pernul, editors, Database and
Expert Systems Applications, volume 4653 of Lecture Notes in Computer Science,
pages 593–602. Springer Berlin Heidelberg, 2007.

alfonso
Text Box

Querying Relational Datasets with OCL-based Languages 9

6. Birgit Demuth, Heinrich Hussmann, and Sten Loecher. Ocl as a specification lan-
guage for business rules in database applications. In Proc. 4th International Confer-
ence on The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
UML ’01, pages 104–117, London, UK, UK, 2001. Springer-Verlag.

7. U. Marder, N. Ritter, H.-P. Steiert. A DBMS-based Approach for Automatic Check-
ing of OCL Constraints. In Proc. "Rigourous Modeling and Analysis with the UML:
Challenges and Limitations, OOPSLA workshop, 2009.

8. Heidenreich, F. and Wende, C. and Demuth, B. A Framework for Generating Query
Language Code from OCL Invariants. Electronic Communication of the European
Association of Software Science and Technology, 9, 2007.

alfonso
Text Box

