
Automating Instance Migration in Response to
Ontology Evolution

Mark Fischer1, Juergen Dingel1, Maged Elaasar2, Steven Shaw3

1Queen’s University, {fischer,dingel}@cs.queensu.ca
2Carleton University, melaasar@gmail.com

3IBM, sshaw@ca.ibm.com

Abstract

Of great importance to the efficient use of an ontology is the ability
to easily effect change [9]. This paper presents an approach toward au-
tomating a method for instance data to be kept up to date as an ontology
evolves.

1 Introduction and Motivation
As computers become more ubiquitous and the information they attain and
store becomes vast, the benefit gained from formally representing that infor-
mation grows. Ontologies are one of the key technologies which strive to give
information well-defined meaning. This, in turn, allows computers and people
to work more cooperatively [10].

While there are many applications which help develop and create ontologies,
there are still very few which aid or facilitate the evolution of an ontology [7].
Changes in domain understanding and changes in application requirements often
necessitate a change in the underlying ontology [11]. It may be impractical
or impossible to predict how or even if an ontology may change after being
deployed. Changes to an ontology may generate inconsistencies in dependent
ontologies. As ontologies evolve and grow, it becomes increasingly attractive to
find efficient ways of keeping dependent information up to date.

A change in an ontology requiring dependent ontologies to be updated is a
common problem. IBM’s Design Manager is a collaborative design management
software. It works with domains which are specified using ontologies to store,
share, search and manage designs and models. The work presented in this paper
was inspired, in part, by work IBM has done and problems IBM has encountered
while developing Design Manager. Figure 1 helps describe the problem being
addressed.

In Figure 1, there exists an original ontology (O), an evolved or updated
ontology (O′) and a set of dependent ontologies (I1, I2, ..., In). For all j, Ij

1



Figure 1: An overview of the problem setup

imports O and contains only individuals and facts asserted about those individ-
uals.

Notice that classes and properties are kept separate from individuals. In an
ontology, an individual is a resource which is an instance of a class and cannot
contain any other resource (individuals may be related to one another through
properties). Through this seperation, classes and properties are analogous to
metamodels or schema while individuals are analogous to objects or data. Sep-
arating class definitions and property definitions from individuals is common
practice when designing and building ontologies [3].

For any change that is made to O, there may exist an arbitrary number of j
such that Ij is inconsistent. Furthermore, it is possible that there exist an a and
a b such that a change in O will make Ia and Ib inconsistent for unrelated reasons
(the axioms in O′ that make Ia inconsistent are distinct from the axioms in O′

that make Ib inconsistent). It is the hope that for all j, a transformation can co-
evolve or migrate Ij into a new ontology, I ′j , such that I ′j imports O′ and remains
consistent. In Figure 1, the arrow labeled ‘transformation’ represents the portion
of this problem for which we propose a unique solution which automates the
transformation process.

Currently, this work is often done manually, or put off entirely because of the
effort required to devise and implement these sorts of migrations. Due to the
complexity possible in an ontology and the semantic ambiguity behind changes
being made, it is not possible to automatically generate the transformation that
performs the migration for individuals in dependent ontologies. Since ontolo-
gies may be too complex for a user to fully comprehend and changes may be
ambiguous and therefore difficult for a computer or algorithm to deal with [11],
the solution is to automate the migration process with the help of some user
input.

To help automate the migration process, we aid the user creation of a trans-
formation which unambiguously defines how to perform a migration for any
possible dependent ontology. We also develop a set of tools and techniques

2



Figure 2: Kitchen example ontology and a possible evolution ontology. Solid
components and their labels are from the original ontology while both solid and
dashed components are from the evolved ontology. The original ontology has
four named classes, one anonymous class, and a property. The evolved ontology
has added a named class called spork which is a subclass of both spoon and fork.
A spork is a pronged spoon and was first patented in the U.S. in 1874.

aimed at making it increasingly easier for users to create these transformations.

2 The Approach
The approach discussed here breaks the process into three phases which are
incorporated into a single tool called Oital-T.

The first phase deals with comparing the two ontologies (O and O′). While
not strictly necessary for the development of the transformation, an understand-
ing of the difference between O and O′ allows Oital-T to make suggestions and
help the user to make choices regarding the transformation.

The second phase is the creation of the transformation itself. The trans-
formation is authored in a language called Oital. Oital-T acts as an integrated
development environment for Oital, allowing the syntax to be easier to learn and
manipulate. The end goal of this entire process is to create a transformation
written in Oital. This is the transformation that can then be run any number
of times to migrate instances from O to O′.

Finally, the last phase involves analyzing the transformation. This phase
of the process can be used to indicate which parts of the transformation may
require correction or further development.

3



Figure 3: Venn Diagram showing regions where an axiom may be found

2.1 Analyzing the ontologies
In OWL, the separation of class and properties from individuals is expressed
using axioms and facts. In relation to Figure 1, I1 through In are all a series of
facts with an inclusion reference to O while O and O′ both consist of a series of
axioms (possibly with inclusion references to other ontologies).

Axioms may either restrict or add to an ontology. Restrictive axioms add
further clarification to the information encoded in an ontology (such as holdsVol-
ume exactly 1 in Figure 2) while additive axioms broaden the scope of the
information (such as the creation of a new class).

Figure 3 depicts three regions in which an axiom may exist. Region 1 de-
scribes axioms which can be found in O and not in O′ (deleted axioms), region
2 describes those axioms which can be found in both O and O′ (unchanged
axioms), and region 3 describes axioms which can not be found in O but can be
found in O′ (new or added axioms).

Axioms may influence one another. In Figure 2, the kitchen ontology has an
axiom (A) stating that cutlery is the domain of the property holdsVolume. It
also has the axiom (B) that there is a specific anonymous restriction class which
contains only individuals that hold exactly one amount of volume. Axiom B is
influenced by axiom A because a change in A is axiomatically a change in B as
well. For any axiom, C, the axiom and all other axioms it is influenced by is
denoted as C∗ and called that axiom’s context.

Table 1 gives an overview of how axioms are labeled while analyzing O and
O′. If there exists axiom A such that its context, A∗, is entirely in Region 3, then
A cannot be the cause of any inconsistencies. Specifically, if Ij is consistent with
respect to O, then any inconsistencies Ij has with respect to O′ cannot be due
to axiom A. This means that aspects of the updated or evolved ontology which
are entirely unique to the updated ontology are not of concern for the creation
of a transformation. Similarly, for any A such that A∗ is entirely in region 2, A
cannot cause inconsistencies. This means that those parts of the original and
updated ontologies which remain unchanged are not of concern either.

Axioms found in Region 1 may not, by default, be ignored. If the axiom
is restrictive, such as the restriction class in Figure 2, then its removal cannot
create an inconsistency and is considered OK. If, however, the axiom is additive,
then its removal may create inconsistencies. For example, removing the fork is
a subclass of cutlery axiom from the kitchen ontology in Figure 2 would result in

4



Restrictive Axiom (and
its context)

Additive Axiom (and
its context)

Region 1 OK Must Investigate
Region 2 OK OK
Region 3 OK OK

Region 1 & 2 Should Investigate Must Investigate
Region 2 & 3 Must Investigate Should Investigate

Table 1: Overview of which axioms require further investigation with respect
to specific regions as outlined in Figure 3. OK means the axiom may be safely
ignored as it is very unlikely to hinder a migration. Should Investigate means
this axiom is unlikely to hinder migration, but it is probably semantically im-
portant. Must Investigate means this axiom needs to be considered carefully
during migration as it may cause inconsistencies.

any facts which state that an individual fork holds a specific volume becoming
inconsistent.

If, for a given axiom, A, the context, A∗, straddles two regions, then A is
very likely to be semantically important. This means that even if the axiom
may not cause inconsistencies, it may still be of interest to a user creating the
transformation. Generally A∗ having elements in region 1 and 2 suggests that a
part of the ontology was removed but in such a way that the updated ontology
had to be restructured to accommodate the removal (such as the removal of a
class from a hierarchy). Similarly, A∗ having elements in both region 2 and 3
suggests that a part of the ontology that has been added affects parts of the
already existent ontology (Such as the creation of a new restriction class in
a class hierarchy). Some of these changes may cause inconsistencies and are
treated as more important, but all instances of these are shown to the user.

The following example illustrates how this analysis in performed. Consider
the kitchen ontologies from Figure 2. The following is information that can be
gathered from an analysis of these two ontologies. The spork class is new and
therefore part of Region 3 from Figure 3. Its context includes the fork and spoon
classes because of the subclass property. Because of the spoon, its context also
involves the anonymous restriction class as well as the property holdsVolume.
Because of holdsVolume, its context involves the cutlery class. Since spork is
from Region 3, and it has a context which encompasses Region 2, this change
straddles Region 2 & 3. The creation of a named class is additive, so (as shown in
Table 1) this is unlikely to create an inconsistency during migration, but should
still be brought to the user’s attention as it may be important semantically.

2.2 Creating the transformation
A transformation that facilitates a migration of individuals from one ontology to
another must, in some way, encode all the information that is still lacking after
the two ontologies have been fully analyzed. While an analysis of the original

5



and evolved ontology can reveal how the original ontology has been changed, it
cannot uncover the reasoning behind any given change.

A comparison of O and O′ may uncover a difference for which there are many
possible reasons. Consider the analysis of the evolution depicted in Figure 2,
to know how to proceed, it is import to know why the spork class was created.
If, for example, the class was added because of the discovery of a spork, then
the migration can simply ignore this difference. If, on the other hand, the spork
class was created because there were individuals within the class fork which held
a volume, then a migration should take those forks which have the holdsVolume
property and migrate them to the new spork class.

This very simple example illustrates why user interaction is required for the
creation of the migration transformation. To express this transformation, we
developed a domain specific transformation language called Oital.

2.2.1 Ontology Individual Transformation Authoring Language

Oital is a transformation language designed specifically for specifying the migra-
tion of individuals who are conformant to O such that they become conformant
to O′. Currently, SPARQL update is used to perform tasks which alter an on-
tology. SPARQL update, however is an update language for RDF graphs. To
use SPARQL update to effect change on an ontology requires an understanding
of how ontologies are stored as RDF triples. Ontologies which are not stored in
an RDF triple store must first be converted to one before SPARQL update can
be used.

Oital alleviates these issues by using ontology concepts directly in the lan-
guage (thus abstracting away from RDF). Instead of querying triples in a triple
store the way SPARQL update does, Oital queries classes and properties in the
ontology.

The current Oital compiler compiles Oital code into SPARQL update code.
This means that ontologies queried using Oital must still be stored in RDF.
It is, however, possible for Oital to be compiled in such a way that it can
efficiently query and alter other formats as well. Details concerning the syntax
and structure of Oital have been omitted due to space requirements.

To help make Oital easier to adopt, the syntax was heavily influenced by
the Manchester OWL syntax. Oital transformation classes are defined using
a syntax similar to the way OWL classes are defined. As the Manchester Owl
Syntax has been adopted by World Wide Web Consortium [1], it should be fairly
familiar to users who are already creating, updating, and evolving ontologies.

So far, no extensive evaluation of Oital has been conducted. However, pre-
liminary results suggest that it is a convenient means of expression for the kind
of ontology migration transformations we target.

2.3 Analyzing the transformation
Analyzing the created transformation is a helpful step toward inspecting if the
transformation that has been created is correct. Currently, the only forms of

6



analysis supported by Oital’s IDE (Oital-T) are traditional testing and a form
of abstract interpretation which executes the transformation in some abstract
fashion while collecting specific information [5][5].

We have developed and implements an abstract interpretation of Oital to
track class membership. For instance, if after running an abstract interpretation
of the transformation, the result shows that a specific class – such as spoon – is
empty, then there exists no possible input such that any individuals from that
input will have rdf:type spoon. Depending on the intent of the transformation,
this may or may not be a desired result.

Traditional testing, abstract interpretation, and – in future – other forms of
analysis may be used throughout the transformation authoring process in order
to ease the development of complex transformations with fewer errors.

3 Related Work
The migration problem, as presented here, closely resembles the data migration
problem found in database work [4] as well as the co-evolution problem found
in model driven development (MDE) work [2].

Using a transformation language is an approach currently being used to solve
the co-evolution problem. Languages such as ATL [6] (a QVT [8] compliant
language) can be used to facilitate the automation of co-evolution in model-
driven engineering [2]. When considering instance migration in ontologies, Oital
is used in a similar capacity (in the domain of ontologies).

Not much work has been done on the migration problem for ontologies as
has presented here, but similar work can be found concerning ontology evolution
management. Much of the work done in this field, such as [11] relies on being
able to access dependent ontologies (I1, I2, ..., In in Figure 1). They also depend
on user involvement at the time of evolution or migration, which our approach
does not require.

4 Conclusions and Future Work
In this paper, we have described an approach to facilitate the development
of transformations that migrate individuals from the original ontology to an
updated one. The approach is based on 1) differencing the ontologies, 2) trans-
formation development using a novel, domain-specific language, and 3) analysis.

There is, however, still much outstanding work to be done. Along with
continued development on Oital’s IDE (Oital-T), we will attempt to identify
transformation patterns and additional analysis that are scalable, yet still pro-
vide developers with useful information.

Aiding the development process will be sufficiently complex case-studies
which shall help show the usability and capability of the approach presented
in this paper. IBM has given us multiple versions of an ontology encoding of
the UML specification along with a series of UML models stored as ontologies.

7



IBM has also offered access to a domain with IBM’s Design Manager which may
benefit from this approach.

References
[1] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-

ness, P. F. Patel-Schneider, and L. A. Stein. Owl web ontology language
reference. February 2004.

[2] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating
co-evolution in model-driven engineering. In Enterprise Distributed Object
Computing Conference, 2008. EDOC ’08. 12th International IEEE, pages
222–231, 2008.

[3] A. Gangemi and V. Presutti. Ontology design patterns. Handbook on
Ontologies, pages 221–243, 2009.

[4] J. Hall, J. Hartline, R. A. Karlin, J. Saia, and J. Wilkes. On algorithms
for efficient data migration. In Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms. Society for Industrial and Ap-
plied Mathematics, 2001.

[5] N. Jones and F. Nielson. Abstract interpretation: A semantics-based tool
for program analysis. Semantic Modeling, Clarendon Press, Handbook of
Logic in Computer Science, 4:527–635.

[6] F. Jouault, F. Allilaire, J. Bezivin, I. Kurtev, and P. Valduriez. Atl: a qvt-
like transformation language. In Object-oriented Programming Systems,
Languages, and Applications. 21st ACM SIGPLAN Symposium, 2006.

[7] A. M. Khattak, Z. Pervez, S. Lee, and Y. Lee. After effects of ontology
evolution. In Future Information Technology. IEEE 5th International Con-
ference, 2010.

[8] I. Kurtev. State of the art of qvt: A model transformation language stan-
dard. Applications of Graph Transformations with Industrial Relevance.
Springer Berlin Heidelberg, pages 377–393, 2008.

[9] N. F. Noy and M. Klein. Ontology evolution: Not the same as schema
evolution. Knowledge and Information Systems, 6(4):428–440.

[10] P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evo-
lution: A change detection approach. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(1):39–49, 2007.

[11] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven ontol-
ogy evolution management. Knowledge Engineering and Knowledge Man-
agement: Ontologies and the Semantic Web, pages 285–300, 2002.

8


