
Generating Edit Operations
for Profiled UML Models

Timo Kehrer, Michaela Rindt, Pit Pietsch, Udo Kelter

Software Engineering Group
University of Siegen

{kehrer,mrindt,pietsch,kelter}@informatik.uni-siegen.de

Abstract. Since many tools for model-driven engineering (MDE) can
only process consistent models, the consistency must be guaranteed by all
tools which modify models, such as model editors, transformers, merge
tools, etc. This is a recurring challenge for tool developers.

An obvious solution of this challenge is to use a common library of
consistency-preserving edit operations for modifying models. Typical
meta-models lead to several 1000 edit operations, i.e. it is hardly pos-
sible to manually specify and implement so many edit operations. This
problem is aggravated by UML profiles: Stereotyped model elements are
implemented as complex data structures. This paper discusses several
approaches to implementing edit operations on profiled models. Further-
more, it canvasses how to generate complete sets of specifications and
implementations of edit operations.

1 Introduction

In model-driven engineering (MDE) models are the primary development ar-
tifacts. Models are modified by many different tools, including model editors,
transformers, patch and merge tools [7], test data generators [11] etc. Many
tools can only process consistent models; tool constructors are thus faced with
the challenge that all tools must preserve the consistency of the models.

A general solution to the challenge described above is to use a library of edit
operations, but many of the existing libraries do not guarantee the consistency of
the models. In this paper we present a novel approach to specify and implement
a library of consistency-preserving edit operations (Section 2).

Consistency-preserving edit operations (CPEOs) depend on the meta-model,
i.e. they are not generic. The set of CPEOs available for a given meta-model
must be complete in the following sense: It must be possible to construct any
consistent model and to edit each consistent model to become another consistent
model. Complete sets of CPEOs are quite large; their creation should therefore
be supported by (meta-) tools. Section 2 introduces SERGE, our own tool to
generate CPEOs, and discusses the limitations of automatically generating sets
of CPEOs.



The challenge of defining CPEOs is aggravated in case of domain-specific
modeling languages (DSMLs) which are defined using the UML profile mecha-
nism, e.g. SysML [9] and MARTE [10]: Stereotyped model elements are imple-
mented as complex data structures which create new consistency requirements
(See Section 4).

The main contribution of this paper is an analysis of how profiles affect (sets
of) CPEOs of the underlying non-extended meta-model. This is discussed in
Section 5.

Several approaches are available for implementing CPEOs for profiled meta-
models and for semi-automatically generating complete sets of CPEOs. Section
6 presents these approaches and discusses their respective advantages and dis-
advantages.

Section 7 summarizes the contributions of this paper.

2 Consistency-preserving Edit Operations

Meta-Models. A model is conceptually considered as a typed, attributed graph
which is known as the abstract syntax graph (ASG). Meta-models, e.g. the UML
meta-model, define the types of nodes and edges allowed in an ASG. Following
the common practice in MDE, we assume that there is an object-oriented im-
plementation of meta-models. Thus, nodes and edges of an ASG are represented
by (runtime) objects and references between them.

Consistency of Models. An ASG is considered consistent if it complies to
the definitions and constraints specified by its meta-model, notably constraints
concerning hierarchies, relationships and multiplicities.

Standards such as the UML typically define strict, “ideal” consistency con-
straints; ASGs complying with them represent models which can be translated
to source code and other platform-specific documents. Many model editors (e.g.
the Eclipse UML Model Editor) use de facto less strict meta-models. For exam-
ple, they enforce only multiplicity constraints which are required to produce a
graphical representation of a model.

Edit Operations vs. Basic Graph Operations. Meta-models are just data
models of models, they do not directly specify editing behavior. One obvious ap-
proach to modify models is to use ’basic graph operations’ on the ASG including
deleting, creating, moving and changing elements, attributes or references.

Executing a single basic graph operation on an ASG can lead to a new state
which violates the syntactic consistency. For example, a basic operation which
creates a single UML StateMachine object leads to an inconsistent ASG: A
StateMachine must always contain at least one Region. In contrast to this, a
CPEO will create a StateMachine and create a contained Region at the same
time. Thus, the model is transformed from one consistent state into another.
This CPEO is minimal in the sense that it cannot be splitted into smaller parts
which preserve the consistency of the model.



In general, an edit operation has an interface specifying input and output
parameters. For example, the edit operation createStateMachine must be supplied
with a container element in which the StateMachine is to be created, along with
local attribute values for the new StateMachine. Objects created by an edit op-
eration are handled as output arguments. Additionally, pre- and postconditions
may precisely specify application conditions of an edit operation.

Basically, minimal CPEOs can be categorized into the same kinds of oper-
ations as basic graph operations, namely creation, deletion, move and change
operations. However, minimal CPEOs usually comprise a set of basic ASG op-
erations. An example for such an ’atomic compositions’ of ASG elements is the
creation of a StateMachine with at least one nested Region in a single transac-
tion.

3 Generating Executable Specifications of Edit
Operations

Comprehensive languages, such as the UML require large sets of edit operations.
The manual specification of such sets of CPEOs for a given modeling language
is very tedious and prone to errors.

This problem is addressed by our SiDiff Edit Rules Generator (SERGe) [12].
SERGe derives sets of minimal CPEOs from a given meta-model with multi-
plicity constraints. These sets are complete in the sense that all kinds of edit
operations, i.e. create, delete, move and change operations, are contained for
every model element, reference and attribute. Respectively, edit operations gen-
erated by SERGe cover multiplicity constraints and maintain the consistency of
a model.

According to our knowledge, there are no other approaches for constructing
CPEOs. There are approaches to create certain kinds of edit operations or gram-
mars which can construct or modify models [1, 3, 6, 13]. However, they either do
not support all types of modifications (e.g. setting attribute values or moving
elements) or they lead to consistency violations. In sum, they were unusable for
our own practical work.

SERGe uses the Eclipse Modeling Framework (EMF) [4]. Generated edit op-
erations are realized as in-place transformation rules in the model transformation
language Henshin [2, 5]. A Henshin transformation rule can specify model pat-
terns to be found and preserved, to be deleted, to be created and to be forbidden.
We will refer to these implementations of edit operations as edit rules.

Figure 1 shows the edit rule createStateMachine. This edit rule is generated by
SERGe when processing the implementation of the UML2 meta-model in EMF
Ecore. For the sake of readability, the rule shown in Figure 1 is a simplified
version of the rule.

This example illustrates that a Henshin rule can define variables serving
as input or output parameters. The input parameter Selected determines the
context object to which an edit rule shall be applied. In our example, the con-
text object will be the Model in which the StateMachine shall be created. The



Fig. 1. Edit rule createStateMachine generated by SERGe

StateMachine object and its mandatory Region will be returned as output pa-
rameters New and Child when the rule is applied. Additionally, the name and
the property isReentrant of the StateMachine to be created must be provided
by the input value parameters Name and IsReentrant, respectively.

Manual Adaptions of Generated Operations. SERGe is not capable of in-
terpreting arbitrary well-formedness constraints (OCL ?? Constraints) attached
to a meta-model element. Hence, some of the generated edit rules have to be
complemented by additional application conditions.

For example, the UML meta-model specifies that all the members of a Name-
space (which includes the packaged elements of a Model) are distinguishable by
their names. Thus, a StateMachine can only be created in a Model if there is no
NamedElement with the same name. This precondition can be implemented in
Henshin by a negative application condition (NAC) as shown in Figure 2.

Fig. 2. Manually adapted edit rule createStateMachine

Conclusion. We can conclude that the most important innovation of SERGe
is that the generated edit operations comply to multiplicity constraints and
preserve the consistency of a model in this respect. If required, the generated
edit operations can be extended manually additional well-formedness constraints;
this usually requires only a limited effort.

However, SERGe currently does not address the generation of edit operations
for UML profiles. Several design variants to extend a generator such as SERGe
to profile definitions will be discussed in the remainder of this paper.



4 The UML Profile Mechanism

UML profiles provide a light-weight approach to implement domain-specific lan-
guages by reusing existing meta-models.

Profile Definition. Profiles are basically defined as follows: A profile must im-
port the base meta-model which contains the reused element types. Principally,
any MOF-based meta-model can be extended by a profile definition. In practice,
the UML meta-model serves as the base meta-model. Figure 3 shows an excerpt
of the SysML [9] profile definition. The profile defines stereotypes which extend
one or more of the imported element types. These extended classes are called
’meta-classes’. The attribute required of a meta-class extension defines whether
an instance of the extending stereotype must be attached to any instance of this
meta-class. A stereotype can have new attributes or references, the so called
’tagged values’.

Fig. 3. SysML-Profile excerpt

Profile Application. A profile can be applied to a model which is an instance
of the base meta-model, and later be revoked. The application or revocation of
a profile can also be regarded as an edit operation: It causes stereotypes to be
added to or to be removed from appropriate model elements of a model.

The UML profile mechanism is designed in a way that all data related to a
profile are separated from the extended model; i.e. one or more profiles can be
applied to a UML model without destroying its previous structure. Thus, the
extended UML model always remains processable by UML tools.

An example of a profile application is shown in Figure 4; a very simple SysML
model is shown in concrete syntax (left) and abstract syntax (right). It illustrates
how stereotype objects of type Block and FlowPort (colored in light gray) are
attached to instances of the meta-classes Class and Port, respectively.



Fig. 4. Sample SysML model in concrete syntax (left) and abstract syntax (right)

5 Edit Operations for Profiled UML Models

In this section we analyze how UML profile definitions influence the set of
CPEOs. The complete set of edit operations can be divided into four disjoint
subsets which are described below.

A. Edit Operations modifying UML Model Elements. The first set of
edit operations operates on model elements that are instances of meta-classes
of the base meta-model, i.e. the UML meta-model. For the sake of readability,
we refer to them as (pure) UML model element operations. In principle, no
knowledge about applicable profiles is required to generate these operations.

Nevertheless, these model elements can have stereotypes. Although the effect
of a UML model element operation does not depend on whether or not there is
a stereotype, it can be necessary to omit or rename some of the generated edit
operations, notably in case of required stereotypes. Thus, we further divide the
set of UML model element operations into two main subsets:

1. Edit operations which create or delete UML model elements and their con-
tainment references.
These edit operations must be omitted if the type of the involved model ele-
ment has a required stereotype in the profile definition. In this case, the base
model element and the stereotype object have to be handled consistently by
hybrid edit operations (s. Section 5.D). Other edit operations which modify
the containment hierarchy, notably relocations of model elements caused by
move operations, are not omitted.

2. Edit operations which change attributes or non-containment references of
model elements. They are independent on whether or not a profile is applied.
It can be helpful to rename these operations for the sake of understandability,
e.g. from setClassIsAbstract to setBlockIsAbstract.

In both cases, edit operations are omitted if they operate on instances of meta-
model elements which are excluded by the profile definition. For example, SysML
does not support interaction diagrams as defined in UML2. Thus, edit opera-
tions modifying elements of type Interaction, InteractionFragment or Lifeline
are omitted.



B. Edit Operations modifying Tagged Values. This subset comprises edit
operations which change attributes or references of stereotypes. For the sake of
simplicity, we refer to this subset as tagged value modifications. These edit
operations modify only parts of a model, specifically the stereotype instances of
the profile. They can have arguments whose type is defined by the base meta-
model; these arguments remain unchanged.

Tagged value modifications are easy to define and implement if their domain
is a primitive data type. For example, the edit operation setBlockIsEncapsulated

simply sets the tagged value isEncapsulated of a SysML Block. Tagged value
modifications are more complicated if they change references of stereotype ob-
jects. Here, multiplicity constraints which define mandatory neighbours or chil-
dren must be taken into account. These cases can be handled in the same way
as modifications of references on UML model elements (see Section 2).

C. Edit Operations for Stereotype Application. Stereotypes are applied
to or removed from an UML model element by Stereotype Applications.
From a users’ point of view, this can appear as a conversion of a model element
to another type. On the ASG level, a stereotype application is an edit operation
that creates or deletes a stereotype object together with the reference to an
instance of its base meta-class.

These edit operations are not permitted for stereotypes that are declared as
required for their base meta-class. In such cases they are omitted from this set of
edit operations. For example, the stereotype application operations applyStereo-

typeBlock and unapplyStereotypeBlock are not applicable to SysML models. The
stereotype Block must always be created or deleted together with an instance of
its base meta-class Class, but not without. This kind of modification is achieved
by a hybrid edit operation.

D. Hybrid Edit Operations for Required Stereotypes. Hybrid edit
operations concurrently modify instances of base meta-classes and stereotype
instances. Typically, they create or delete model elements that have required
stereotypes. An example is given in Section 5.C; creating a SysML Block requires
the creation of a UML Class to which it must be attached as stereotype.

6 Generating Edit Operations

The previous section introduced 4 different kinds of edit operations. The com-
plete set of operations which is necessary to consistently edit profiled UML
models, is the union of these 4 sets and represented by the dotted rectangle in
Figure 5.

The edit operations specified in subsections 5.A can be generated by SERGe.
The same is true for edit operations specified in subsections 5.B and 5.C because
profile definitions are handled as usual MOF-based meta-models.

However, some extensions are necessary for the generation of hybrid edit
operations (Section 5.D). Generally, hybrid edit operations can be implemented



using two different approaches: A higher-order transformation approach and a
meta-model driven approach.

Fig. 5. Generation of different types of edit operations

A. Higher-order Transformation Approach. This approach uses a set of
existing UML edit operations as primary input (see arrow 1 in Figure 5). It does
not matter whether the edit operations have been generated and/or constructed
manually. The basic idea is to modify them by adding appropriate stereotypes.

We assume that edit operations are defined as executable specifications in the
form of Henshin transformation rules as explained in Section 2. Henshin rules
are technically represented as models and can be transformed automatically, i.e.
their modification can be considered as a higher-order transformation (HOT).

We have implemented this HOT in Henshin as follows: Basically, stereotypes
as defined by the profile are applied to all instances of a UML base meta-class
which occur in the given set of UML edit rules. A parametrized HOT rule is
provided in order to attach an instance of a stereotype. The necessary parameters
are the stereotype and the UML meta-class. We have implemented three variants
of this HOT rule: They attach stereotype objects to UML model elements which
are (1) to be created, (2) to be deleted and (3) to be preserved by an edit rule.
A working example of a HOT rule can be found at [12].

Since a UML meta-class can be extended by several stereotypes, different
variants for every stereotype will be created. Such variants can also consist of
combinations of multiple stereotypes, if more than one meta-class is contained
in the given UML edit rule. Thus, the scheduling algorithm which applies the
HOT rules with appropriate invocation arguments is responsible for generating
all possible combinations of stereotype attachments.

A big advantage of this approach is that efforts of manual adjustments on
UML edit operations are not lost. A disadvantage is that it supports only simple
profiles: It cannot handle stereotypes which have mandatory references to other



stereotypes or UML model elements. However, important profile-based standards
such as SysML and MARTE rarely contain such scenarios.

B. Metamodel-driven Approach. This approach does not require any previ-
ously generated sets of edit operations, all operations are generated from scratch;
the profile and the base meta-model are the only input data here (see arrow 2
in Figure 5).

This approach can consider multiplicity constraints of (non-) containment
references which emanate from stereotypes. However, in contrast to the HOT
approach, all manual adjustments on an existing set of UML edit operations
(modifications, creations and deletions) are lost. Manually created edit opera-
tions for the base language are not automatically adapted.

Two alternative patterns are available for implementing a hybrid operation;
Figures 6 and 7 illustrate them using the creation of a SysML Block as an
example:

1. Sequentially boxed operations (Figure 6): Here, the UML edit operation
and the profile application operation are applied in sequential order; initially,
a class instance is created. In a next step the required stereotype is added.

2. Concurrent operation (Figure 7): Basically, all edit operations used sepa-
rately in the first approach are ’merged’ into one. For Henshin transformation
rules, such a merge can be implemented by concurrent rule construction.

Fig. 6. Implementing a hybrid edit operation using a sequential transformation unit

Fig. 7. Implementing a hybrid edit operation using a single transformation rule



7 Conclusion

This paper has presented our approach to construct complete sets of consistency-
preserving edit operations on models. In contrast, existing approaches for gener-
ating edit operations do not support consistency preservation and DSMLs using
UML Profiles such as SysML or MARTE.

We addressed an important practical requirement: How to consistently main-
tain operation sets for the base language without profiles and for the profiled
language. Our solution is based on a clear separation of all edit operations in 4
categories. The most complex type of edit operations are hybrid ones; we showed
that they can be implemented in such a way that manual optimizations of the
base edit operations can be preserved.

Acknowledgement. This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593: Design For Fu-
ture - Managed Software Evolution.

References

1. Alanen, M.; Porres, I.: A relation between context-free grammars and meta object
facility metamodels; Technical Report 606, TUCS Turku Center for Computer
Science; 2003;

2. Arendt, T.; Biermann, E.; Jurack, S.; Krause, C.; Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations; in: Proc. MoDELS
2010, Oslo; LNCS 6394, Springer; 2010

3. Ehrig, K.; Küster, J.M.; Taentzer, G.; Generating instance models from meta mod-
els; SoSym Volume 8:4, p.479-500; 2009

4. EMF: Eclipse Modeling Framework; http://www.eclipse.org/emf; 2012
5. EMF Henshin Project; http://www.eclipse.org/modeling/emft/henshin
6. Hoffmann, B.; Minas, M.: Generating instance graphs from class diagrams with

adaptive star grammars. Intl. Workshop on Graph Computation Models, 2011
7. Kehrer, T.; Kelter, U.; Taentzer, G.: Consistency-Preserving Edit Scripts in Model

Versioning; in: Proc. 28th IEEE/ACM Intl. Conf. on Automated Software Engi-
neering (ASE 2013); ACM; 2013

8. Object Constraint Language: Version 2.0; OMG, Doc. formal/2006-05-01; 2006
9. Systems Modeling Language: Version 1.3; OMG, Doc. formal/2012-06-01; 2012

10. UML Profile For Marte - Modeling And Analysis Of Real-time Embedded System:
Version 1.1; OMG, Doc. formal/2011-06-02; 2011

11. Pietsch, P.; Shariat Yazdi, H.; Kelter, U.: Generating Realistic Test Models for
Model Processing Tools; p.620-623 in: Proc. 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’11); ACM; 2011

12. The SiDiff EditRule Generator - A tool to automatically derive consistency-
preserving edit operations of any ecore meta model; http://pi.informatik.uni-
siegen.de/Mitarbeiter/mrindt/SERGe.php; 2012

13. Taentzer, G.: Instance Generation from Type Graphs with Arbitrary Multiplicities;
in: Electronic Communication of the EASST 47; 2012


