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Abstract - The use of ontologies is on the rise, as they facilitate 
interoperability and provide support for automation. Today, 
ontologies are popular for research in areas such as the Semantic 
Web, knowledge engineering, artificial intelligence and 
knowledge management. However, many real world problems in 
these disciplines are burdened by incomplete information and 
other sources of uncertainty which traditional ontologies cannot 
represent. Therefore, a means to incorporate uncertainty is a 
necessity. Probabilistic ontologies extend current ontology 
formalisms to provide support for representing and reasoning 
with uncertainty. Representation of uncertainty in real-world 
problems requires probabilistic ontologies, which integrate the 
inferential reasoning power of probabilistic representations with 
the first-order expressivity of ontologies. This paper introduces a 
systematic approach to probabilistic ontology development 
through a reference architecture which captures the evolution of 
a traditional ontology into a probabilistic ontology 
implementation for real-world problems.  The Reference 
Architecture for Probabilistic Ontology Development catalogues 
and defines the processes and artifacts necessary for the 
development, implementation and evaluation of explicit, logical 
and defensible probabilistic ontologies developed for knowledge-
sharing and reuse in a given domain. 

Keywords—probabilistic ontology, knowledge engineering, 
reference architecture  

I. INTRODUCTION 
The Reference Architecture for Probabilistic Ontology 

Development (RAPOD) presents a compilation of components 
required for probabilistic ontology development and therefore 
facilitates design, implementation, and support processes 
without rigid adherence to a particular set of tools. The 
Department of Defense (DOD) defines a Reference 
Architecture as: 

“…   an authoritative source of information about a 
specific subject area that guides and constrains the 
instantiations of multiple architectures and 
solutions[1].” 

Common throughout the literature on reference 
architectures is the idea of serving as a blueprint for architects 
to develop specific solution architectures within a defined 
domain [1] [2]. As the blueprint, it serves as a template for 
software development, defining integral components and their 

relationships, thereby reducing development time and project 
risk. Further, it standardizes language among participants, 
provides consistency of development within the domain, 
provides a reference for evaluation, and establishes 
specifications and patterns [1].  

A. Background 
Development of the RAPOD provides synergy of effort 

within the Semantic Technology (ST) community by 
identifying concepts, processes, languages, theories and tools 
for designing and maintaining probabilistic ontologies. 
Presently, ontological engineering facilitates the development 
of explicit, logical and defensible ontologies for knowledge-
sharing and reuse. A similar pragmatics in the form of the 
Probabilistic Ontology Development Methodology has been 
produced for probabilistic ontologies and is described in [3]. 
The RAPOD facilitates synergy of effort between multiple 
disciplines including probabilists, logicians, decision analysts 
and computer scientists. It describes each of the components 
required for a functional probabilistic ontology and their 
interrelationships, and defines the criteria to be satisfied by any 
set of selected tools and methods using a Unified Process-
inspired methodology. 

B.  Scope 
The RAPOD spans the knowledge, processes, models, and 

tools necessary for engineering probabilistic ontologies at a 
high level of abstraction. Through decomposition or 
aggregation of existing methodologies, it provides universal 
techniques and a generalized framework for the fundamental 
components needed to construct probabilistic ontologies from 
conceptualization to operation through multiple tasks, 
including: 

x Model conceptualization and framing 

x Ontology development through elicitation and 
ontological learning 

x Probability incorporation through iterative 
decomposition 

There are many participants involved in realizing an 
operational probabilistic ontology. The Stakeholder Decision 
Maker (DM), Subject-Matter Expert (SME) and Probabilistic 
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Figure 1 

Ontology Developer coordinate to instantiate a collection of 
concepts and tools for development and implementation from 
existing and proposed ontological and probabilistic ontological 
engineering methodologies, providing a single collection of 
knowledge to solve a domain-specific problem. Their solution 
is defined as a domain-specific architecture that may be reused 
for comparable problems in similar domain contexts.  

C. Model Implementation and Viewpoint 
The concept behind the RAPOD is to establish intellectual 

control of the probabilistic ontology (PO) model, stimulate 
reuse, and provide a basis for development through 
instantiation of a particular set of tools the developer will 
utilize to design and implement complex probabilistic 
ontologies for a particular domain [4]. Intellectual control 
establishes common semantics and allows consistent 
integration of new system components by anticipating their 
inclusion from design. Reuse is a prime tenet of ontological 
engineering and is enabled through identification of common 
components and relationships. Further, a well-defined and 
properly architected PO may be reused entirely through spiral 
modification to incorporate additional knowledge or 
relationships. Most importantly, the architecture serves as a 
blueprint for the PO Developer and a clear mechanism between 
him and the Stakeholder Decision Maker. The architecture 
allows individuals, teams, and organizations to communicate 
objectives, requirements, constraints, components and 
relationships with a common vocabulary and understanding of 
the objective. Ontological engineering, and probabilistic 
ontological development, may be completed by several 
different methodologies depending on the context and domain 
of the problem. Therefore, the RAPOD provides ready access 
to tools, techniques, and procedures that have proven 
successful in the past. The RAPOD also exposes synergies in 
algorithms, heuristics and model use between ontological and 
probabilistic ontological engineering. Through careful 
selection of tools with common parameters, the final model is 
more intuitive. The viewpoint of this reference architecture is 
that of the Probabilistic Ontology Developer in support of a 
Stakeholder Decision Maker desiring decision support for a 
defined area of interest. 

II. REFERENCE ARCHITECTURE FOR PROBABILISTIC 
ONTOLOGY DEVELOPMENT 

The Reference Architecture for Probabilistic Ontology 
Development facilitates PO development and reuse by 
providing a template from which multiple PO solutions to 
similar problems may be constructed. The output of the 
RAPOD is a domain and problem-type specific architecture 
that may be used to develop POs for similar problems. 
Reusable architectures provide a shortcut to future 
development by identifying inputs, methodologies, and support 
artifacts that have previously produced successful solutions 
within the domain.  

In each of its three layers, the RAPOD identifies processes 
and artifacts necessary for the construction of a probabilistic 
ontology without specification to particular tools. Working 
with the stakeholders, the PO Developer selects individual 
component solutions that suit the problem-type and domain. 
Specification of a set of tools for each component instantiates 

an architecture that is used to develop the PO. Figure 1 
provides an overview of the RAPOD, discussed in detail 
below. 

The Reference Architecture for Probabilistic Ontology 
Development shown in Figure 1 illustrates the scope of the 
reference architecture from abstract to concrete. At the top of 
the illustration is the most abstract conceptualization defined as 
a problem or objective by the Stakeholder Decision Maker that 
requires implementation of a probabilistic ontology. For 
example, a military commander may be charged with creating 
a decision support system that assists in the determination of an 
opposing force given limited sensor information. A Naval 
application example is given in [3]. The base of the illustration 
represents the operational implementation of the probabilistic 
ontology to provide inferential reasoning support. Between lies 
the probabilistic ontology architecture, which translates the 
conceptualization into a blueprint for development. The 
probabilistic ontology architecture is comprised of three 
interacting layers, which group and characterize similar 
functionality: the Input Layer, Methodology Layer, and 
Support Layer. These and their relationships are described in 
the following subsections. 

A. Input Layer 
The Input Layer defines external influences on the 

probabilistic ontology and is referenced by components of the 
Methodology Layer. It contains those components expected to 
provide detail on the purpose of the PO and its bounding 
constraints in the form of system requirements. Population of 
the Input Layer occurs primarily during the early stages of the 
development process during which the Stakeholder Decision 
Maker and PO Developer work closely to identify the objective 
of the model, expectations of its performance, and resource 
restrictions. Parameters specified in the Input Layer will 
constrain the operational implementation.  

1) Objectives 
The objectives hierarchy contains a representation of 

performance, cost and schedule attributes that determine the 
value of the system, with an over-arching Objective Statement 
that captures its primary intent [5]. Objectives state the overall 
intent of the project in short, clear, descriptive phrases. They 
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are defined by the Stakeholder DM to bound the scope of the 
final product and set expectations. These are often described in 
the following form [6]: 

To Action + Object + Qualifying phrase 

For a probabilistic ontology model, applicable categories of 
objectives may include: performance, reliability, compatibility, 
adaptability, and flexibility. Further descriptions of these and 
other categories may be found in Armstrong [6]. Choosing the 
correct objectives ensures that the desired problem is solved 
and that the PO Developer and Decision Maker have clearly 
communicated. The entire project is best focused through a 
Top-level Objective Statement. 

2) Requirements 
Requirements define the system to be implemented in terms 

of its behaviors, applications, constraints, properties, and 
attributes. The systems engineering literature on requirements 
elicitation and development is rich, but there is consensus that 
no single methodology exists for requirements engineering [7] 
[8]. In general, requirements elicitation approaches may be 
categorized as structured or unstructured [8] using a 
combination of strategies depending on the scope of the system 
under development and the participation commitment of the 
Stakeholder Decision Maker.  

Requirements are elicited from the Stakeholder Decision 
Maker and SMEs through an iterative process that generally 
includes objective setting, background knowledge acquisition, 
knowledge organization, and requirements collection as 
introduced by Kotonya and Sommerville [7]. Grady 
categorizes three strategies for requirements analysis: 
structured analysis, cloning, and freestyle [8]. Using one or 
more of these strategies and concentrating on the four tasks 
above will lead to identification of appropriate requirements to 
satisfy valid model development. There is inefficiency and risk 
involved in the unstructured methods as there is nothing to 
prevent duplicative work, incompleteness, conflicts and 
misdirection. 

3) Metrics 
Metrics are used to describe parameters, Measures of 

Performance (MOP) and Measures of Effectiveness (MOE) 
that characterize the criteria against which the fielded system is 
to be evaluated. Green defines a hierarchy of effectiveness 
measures that follows the system of systems concept [9]. The 
following definitions are adapted from those offered by Green 
to accommodate the PO development process: 

Measures of Effectiveness. A measure of system 
performance within its intended environment (e.g. overall 
system effectiveness). 

Measures of Performance. A measure of one attribute of 
system behavior derived from its parameters (e.g. probability 
of correct identification). 

Parameters. Properties or characteristics whose values 
determine system behavior (e.g. error rate). 

Armstrong [6] opines that useful metrics take quantifiable 
form with both a clear definition of the measure and its 
associated units. They must also be mission-oriented, 

discriminatory, sensitive, and inclusive [9]. In all cases, 
appropriate metrics depend on the system under development 
and its ultimate purpose (objectives). 

B. Methodology Layer 
The Methodology Layer contains the heart of the 

probabilistic ontology development process including the 
Probabilistic Ontology Development Methodology that allows 
creation of a specific probabilistic ontology implementation to 
support the requirements of a Stakeholder Decision Maker. The 
Methodology Layer references information gathered in the 
Input Layer and is assembled using components and tools from 
the Support Layer. Its individual components are introduced 
below. 

1) Probabilistic Ontology Development Methodology 
The Probabilistic Ontology Development Methodology 

provides specific activities and tasks that evolve Stakeholder 
Decision Maker requirements into an ontology that is 
probabilistically-integrated, a probabilistic ontology. The 
activities of the Probabilistic Ontology Development 
Methodology are shown in the below activity diagram (Figure 
2) and further detailed in [3]. These activities fit well within 
both Waterfall and Spiral Development Life Cycle processes 
where in Spiral Development iteration is explicitly anticipated. 

Completion of the PODM activities and tasks establishes a 
framed solution to a specific inferential reasoning problem 
grounded in an inclusive ontology representing its entities and 
incorporating probability to represent uncertainty. 

2) Ontological Engineering 
In Gomez-Perez et al, ontological engineering is defined as 

the activities that concern the ontology development process, 
life cycle, construction methodologies and tools [10]. While 
traditional ontological engineering methods ensure that 
ontologies are explicit, logical and defensible, these methods 
provide insufficient support for the complexity of probabilistic 
ontology development, as discussed above. A systematic 
approach to PO development is needed that addresses the 
evolution of requirements into an ontology that is 
probabilistically integrated. The underlying ontology may be 
engineered by many methods; but ultimately each 
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methodology provides a structured means to produce 
ontologies from conceptualization to implementation. Some 
principal design criteria must always be considered: clarity, 
coherence, extendibility, minimal encoding bias, and minimal 
ontological commitment [11]. 

3) Ontology Reuse 
There are two types of ontology reuse: re-engineering and 

merging. Ontology re-engineering involves transforming the 
conceptual model of an implemented ontology into another 
conceptual model [10]. On the other hand, ontology merging 
uses information captured about one or more domains of 
interest in the creation of a new ontology. Therefore, model 
reuse is the process by which available knowledge and 
conceptual models are used as input to generate new models, in 
this case ontologies and probabilistic ontologies. Ontology 
development is a complex and labor-intensive task. The 
potential for reuse is an identified strength of ontologies and 
allows expansion of existing knowledge bases by capitalizing 
on previous research and development [10][11][12][13][14]. 
The literature liberally addresses the concept of ontology reuse, 
but there is little guidance offered for selection of methods for 
merging and/or integration. Integration of similar tasks and the 
addition of tasks emphasizing utility of existing ontologies 
expand the basic process of ontological engineering to make 
use of ever-expanding online ontology resources. Before 
beginning construction of a new ontology, it is useful to 
research existing ontologies in related domains to be reused 
and/or extended for the current problem. The ST community is 
actively expanding free access to the growing body of 
ontological knowledge, as discussed below. 

4) Heuristics and Algorithms 
Generally, a heuristic is an experience-based technique for 

problem solving, learning, and discovery and an algorithm is a 
stepwise procedure for calculation of a problem solution. 
Heuristics and algorithms are used to express relationships 
between classes within ontologies and probabilistic ontologies 
in  order  to  constrain  the  models.    For  example,  the  heuristic  “A  
weapon   is   cued   by   a   single   sensor”   gives   a   plain-language 
description of a relationship in which each weapon is assigned 
a single sensor, but sensors may be assigned multiple weapons.  
This plain language description captures the machine-readable 
cardinality   statement   of   ∞…1   in   a   format   understandable   by  
the entire development group, including the Stakeholder 
Decision Maker and SMEs. Heuristics and algorithms are 
captured as part of the PODM as described in [3]. 

5) Learning 
Currently, ontology development is a labor-intensive, 

manual process. However, the need for greater automation 
features has been recognized and is a focus of the ST 
community. The PODM has integration points primed for 
future expansion in the areas of Ontological Learning and 
Probabilistic Learning. These two functions assist the modeler 
in ontology creation and elicitation of probabilities for the 
probabilistic relationships used for inferential reasoning.  

a) Ontological Learning 
Ontological learning is the process of extracting relevant 

classes, properties and relationships from a given data set, in 
this case to reduce effort in development of an ontology which 

will be developed into a probabilistic ontology. Buitelar et al. 
identified innovative aspects of ontology learning that set it 
apart from traditional knowledge acquisition [15]:  

x It is inherently multidisciplinary due to its strong 
connection with the Semantic Web, which has 
attracted researchers from a very broad variety of 
disciplines: knowledge representation, logic, 
philosophy, databases, machine learning, natural 
language processing, image processing, etc. 

x It is primarily concerned with knowledge acquisition 
from and for Web content and is moving away from 
small and homogeneous data collections. 

x It is rapidly adapting the rigorous evaluation methods 
that are central to most machine learning work.  

Through application of ontological learning, both the 
process of developing a probabilistic ontology and the 
development risk may be reduced.  

Sowa defines three types of ontologies: a formal ontology 
which is a conceptualization whose categories are 
distinguished by axioms and definitions and are stated in logic 
to support inference and computation, a prototype-based 
ontology in which categories are formed by collecting 
instances extensionally, and a terminological ontology which 
describes concepts by labels and synonyms without axiomatic 
grounding [16]. Ontological learning in support of inferential 
reasoning is concerned primarily with developing the latter two 
categories for the specified domain of interest. The various 
sources used for ontology elicitation may include databases, 
documents, and taxonomies. As ontologies are typically 
hierarchically arranged, the primary means for ontological 
learning is through clustering. In this method, using a suitable 
clustering algorithm, a semantic distance is measured between 
terms and the nearest terms are clustered and formed into a 
prototype-based ontology. Ontological learning may also be 
accomplished through pattern matching using a co-occurrence 
matrix or bootstrapping from a seed lexicon that is extended by 
measuring similarity.  

The above methods are all primarily focused on learning 
ontologies from plain text corpuses. Recent work includes 
extracting ontologies from non-text formats including 
relational databases, structured knowledge bases,  and the 
Semantic Web. Albarrak developed an extensible framework 
for generating ontologies from Relational Database (RDB) and 
Object-Relational Database (ORDB) data models [17]. Li et al. 
introduce a novel set of 12 learning rules that build a complete 
OWL ontology of classes, properties, characteristics, 
cardinality and instances [18]. A database analyzer extracts key 
information from the relational database, which is then passed 
to an ontology generator containing the rules. It is also possible 
to map ontologies through machine learning to transform 
existing ontologies within the Semantic Web to a format 
useable in the domain context for the current problem. Doan et 
al. have introduced the GLUE system to semi-automatically 
create these semantic mappings using a multi-strategy learning 
approach based on the joint probability distribution of the 
compared concepts [19] [20]. The concept is to produce a map 
between the existing domain and the desired domain that 
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translates between taxonomies. Future research promises to 
reduce the human interaction required for ontological 
engineering. 

b) Probabilistic Learning 
Elicitation of conditional probabilities to populate 

distribution tables remains a difficult endeavor, accomplished 
through SME interview and experimental data collection. 
Probabilistic learning seeks to reduce the effort involved in 
establishing prior and conditional probabilities for domain 
entities by specifying a model using empirical data. Pearl 
identified two tasks for probabilistic learning [21]: 

� Extracting generic hypothesis evidence-relationships 
from records of experience, and 

� Organizing the relationships in a data structure to 
facilitate recall.  

Accuracy and consistency in the PO model could be 
improved by learning numerical parameters for a given 
network topology from empirical data instead of relying on 
SME input. The literature contains numerous techniques for 
parameter learning; two commonly employed methods are: 

Maximum Likelihood [22][23] – Parameters are estimated 
from a set of empirical data using a likelihood weighting 
algorithm. 

Bayesian Learning [22][23] – Prior knowledge about 
parameters is encoded and data is treated as evidence to reduce 
the learning process to calculation of posterior distributions. 

Learning is segregated into the categories of structure 
learning and parameter estimation [23][24]. In parameter 
estimation, the dependency structure of the probabilistic 
representation is known. The learning task is to define the 
parameters of the Local Probability Distributions (LPDs). The 
goal of structure learning is to extract the structure of the 
probabilistic representation from the dataset.  

Learning a Probabilistic Relational Model (PRM) requires 
input in the form of a relational schema that describes the set of 
classes, the attributes associated with the classes, and the 
relations between objects of classes for the domain. In the 
parameter estimation task, the structure is given, which defines 
the parents for each attribute. The parameters that define the 
Conditional Probability Disributions (CPDs) for the structure 
are learned using the likelihood function to determine the 
probability of the dataset given the model. Structure learning of 
a PRM is more complex and requires a method to find possible 
structures and then score them. Getoor et al. describes the use 
of a greedy local search procedure to produce a candidate 
structure which is then scored using the prior probability of the 
structure and the probability of the dataset, given the structure 
[23].  

Recall that the structure of a Markov Logic Network 
(MLN) includes a node for each variable and a potential 
function for each set of nodes that is pairwise linked. Parameter 
estimation for MLN is performed by computation of the 
Markov network weights that represent the clique potential 
using an optimization of the likelihood function. Structure 

learning is performed by a greedy algorithm on the network 
features [25]. 

Multi-Entity Bayesian Network (MEBN) learning also 
takes advantage of the structure associated with a relational 
database. A key component is generation of a MEBN-RM 
model that specifies a mapping of MEBN elements to the 
relational model of the database. MEBN parameter learning 
estimates the parameters of the local distribution for a resident 
node of an MTheory, given the structure and the database using 
maximum likelihood estimation. MEBN structure learning 
organizes random variables into MFrags and identifies parent-
child relationships between nodes, given the database.  Any 
Bayesian Network Structure search algorithm may be used 
[26]. More recently, Park et al. has extended the MEBN 
learning algorithm to include both discrete and continuous 
random variables [27]. 

6) Knowledge Base 
The knowledge base is a historic collection of domain-

specific knowledge contributed by domain SMEs and may 
include ontological information (classes, properties, 
characteristics, and relationships), logical constraints, 
heuristics, and probabilities. The breadth of knowledge stored 
within is unspecified. To distinguish the KB from evidence, 
there is no temporal component associated with the knowledge 
base; information contained therein may not represent the 
current domain state.  Marakas differentiates a database from a 
knowledge base in this fashion:  

“…  a  collection  of  data  representing  facts  is  a  database.  The 
collection  of  an  expert’s  set  of  facts  and  heuristics  is  a  

knowledge base [28].” 
7) Ontology Structures 

Ontologies, including probabilistic ontologies, provide a 
means to represent knowledge and relationships between 
hierarchically organized classes of objects. Ontologies exist to 
enable knowledge sharing and reuse [11] [13]. As a set of 
definitions of formal vocabulary, ontologies allow knowledge 
sharing among hierarchically organized entities. A probabilistic 
ontology addresses the inherent uncertainty involved in 
inferential reasoning applications with inconclusive evidence 
by representing it probabilistically. 

a) Ontology 
A working ontology captures the classes, properties, and 

the relationships of a domain of interest. Production of this 
relational framework facilitates comprehension of the 
hierarchical organization of domain entities; the relationships 
between and properties of domain entities; as well as causal 
relationships among entities. When uncertainty about aspects 
of the domain is important to the purpose for which the 
ontology is being developed, a probabilistic ontology is needed 
to represent the uncertainty. 

b) Probabilistic Ontology 
A probabilistic ontology provides a means to represent and 

reason with uncertainty by integrating the inferential reasoning 
power of probabilistic languages with the first-order 
expressivity of ontologies. Few things are certain, and inferring 
in the presence of uncertainty allows the decision maker to 
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focus attention on the most relevant data through designed 
queries. 

C. Support Layer 
The Support Layer provides the background technology 

and design strategy necessary to instantiate the 
conceptualization of a specific probabilistic ontology to satisfy 
identified requirements. It includes existing ontologies 
available for reuse or re-engineering, software tools that enable 
ontology and probabilistic ontology development, 
mathematical languages that allow representation of entity 
attributes and their relationships, and databases of existing 
facts referenced for learning and knowledge base population. 
The purpose of the Support Layer is to facilitate probabilistic 
ontology development by identifying technological and 
semantic features specific to a particular inferential reasoning 
model. The four Support Layer components are discussed 
below. 

1) Existing Ontologies 
Model reuse is a strength of the ontological engineering 

discipline and effort should be made to research and 
incorporate existing ontology material into new application 
areas. This will reduce overall effort and promote commonality 
among different products. Some suggested ontology 
repositories are listed below. 

2) Modeling Languages 
A modeling language is a graphical or textual 

representation used to express knowledge, information, 
processes or systems with a consistent set of rules and syntax. 
In the RAPOD, modeling languages serve three functions: 

x System Architecture Representation 

x Object Relationship Representation 

x Ontology (and Probabilistic Ontology) Representation 

A probabilistic ontology is an extension of an ontology 
which incorporates uncertainty while respecting its relational 
structure and domain specificity. The output of the RAPOD is 
a unique instantiated architecture for development of a domain-
specific probabilistic ontology to meet an inferential reasoning 
requirement. The architecture includes models from each of the 
above representation categories and may be reused for 
development of new probabilistic ontologies in similar 
domains. The following sections describe the purpose of these 
representations. 

a) System Architecture Representation 
An architecture is a conceptual design that defines the 

structure and behavior of a system. There are two types of 
representations commonly employed: traditional and object-
oriented, represented here by IDEF0 and UP. 

x Icam Definition for Function Modeling (IDEF0) – 
IDEF0 is a process modeling technique that focuses 
on the functional model of a system. The model is 
expressed as a set of diagrams, often called pages. 
IDEF0 has been applied to the development of 
information systems, business processes and hardware 
systems [5]. 

x Unified Process (UP) – UP is an iterative, 
comprehensive development approach adapted to 
object oriented models, tools and techniques [29]. It 
was developed initially for software systems, but in 
recent years has been adapted to systems that include 
hardware and business processes. 

IDEF0 is commonly associated with hardware systems and 
systems-of-systems, especially within the Department of 
Defense Architecture Framework (DODAF). Class hierarchies 
are fundamental to ontologies, and object oriented design is 
focused on modeling class hierarchies.  

b) Object Relationship Representation 
Object modeling languages are used to represent 

relationships at the system and object level of abstraction to 
enable clear, concise communication between Stakeholder 
Decision Maker and the PO Developer. While the specific 
choice of language is often left to the developer, object 
relationships are frequently represented using languages such 
as: 

x Unified Modeling Language (UML) – UML is a 
graphical modeling language for the creation of 
object-oriented models used primarily for software 
engineering [29]. 

x Systems Modeling Language (SysML) – SysML 
extends UML language with semantic foundation for 
representing requirements, behavior, structure, and 
properties of systems and components [30] [31]. 

There are many diagrams and representations appropriate 
to systems architecting available in both UML and SysML; the 
PO Developer should select and implement these tools to 
maximize clear communications with the Stakeholder Decision 
Maker.  

c) Ontology Representation 
Ontology languages allow developers to create explicit, 

formal conceptualizations of domain models. The main 
requirements of an ontology language identified by Antoniou 
and Harmelen include [32]:  

x Well-defined syntax 

x Well-defined semantics 

x Efficient reasoning support 

x Sufficient expressive power 

x Convenience of expression 

Ontology languages are formal, declarative representations 
that allow compilation and organization of knowledge about a 
domain in formal knowledge structures with clearly defined 
semantics. Further, they include reasoning rules to represent 
relationships between knowledge classes. The literature 
contains many different ontology languages, some of which are 
optimized for specific domains. Some of the more common 
examples include [10]:  

x Web Ontology Language (OWL) – Created by W3C, 
derived from DAML+OIL and builds on RDF(S). 
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x Resource Description Framework (RDF) – Created by 
W3C as a semantic network based language to 
describe web resources.  

x Knowledge Interchange Format (KIF) (including 
OntoLingua) – Based on FOL with an underlying 
frame paradigm, overlaid by OntoLingua to simplify 
operator functionality. 

x DARPA Agent Markup Language + Ontology 
Inference Layer (DAML+OIL) – Created by US and 
EU committee, an extension of RDF(S) with 
datatypes and nominals. DAML+OIL has been 
superseded by OWL. 

x CycL – A declarative language used to represent the 
knowledge stored in the Cyc Knowledge Base [33]. 

x Common Logic (CL) – A FOL language for 
knowledge interchange approved and published as an 
ISO standard for representation and interchange of 
information and data among disparate computer 
systems [34]. 

x Descriptive Ontology for Linguistic and Cognitive 
Engineering (DOLCE) – A FOL reference module of 
the Wonderweb Project adopted as a starting point for 
comparing and elucidating relationships between 
ontologies [35].  

x Basic Formal Ontology (BFO) – An upper-level 
ontological framework used in support of domain 
ontologies developed for scientific research [36]. 

OWL has been selected by the World Wide Web 
Consortium (W3C) as the language of the Semantic Web and 
has therefore received broad attention in the research and 
development communities. Further, OWL is the ontology 
language used by the UnBBayes software tool, allowing 
evolution of an ontology to a probabilistic ontology without the 
need to recreate the classes, instances, and relationships in a 
new tool. Recall that PR-OWL expresses MEBN in OWL [13]. 
Of the above ontology languages, only OWL allows expression 
of probabilistic information along with an ontology through the 
PR-OWL extension.  

d) Probabilistic Ontology Representation 
Probabilistic ontologies are used to comprehensively 

describe knowledge about a domain and the uncertainty 
embedded in that knowledge in a principled, structured and 
sharable way [13]. The probabilistic web ontology language 
(PR-OWL) and its successor (PR-OWL 2) provide a 
knowledge representation formalism with MEBN as the 
underlying semantics. A MEBN represents knowledge about 
attributes of entities and their relationships as a collection of 
similar hypotheses organized into theories which satisfy 
consistency constraints ensuring a unique joint probability 
distribution over the random variables of interest [37]. 
A modeling language is a graphical or textual representation 
used to express knowledge, information, processes or systems 
with a consistent set of rules and syntax. In the RAPOD, 
modeling languages serve three functions: 

x System Architecture Representation 

x Object Relationship Representation 

x Ontology (and Probabilistic Ontology) Representation 

A probabilistic ontology is an extension of an ontology 
which incorporates uncertainty while respecting its relational 
structure and domain specificity. The output of the RAPOD is 
a unique instantiated architecture for development of a domain-
specific probabilistic ontology to meet an inferential reasoning 
requirement. The architecture includes models from each of the 
above representation categories and may be reused for 
development of new probabilistic ontologies in similar 
domains. The following sections describe the purpose of these 
representations. 

3) Software Tools 
Modeling tools represent the software implementation 

packages used for development and implementation of 
architectures, ontologies, and probabilistic ontologies in the 
chosen modeling language. With the appropriate modeling 
tools, the entire ontology life cycle may be managed, including 
design, implementation, enhancement, and support.  

A number of tools are available to capture data and model 
the components of a probabilistic ontology. The PO Developer 
selects software tools with the correct fidelity to represent 
relevant viewpoints and provide the desired communication 
and inferential reasoning representation. A combination of 
these tools gives the PO Developer flexibility in creating 
necessary views for communication, as well as operational 
ontology and probabilistic ontology models. 

a) General Purpose Modeling Tools 
Creation of a probabilistic ontology requires representation 

of many abstractions of data, processes, and relationships, each 
of which may be best represented in a different software 
application. However, to the extent possible, a single, general-
purpose tool should be maximized to enhance readability and 
consistency. Tools such as Microsoft Visio and MagicDraw 
assist in visual representation to simplify complex concepts.  

b) Ontology Engineering Software Tools 
Ontological engineering tools capture the classes, 

properties, and instances of ontology entities in a hierarchical 
structure. Further, they describe their relationships, domains 
and ranges in a contextual environment. The most popular 
ontological engineering tool is Protégé, currently in version 
4.1.0 (build 239). Protégé also has the advantage of integration 
with UnBBayes, which allows seamless implementation of 
uncertainty to establish the probabilistic ontology. 

c) Probabilistic Ontology Engineering Software Tools 
Few tools are able to model the complex integration of 

probability and ontologies. The most advanced is UnBBayes, 
an open source product developed by University of Brasilia 
and enhanced in collaboration with George Mason University. 
UnBBayes has a PR-OWL plug-in that ingests a Protégé 
ontology and allows the developer to represent uncertainty 
within its hierarchical structure through MEBN Fragments 
using the Probabilistic Web Ontology Language (PR-OWL 2).  
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III. SUMMARY 
Use of a reference architecture facilitates design, 

implementation, and reuse of a domain-specific probabilistic 
ontology construction process by specifying the logical choices 
of components to create a blueprint for a contextual solution. 
The instantiated architecture is available for reuse to solve like 
problems in similar domains. 
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