
A Reference Architecture for Probabilistic Ontology
Development

Richard J. Haberlin, Jr.
EMSolutions, Inc.
Arlington, Virginia

rjhaberlin@comcast.net

Paulo C. G. da Costa
Kathryn B. Laskey

Systems Engineering and Operations Research
George Mason University

Fairfax, Virginia
pcosta, klaskey @gmu.edu

Abstract - The use of ontologies is on the rise, as they facilitate
interoperability and provide support for automation. Today,
ontologies are popular for research in areas such as the Semantic
Web, knowledge engineering, artificial intelligence and
knowledge management. However, many real world problems in
these disciplines are burdened by incomplete information and
other sources of uncertainty which traditional ontologies cannot
represent. Therefore, a means to incorporate uncertainty is a
necessity. Probabilistic ontologies extend current ontology
formalisms to provide support for representing and reasoning
with uncertainty. Representation of uncertainty in real-world
problems requires probabilistic ontologies, which integrate the
inferential reasoning power of probabilistic representations with
the first-order expressivity of ontologies. This paper introduces a
systematic approach to probabilistic ontology development
through a reference architecture which captures the evolution of
a traditional ontology into a probabilistic ontology
implementation for real-world problems. The Reference
Architecture for Probabilistic Ontology Development catalogues
and defines the processes and artifacts necessary for the
development, implementation and evaluation of explicit, logical
and defensible probabilistic ontologies developed for knowledge-
sharing and reuse in a given domain.

Keywords—probabilistic ontology, knowledge engineering,
reference architecture

I. INTRODUCTION
The Reference Architecture for Probabilistic Ontology

Development (RAPOD) presents a compilation of components
required for probabilistic ontology development and therefore
facilitates design, implementation, and support processes
without rigid adherence to a particular set of tools. The
Department of Defense (DOD) defines a Reference
Architecture as:

“… an authoritative source of information about a
specific subject area that guides and constrains the
instantiations of multiple architectures and
solutions[1].”

Common throughout the literature on reference
architectures is the idea of serving as a blueprint for architects
to develop specific solution architectures within a defined
domain [1] [2]. As the blueprint, it serves as a template for
software development, defining integral components and their

relationships, thereby reducing development time and project
risk. Further, it standardizes language among participants,
provides consistency of development within the domain,
provides a reference for evaluation, and establishes
specifications and patterns [1].

A. Background
Development of the RAPOD provides synergy of effort

within the Semantic Technology (ST) community by
identifying concepts, processes, languages, theories and tools
for designing and maintaining probabilistic ontologies.
Presently, ontological engineering facilitates the development
of explicit, logical and defensible ontologies for knowledge-
sharing and reuse. A similar pragmatics in the form of the
Probabilistic Ontology Development Methodology has been
produced for probabilistic ontologies and is described in [3].
The RAPOD facilitates synergy of effort between multiple
disciplines including probabilists, logicians, decision analysts
and computer scientists. It describes each of the components
required for a functional probabilistic ontology and their
interrelationships, and defines the criteria to be satisfied by any
set of selected tools and methods using a Unified Process-
inspired methodology.

B. Scope
The RAPOD spans the knowledge, processes, models, and

tools necessary for engineering probabilistic ontologies at a
high level of abstraction. Through decomposition or
aggregation of existing methodologies, it provides universal
techniques and a generalized framework for the fundamental
components needed to construct probabilistic ontologies from
conceptualization to operation through multiple tasks,
including:

x Model conceptualization and framing

x Ontology development through elicitation and
ontological learning

x Probability incorporation through iterative
decomposition

There are many participants involved in realizing an
operational probabilistic ontology. The Stakeholder Decision
Maker (DM), Subject-Matter Expert (SME) and Probabilistic

STIDS 2013 Proceedings Page 10

Figure 1

Ontology Developer coordinate to instantiate a collection of
concepts and tools for development and implementation from
existing and proposed ontological and probabilistic ontological
engineering methodologies, providing a single collection of
knowledge to solve a domain-specific problem. Their solution
is defined as a domain-specific architecture that may be reused
for comparable problems in similar domain contexts.

C. Model Implementation and Viewpoint
The concept behind the RAPOD is to establish intellectual

control of the probabilistic ontology (PO) model, stimulate
reuse, and provide a basis for development through
instantiation of a particular set of tools the developer will
utilize to design and implement complex probabilistic
ontologies for a particular domain [4]. Intellectual control
establishes common semantics and allows consistent
integration of new system components by anticipating their
inclusion from design. Reuse is a prime tenet of ontological
engineering and is enabled through identification of common
components and relationships. Further, a well-defined and
properly architected PO may be reused entirely through spiral
modification to incorporate additional knowledge or
relationships. Most importantly, the architecture serves as a
blueprint for the PO Developer and a clear mechanism between
him and the Stakeholder Decision Maker. The architecture
allows individuals, teams, and organizations to communicate
objectives, requirements, constraints, components and
relationships with a common vocabulary and understanding of
the objective. Ontological engineering, and probabilistic
ontological development, may be completed by several
different methodologies depending on the context and domain
of the problem. Therefore, the RAPOD provides ready access
to tools, techniques, and procedures that have proven
successful in the past. The RAPOD also exposes synergies in
algorithms, heuristics and model use between ontological and
probabilistic ontological engineering. Through careful
selection of tools with common parameters, the final model is
more intuitive. The viewpoint of this reference architecture is
that of the Probabilistic Ontology Developer in support of a
Stakeholder Decision Maker desiring decision support for a
defined area of interest.

II. REFERENCE ARCHITECTURE FOR PROBABILISTIC
ONTOLOGY DEVELOPMENT

The Reference Architecture for Probabilistic Ontology
Development facilitates PO development and reuse by
providing a template from which multiple PO solutions to
similar problems may be constructed. The output of the
RAPOD is a domain and problem-type specific architecture
that may be used to develop POs for similar problems.
Reusable architectures provide a shortcut to future
development by identifying inputs, methodologies, and support
artifacts that have previously produced successful solutions
within the domain.

In each of its three layers, the RAPOD identifies processes
and artifacts necessary for the construction of a probabilistic
ontology without specification to particular tools. Working
with the stakeholders, the PO Developer selects individual
component solutions that suit the problem-type and domain.
Specification of a set of tools for each component instantiates

an architecture that is used to develop the PO. Figure 1
provides an overview of the RAPOD, discussed in detail
below.

The Reference Architecture for Probabilistic Ontology
Development shown in Figure 1 illustrates the scope of the
reference architecture from abstract to concrete. At the top of
the illustration is the most abstract conceptualization defined as
a problem or objective by the Stakeholder Decision Maker that
requires implementation of a probabilistic ontology. For
example, a military commander may be charged with creating
a decision support system that assists in the determination of an
opposing force given limited sensor information. A Naval
application example is given in [3]. The base of the illustration
represents the operational implementation of the probabilistic
ontology to provide inferential reasoning support. Between lies
the probabilistic ontology architecture, which translates the
conceptualization into a blueprint for development. The
probabilistic ontology architecture is comprised of three
interacting layers, which group and characterize similar
functionality: the Input Layer, Methodology Layer, and
Support Layer. These and their relationships are described in
the following subsections.

A. Input Layer
The Input Layer defines external influences on the

probabilistic ontology and is referenced by components of the
Methodology Layer. It contains those components expected to
provide detail on the purpose of the PO and its bounding
constraints in the form of system requirements. Population of
the Input Layer occurs primarily during the early stages of the
development process during which the Stakeholder Decision
Maker and PO Developer work closely to identify the objective
of the model, expectations of its performance, and resource
restrictions. Parameters specified in the Input Layer will
constrain the operational implementation.

1) Objectives
The objectives hierarchy contains a representation of

performance, cost and schedule attributes that determine the
value of the system, with an over-arching Objective Statement
that captures its primary intent [5]. Objectives state the overall
intent of the project in short, clear, descriptive phrases. They

STIDS 2013 Proceedings Page 11

Figure 2

are defined by the Stakeholder DM to bound the scope of the
final product and set expectations. These are often described in
the following form [6]:

To Action + Object + Qualifying phrase

For a probabilistic ontology model, applicable categories of
objectives may include: performance, reliability, compatibility,
adaptability, and flexibility. Further descriptions of these and
other categories may be found in Armstrong [6]. Choosing the
correct objectives ensures that the desired problem is solved
and that the PO Developer and Decision Maker have clearly
communicated. The entire project is best focused through a
Top-level Objective Statement.

2) Requirements
Requirements define the system to be implemented in terms

of its behaviors, applications, constraints, properties, and
attributes. The systems engineering literature on requirements
elicitation and development is rich, but there is consensus that
no single methodology exists for requirements engineering [7]
[8]. In general, requirements elicitation approaches may be
categorized as structured or unstructured [8] using a
combination of strategies depending on the scope of the system
under development and the participation commitment of the
Stakeholder Decision Maker.

Requirements are elicited from the Stakeholder Decision
Maker and SMEs through an iterative process that generally
includes objective setting, background knowledge acquisition,
knowledge organization, and requirements collection as
introduced by Kotonya and Sommerville [7]. Grady
categorizes three strategies for requirements analysis:
structured analysis, cloning, and freestyle [8]. Using one or
more of these strategies and concentrating on the four tasks
above will lead to identification of appropriate requirements to
satisfy valid model development. There is inefficiency and risk
involved in the unstructured methods as there is nothing to
prevent duplicative work, incompleteness, conflicts and
misdirection.

3) Metrics
Metrics are used to describe parameters, Measures of

Performance (MOP) and Measures of Effectiveness (MOE)
that characterize the criteria against which the fielded system is
to be evaluated. Green defines a hierarchy of effectiveness
measures that follows the system of systems concept [9]. The
following definitions are adapted from those offered by Green
to accommodate the PO development process:

Measures of Effectiveness. A measure of system
performance within its intended environment (e.g. overall
system effectiveness).

Measures of Performance. A measure of one attribute of
system behavior derived from its parameters (e.g. probability
of correct identification).

Parameters. Properties or characteristics whose values
determine system behavior (e.g. error rate).

Armstrong [6] opines that useful metrics take quantifiable
form with both a clear definition of the measure and its
associated units. They must also be mission-oriented,

discriminatory, sensitive, and inclusive [9]. In all cases,
appropriate metrics depend on the system under development
and its ultimate purpose (objectives).

B. Methodology Layer
The Methodology Layer contains the heart of the

probabilistic ontology development process including the
Probabilistic Ontology Development Methodology that allows
creation of a specific probabilistic ontology implementation to
support the requirements of a Stakeholder Decision Maker. The
Methodology Layer references information gathered in the
Input Layer and is assembled using components and tools from
the Support Layer. Its individual components are introduced
below.

1) Probabilistic Ontology Development Methodology
The Probabilistic Ontology Development Methodology

provides specific activities and tasks that evolve Stakeholder
Decision Maker requirements into an ontology that is
probabilistically-integrated, a probabilistic ontology. The
activities of the Probabilistic Ontology Development
Methodology are shown in the below activity diagram (Figure
2) and further detailed in [3]. These activities fit well within
both Waterfall and Spiral Development Life Cycle processes
where in Spiral Development iteration is explicitly anticipated.

Completion of the PODM activities and tasks establishes a
framed solution to a specific inferential reasoning problem
grounded in an inclusive ontology representing its entities and
incorporating probability to represent uncertainty.

2) Ontological Engineering
In Gomez-Perez et al, ontological engineering is defined as

the activities that concern the ontology development process,
life cycle, construction methodologies and tools [10]. While
traditional ontological engineering methods ensure that
ontologies are explicit, logical and defensible, these methods
provide insufficient support for the complexity of probabilistic
ontology development, as discussed above. A systematic
approach to PO development is needed that addresses the
evolution of requirements into an ontology that is
probabilistically integrated. The underlying ontology may be
engineered by many methods; but ultimately each

STIDS 2013 Proceedings Page 12

methodology provides a structured means to produce
ontologies from conceptualization to implementation. Some
principal design criteria must always be considered: clarity,
coherence, extendibility, minimal encoding bias, and minimal
ontological commitment [11].

3) Ontology Reuse
There are two types of ontology reuse: re-engineering and

merging. Ontology re-engineering involves transforming the
conceptual model of an implemented ontology into another
conceptual model [10]. On the other hand, ontology merging
uses information captured about one or more domains of
interest in the creation of a new ontology. Therefore, model
reuse is the process by which available knowledge and
conceptual models are used as input to generate new models, in
this case ontologies and probabilistic ontologies. Ontology
development is a complex and labor-intensive task. The
potential for reuse is an identified strength of ontologies and
allows expansion of existing knowledge bases by capitalizing
on previous research and development [10][11][12][13][14].
The literature liberally addresses the concept of ontology reuse,
but there is little guidance offered for selection of methods for
merging and/or integration. Integration of similar tasks and the
addition of tasks emphasizing utility of existing ontologies
expand the basic process of ontological engineering to make
use of ever-expanding online ontology resources. Before
beginning construction of a new ontology, it is useful to
research existing ontologies in related domains to be reused
and/or extended for the current problem. The ST community is
actively expanding free access to the growing body of
ontological knowledge, as discussed below.

4) Heuristics and Algorithms
Generally, a heuristic is an experience-based technique for

problem solving, learning, and discovery and an algorithm is a
stepwise procedure for calculation of a problem solution.
Heuristics and algorithms are used to express relationships
between classes within ontologies and probabilistic ontologies
in order to constrain the models. For example, the heuristic “A
weapon is cued by a single sensor” gives a plain-language
description of a relationship in which each weapon is assigned
a single sensor, but sensors may be assigned multiple weapons.
This plain language description captures the machine-readable
cardinality statement of ∞…1 in a format understandable by
the entire development group, including the Stakeholder
Decision Maker and SMEs. Heuristics and algorithms are
captured as part of the PODM as described in [3].

5) Learning
Currently, ontology development is a labor-intensive,

manual process. However, the need for greater automation
features has been recognized and is a focus of the ST
community. The PODM has integration points primed for
future expansion in the areas of Ontological Learning and
Probabilistic Learning. These two functions assist the modeler
in ontology creation and elicitation of probabilities for the
probabilistic relationships used for inferential reasoning.

a) Ontological Learning
Ontological learning is the process of extracting relevant

classes, properties and relationships from a given data set, in
this case to reduce effort in development of an ontology which

will be developed into a probabilistic ontology. Buitelar et al.
identified innovative aspects of ontology learning that set it
apart from traditional knowledge acquisition [15]:

x It is inherently multidisciplinary due to its strong
connection with the Semantic Web, which has
attracted researchers from a very broad variety of
disciplines: knowledge representation, logic,
philosophy, databases, machine learning, natural
language processing, image processing, etc.

x It is primarily concerned with knowledge acquisition
from and for Web content and is moving away from
small and homogeneous data collections.

x It is rapidly adapting the rigorous evaluation methods
that are central to most machine learning work.

Through application of ontological learning, both the
process of developing a probabilistic ontology and the
development risk may be reduced.

Sowa defines three types of ontologies: a formal ontology
which is a conceptualization whose categories are
distinguished by axioms and definitions and are stated in logic
to support inference and computation, a prototype-based
ontology in which categories are formed by collecting
instances extensionally, and a terminological ontology which
describes concepts by labels and synonyms without axiomatic
grounding [16]. Ontological learning in support of inferential
reasoning is concerned primarily with developing the latter two
categories for the specified domain of interest. The various
sources used for ontology elicitation may include databases,
documents, and taxonomies. As ontologies are typically
hierarchically arranged, the primary means for ontological
learning is through clustering. In this method, using a suitable
clustering algorithm, a semantic distance is measured between
terms and the nearest terms are clustered and formed into a
prototype-based ontology. Ontological learning may also be
accomplished through pattern matching using a co-occurrence
matrix or bootstrapping from a seed lexicon that is extended by
measuring similarity.

The above methods are all primarily focused on learning
ontologies from plain text corpuses. Recent work includes
extracting ontologies from non-text formats including
relational databases, structured knowledge bases, and the
Semantic Web. Albarrak developed an extensible framework
for generating ontologies from Relational Database (RDB) and
Object-Relational Database (ORDB) data models [17]. Li et al.
introduce a novel set of 12 learning rules that build a complete
OWL ontology of classes, properties, characteristics,
cardinality and instances [18]. A database analyzer extracts key
information from the relational database, which is then passed
to an ontology generator containing the rules. It is also possible
to map ontologies through machine learning to transform
existing ontologies within the Semantic Web to a format
useable in the domain context for the current problem. Doan et
al. have introduced the GLUE system to semi-automatically
create these semantic mappings using a multi-strategy learning
approach based on the joint probability distribution of the
compared concepts [19] [20]. The concept is to produce a map
between the existing domain and the desired domain that

STIDS 2013 Proceedings Page 13

translates between taxonomies. Future research promises to
reduce the human interaction required for ontological
engineering.

b) Probabilistic Learning
Elicitation of conditional probabilities to populate

distribution tables remains a difficult endeavor, accomplished
through SME interview and experimental data collection.
Probabilistic learning seeks to reduce the effort involved in
establishing prior and conditional probabilities for domain
entities by specifying a model using empirical data. Pearl
identified two tasks for probabilistic learning [21]:

� Extracting generic hypothesis evidence-relationships
from records of experience, and

� Organizing the relationships in a data structure to
facilitate recall.

Accuracy and consistency in the PO model could be
improved by learning numerical parameters for a given
network topology from empirical data instead of relying on
SME input. The literature contains numerous techniques for
parameter learning; two commonly employed methods are:

Maximum Likelihood [22][23] – Parameters are estimated
from a set of empirical data using a likelihood weighting
algorithm.

Bayesian Learning [22][23] – Prior knowledge about
parameters is encoded and data is treated as evidence to reduce
the learning process to calculation of posterior distributions.

Learning is segregated into the categories of structure
learning and parameter estimation [23][24]. In parameter
estimation, the dependency structure of the probabilistic
representation is known. The learning task is to define the
parameters of the Local Probability Distributions (LPDs). The
goal of structure learning is to extract the structure of the
probabilistic representation from the dataset.

Learning a Probabilistic Relational Model (PRM) requires
input in the form of a relational schema that describes the set of
classes, the attributes associated with the classes, and the
relations between objects of classes for the domain. In the
parameter estimation task, the structure is given, which defines
the parents for each attribute. The parameters that define the
Conditional Probability Disributions (CPDs) for the structure
are learned using the likelihood function to determine the
probability of the dataset given the model. Structure learning of
a PRM is more complex and requires a method to find possible
structures and then score them. Getoor et al. describes the use
of a greedy local search procedure to produce a candidate
structure which is then scored using the prior probability of the
structure and the probability of the dataset, given the structure
[23].

Recall that the structure of a Markov Logic Network
(MLN) includes a node for each variable and a potential
function for each set of nodes that is pairwise linked. Parameter
estimation for MLN is performed by computation of the
Markov network weights that represent the clique potential
using an optimization of the likelihood function. Structure

learning is performed by a greedy algorithm on the network
features [25].

Multi-Entity Bayesian Network (MEBN) learning also
takes advantage of the structure associated with a relational
database. A key component is generation of a MEBN-RM
model that specifies a mapping of MEBN elements to the
relational model of the database. MEBN parameter learning
estimates the parameters of the local distribution for a resident
node of an MTheory, given the structure and the database using
maximum likelihood estimation. MEBN structure learning
organizes random variables into MFrags and identifies parent-
child relationships between nodes, given the database. Any
Bayesian Network Structure search algorithm may be used
[26]. More recently, Park et al. has extended the MEBN
learning algorithm to include both discrete and continuous
random variables [27].

6) Knowledge Base
The knowledge base is a historic collection of domain-

specific knowledge contributed by domain SMEs and may
include ontological information (classes, properties,
characteristics, and relationships), logical constraints,
heuristics, and probabilities. The breadth of knowledge stored
within is unspecified. To distinguish the KB from evidence,
there is no temporal component associated with the knowledge
base; information contained therein may not represent the
current domain state. Marakas differentiates a database from a
knowledge base in this fashion:

“… a collection of data representing facts is a database. The
collection of an expert’s set of facts and heuristics is a

knowledge base [28].”
7) Ontology Structures

Ontologies, including probabilistic ontologies, provide a
means to represent knowledge and relationships between
hierarchically organized classes of objects. Ontologies exist to
enable knowledge sharing and reuse [11] [13]. As a set of
definitions of formal vocabulary, ontologies allow knowledge
sharing among hierarchically organized entities. A probabilistic
ontology addresses the inherent uncertainty involved in
inferential reasoning applications with inconclusive evidence
by representing it probabilistically.

a) Ontology
A working ontology captures the classes, properties, and

the relationships of a domain of interest. Production of this
relational framework facilitates comprehension of the
hierarchical organization of domain entities; the relationships
between and properties of domain entities; as well as causal
relationships among entities. When uncertainty about aspects
of the domain is important to the purpose for which the
ontology is being developed, a probabilistic ontology is needed
to represent the uncertainty.

b) Probabilistic Ontology
A probabilistic ontology provides a means to represent and

reason with uncertainty by integrating the inferential reasoning
power of probabilistic languages with the first-order
expressivity of ontologies. Few things are certain, and inferring
in the presence of uncertainty allows the decision maker to

STIDS 2013 Proceedings Page 14

focus attention on the most relevant data through designed
queries.

C. Support Layer
The Support Layer provides the background technology

and design strategy necessary to instantiate the
conceptualization of a specific probabilistic ontology to satisfy
identified requirements. It includes existing ontologies
available for reuse or re-engineering, software tools that enable
ontology and probabilistic ontology development,
mathematical languages that allow representation of entity
attributes and their relationships, and databases of existing
facts referenced for learning and knowledge base population.
The purpose of the Support Layer is to facilitate probabilistic
ontology development by identifying technological and
semantic features specific to a particular inferential reasoning
model. The four Support Layer components are discussed
below.

1) Existing Ontologies
Model reuse is a strength of the ontological engineering

discipline and effort should be made to research and
incorporate existing ontology material into new application
areas. This will reduce overall effort and promote commonality
among different products. Some suggested ontology
repositories are listed below.

2) Modeling Languages
A modeling language is a graphical or textual

representation used to express knowledge, information,
processes or systems with a consistent set of rules and syntax.
In the RAPOD, modeling languages serve three functions:

x System Architecture Representation

x Object Relationship Representation

x Ontology (and Probabilistic Ontology) Representation

A probabilistic ontology is an extension of an ontology
which incorporates uncertainty while respecting its relational
structure and domain specificity. The output of the RAPOD is
a unique instantiated architecture for development of a domain-
specific probabilistic ontology to meet an inferential reasoning
requirement. The architecture includes models from each of the
above representation categories and may be reused for
development of new probabilistic ontologies in similar
domains. The following sections describe the purpose of these
representations.

a) System Architecture Representation
An architecture is a conceptual design that defines the

structure and behavior of a system. There are two types of
representations commonly employed: traditional and object-
oriented, represented here by IDEF0 and UP.

x Icam Definition for Function Modeling (IDEF0) –
IDEF0 is a process modeling technique that focuses
on the functional model of a system. The model is
expressed as a set of diagrams, often called pages.
IDEF0 has been applied to the development of
information systems, business processes and hardware
systems [5].

x Unified Process (UP) – UP is an iterative,
comprehensive development approach adapted to
object oriented models, tools and techniques [29]. It
was developed initially for software systems, but in
recent years has been adapted to systems that include
hardware and business processes.

IDEF0 is commonly associated with hardware systems and
systems-of-systems, especially within the Department of
Defense Architecture Framework (DODAF). Class hierarchies
are fundamental to ontologies, and object oriented design is
focused on modeling class hierarchies.

b) Object Relationship Representation
Object modeling languages are used to represent

relationships at the system and object level of abstraction to
enable clear, concise communication between Stakeholder
Decision Maker and the PO Developer. While the specific
choice of language is often left to the developer, object
relationships are frequently represented using languages such
as:

x Unified Modeling Language (UML) – UML is a
graphical modeling language for the creation of
object-oriented models used primarily for software
engineering [29].

x Systems Modeling Language (SysML) – SysML
extends UML language with semantic foundation for
representing requirements, behavior, structure, and
properties of systems and components [30] [31].

There are many diagrams and representations appropriate
to systems architecting available in both UML and SysML; the
PO Developer should select and implement these tools to
maximize clear communications with the Stakeholder Decision
Maker.

c) Ontology Representation
Ontology languages allow developers to create explicit,

formal conceptualizations of domain models. The main
requirements of an ontology language identified by Antoniou
and Harmelen include [32]:

x Well-defined syntax

x Well-defined semantics

x Efficient reasoning support

x Sufficient expressive power

x Convenience of expression

Ontology languages are formal, declarative representations
that allow compilation and organization of knowledge about a
domain in formal knowledge structures with clearly defined
semantics. Further, they include reasoning rules to represent
relationships between knowledge classes. The literature
contains many different ontology languages, some of which are
optimized for specific domains. Some of the more common
examples include [10]:

x Web Ontology Language (OWL) – Created by W3C,
derived from DAML+OIL and builds on RDF(S).

STIDS 2013 Proceedings Page 15

x Resource Description Framework (RDF) – Created by
W3C as a semantic network based language to
describe web resources.

x Knowledge Interchange Format (KIF) (including
OntoLingua) – Based on FOL with an underlying
frame paradigm, overlaid by OntoLingua to simplify
operator functionality.

x DARPA Agent Markup Language + Ontology
Inference Layer (DAML+OIL) – Created by US and
EU committee, an extension of RDF(S) with
datatypes and nominals. DAML+OIL has been
superseded by OWL.

x CycL – A declarative language used to represent the
knowledge stored in the Cyc Knowledge Base [33].

x Common Logic (CL) – A FOL language for
knowledge interchange approved and published as an
ISO standard for representation and interchange of
information and data among disparate computer
systems [34].

x Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) – A FOL reference module of
the Wonderweb Project adopted as a starting point for
comparing and elucidating relationships between
ontologies [35].

x Basic Formal Ontology (BFO) – An upper-level
ontological framework used in support of domain
ontologies developed for scientific research [36].

OWL has been selected by the World Wide Web
Consortium (W3C) as the language of the Semantic Web and
has therefore received broad attention in the research and
development communities. Further, OWL is the ontology
language used by the UnBBayes software tool, allowing
evolution of an ontology to a probabilistic ontology without the
need to recreate the classes, instances, and relationships in a
new tool. Recall that PR-OWL expresses MEBN in OWL [13].
Of the above ontology languages, only OWL allows expression
of probabilistic information along with an ontology through the
PR-OWL extension.

d) Probabilistic Ontology Representation
Probabilistic ontologies are used to comprehensively

describe knowledge about a domain and the uncertainty
embedded in that knowledge in a principled, structured and
sharable way [13]. The probabilistic web ontology language
(PR-OWL) and its successor (PR-OWL 2) provide a
knowledge representation formalism with MEBN as the
underlying semantics. A MEBN represents knowledge about
attributes of entities and their relationships as a collection of
similar hypotheses organized into theories which satisfy
consistency constraints ensuring a unique joint probability
distribution over the random variables of interest [37].
A modeling language is a graphical or textual representation
used to express knowledge, information, processes or systems
with a consistent set of rules and syntax. In the RAPOD,
modeling languages serve three functions:

x System Architecture Representation

x Object Relationship Representation

x Ontology (and Probabilistic Ontology) Representation

A probabilistic ontology is an extension of an ontology
which incorporates uncertainty while respecting its relational
structure and domain specificity. The output of the RAPOD is
a unique instantiated architecture for development of a domain-
specific probabilistic ontology to meet an inferential reasoning
requirement. The architecture includes models from each of the
above representation categories and may be reused for
development of new probabilistic ontologies in similar
domains. The following sections describe the purpose of these
representations.

3) Software Tools
Modeling tools represent the software implementation

packages used for development and implementation of
architectures, ontologies, and probabilistic ontologies in the
chosen modeling language. With the appropriate modeling
tools, the entire ontology life cycle may be managed, including
design, implementation, enhancement, and support.

A number of tools are available to capture data and model
the components of a probabilistic ontology. The PO Developer
selects software tools with the correct fidelity to represent
relevant viewpoints and provide the desired communication
and inferential reasoning representation. A combination of
these tools gives the PO Developer flexibility in creating
necessary views for communication, as well as operational
ontology and probabilistic ontology models.

a) General Purpose Modeling Tools
Creation of a probabilistic ontology requires representation

of many abstractions of data, processes, and relationships, each
of which may be best represented in a different software
application. However, to the extent possible, a single, general-
purpose tool should be maximized to enhance readability and
consistency. Tools such as Microsoft Visio and MagicDraw
assist in visual representation to simplify complex concepts.

b) Ontology Engineering Software Tools
Ontological engineering tools capture the classes,

properties, and instances of ontology entities in a hierarchical
structure. Further, they describe their relationships, domains
and ranges in a contextual environment. The most popular
ontological engineering tool is Protégé, currently in version
4.1.0 (build 239). Protégé also has the advantage of integration
with UnBBayes, which allows seamless implementation of
uncertainty to establish the probabilistic ontology.

c) Probabilistic Ontology Engineering Software Tools
Few tools are able to model the complex integration of

probability and ontologies. The most advanced is UnBBayes,
an open source product developed by University of Brasilia
and enhanced in collaboration with George Mason University.
UnBBayes has a PR-OWL plug-in that ingests a Protégé
ontology and allows the developer to represent uncertainty
within its hierarchical structure through MEBN Fragments
using the Probabilistic Web Ontology Language (PR-OWL 2).

STIDS 2013 Proceedings Page 16

III. SUMMARY
Use of a reference architecture facilitates design,

implementation, and reuse of a domain-specific probabilistic
ontology construction process by specifying the logical choices
of components to create a blueprint for a contextual solution.
The instantiated architecture is available for reuse to solve like
problems in similar domains.

REFERENCES
 [1] Office of the Assistance Secretary of Defense for Networks

and Information Integration (OASD/NII), "Reference
Architecture Description," Arlington, 2010.

[2] Heather Kreger, Vince Brunssen, Robert Sawyer, Ali
Arsanjani, and Rob High. (2012, Jan) IBM Developer Works.
[Online].
http://www.ibm.com/developerworks/webservices/library/ws-
soa-ref-arch/.

[3] Richard J. Haberlin, Probabilistic Ontology Reference
Architecture and Design Methodology, PhD George Mason
University, 2013.

[4] Philippe Kruchten, The Rational Unified Process: An
Introduction. Upper Saddle River: Addison-Wesley, 2004.

[5] Dennis M. Buede, The Engineering Design of Systems:
Models and Methods. New York: John Wiley & Sons, 2000.

[6] James E. Armstrong, "Issue Formulation," in Handbook of
Systems Engineering and Management. Hoboken: John Wiley
& Sons, 2009, pp. 1027-1089.

[7] Gerald Kotonya and Ian Sommerville, Requirements
Engineering Processes and Techniques. Chichester: John
Wiley & Sons, 1998.

[8] Jeffrey O. Grady, System Requirements Analysis. New York:
McGraw-Hill, Inc., 1993.

[9] John M. Green, "Establishing System Measures of
Effectiveness," in Proceedings of the 2nd Biennial National
Forum on Weapon System Effectiveness, Laurel, 2001, pp. 1-5.

[10] Asuncion Gomez-Perez, Fernandez-Lopez Mariano, and Oscar
Corcho, Ontological Engineering with Examples from the
Areas of Knowledge Management, e-Commerce and the
Semantic Web. London: Springer-Verlag, 2010.

[11] Thomas R. Gruber, "Toward Principles for the Design of
Ontologies Used for Knowledge Sharing," International
Journal of Human-Computer Studies, pp. 907-928, 1995.

[12] Michael K. Bergman, “A Brief Survey of Ontology
Development Methodologies,” 2011, [Online].
http://www.mkbergman.com/906/a-brief-survey-of-ontology-
development-methodologies/

[13] Paulo Cesar G. da Costa. Bayesian Semantics for the Semantic
Web, PhD George Mason Univeristy, 2005. [Online].
http://hdl.handle.net/1920/455 .

[14] Maria C. Keet, “Dependencies between Ontology Design
Parameters,” International Journal of Metadata, Semantics
and Ontologies, pp. 265-284, 2010.

[15] Paul Buitelaar and Bernardo Magnini, "Ontology Learning
from Text: An Overview," in Ontology Learning from Text:
Methods, Applications and Evaluation.: IOS Press, 2005, pp.
3-12.

[16] John Sowa. (2001) Ontology. [Online].
http://www.jfsowa.com/ontology/ .

[17] Khalid Albarrak, An Extensible Framework for Generating
Ontology from Various Data Models, May 2013, PhD
Dissertation.

[18] Man Li, Xiao-Yong Du, and Shan Wang, "Learning Ontology
from Relational Database," in Proceedings of the 4th
International Conference on Machine Learning and
Cybernetics, Guangzhou, 2005, pp. 3410-3415.

[19] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon
Halevy, "Ontology Matching: A Machine Learning
Approach," in Handbook on Ontologies. Berlin: Springer-
Verlag, 2009, pp. 385-404.

[20] Anhai Doan, Jayant Madhavan, Pedro Domingos, and Alon
Halevy, "Ontology Matching: A Machine Learning
Approach," in Handbook on Ontologies in Information
Systems.: Springer, 2003, pp. 397-416.

[21] Judea Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. San Francisco: Morgan
Kaufmann, 1988.

[22] Adnan Darwiche, Modeling and Reasoning with Bayesian
Networks. Cambridge: Cambridge Univeristy Press, 2009.

[23] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and
Ben Taskar, "Probabilistic Relational Models," in Introduction
to Statistical Relational Learning. Cambridge: The MIT Press,
2007, pp. 129-174.

[24] James Cussens, "Logic-based Formalisms for Statistical
Relational Learning," in Introduction to Statistical Relational
Learning. Cambridge: MIT Press, 2007, ch. 9, pp. 269-290.

[25] Pedro Domingos and Matthew Richardson, "Markov Logic: A
Unifying Framework for Statistical Relational Learning," in
Introduction to Statistical Relational Learning. Cambridge:
The MIT Press, 2007, pp. 339-371.

[26] Cheol Young Park, Kathryn B. Laskey, Paulo C.G. Costa, and
Shou Matsumoto, "Multi-Entity Bayesian Networks Learning
for Hybrid Variables in Situation Awareness," in Proceedings
of the 16th International Conference on Information Fusion
(submitted), Istanbul, 2013, pp. 1-8.

[27] Cheol Young Park, Kathryn B. Laskey, Paulo C.G.N. Costa,
and Shou Matsumoto, "Multi-Entity Bayesian Networks
Learning in Predictive Situation Awareness," in Proceedings
of the 18th International Command and Control Research and
Technology Symposium, Alexandria, 2013, pp. 1-19.

[28] George M. Marakas, Decision Support Systems in the 21st
Century. Upper Saddle River: Prentice Hall, 2003.

[29] John W. Satzinger, Robert B. Jackson, and Stephen D. Burd,
Systems Analysis and Design in a Changing World. Boston:
Course Technology, 2004.

[30] Sanford Friedenthal, Alan Moore, and Rick Steiner, A
Practical Guide to SysML: The Systems Modeling Language.
Amsterdam: Elsevier, 2008.

[31] Sanford Friedenthal, Alan Moore, and Rick Steiner, OMG
Systems Modeling Language Tutorial.: Object Management
Group, 2008.

[32] Grigoris Antoniou and Frank Van Harmelen, "Web Ontology
Language: OWL," in Handbook on Ontologies in Information
Systems.: Springer-Verlag, 2003.

[33] Cycorp. (2013, June) CycL: The Cyc Knowledge
Representation Language. [Online].
http://www.cyc.com/cyc/cycl .

[34] International Standards Organization, "Information technology
- Common Logic (CL): a framework for a family of logic-
based languages," International Standards Organization,
Standard ISO/IEC 24707:2007(E), 2007.

[35] Institute of Cognitive Science and Technology Italian National
Research Council. (2013, June) WonderWeb. [Online].
http://www.loa.istc.cnr.it/DOLCE.html .

[36] Institute for Formal Ontology and Medical Information
Science. (2013, March) BFO: Basic Formal Ontology.
[Online]. http://www.ifomis.org/bfo .

[37] Paulo Cesar G. da Costa, K.C. Chang, Kathryn B. Laskey, and
Rommel Novaes Carvalho, "A Multidisciplinary Approach to
High Level Fusion in Predictive Situational Awareness," in
Proceedings of the 11th International Conference of the
Society of Information Fusion, Seattle, 2009.

STIDS 2013 Proceedings Page 17

http://www.ibm.com/developerworks/webservices/library/ws-soa-ref-arch/
http://www.ibm.com/developerworks/webservices/library/ws-soa-ref-arch/
http://hdl.handle.net/1920/455
http://www.jfsowa.com/ontology/
http://www.cyc.com/cyc/cycl
http://www.loa.istc.cnr.it/DOLCE.html
http://www.ifomis.org/bfo

