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Abstract—Analysts in many areas of national security face a 
massive (high volume), dynamically changing (high velocity) 
flood of possibly relevant information. Identifying reasonable 
suspects confronts a tension between data that is too atomic to be 
diagnostic and knowledge that is too complex to guide search. 
D2REEM (Dynamic Data Relevance Estimation by Exploring 
Models) is a knowledge-based metaheuristic that uses stochastic 
search of a graph-based semantic model to guide successive que-
ries of high-volume, high-velocity data. We motivate D2REEM by 
considering the nature of knowledge-based search in high-
volume, high-velocity data and reviewing current tools. We then 
outline the D2REEM metaheuristic and describe the state of pro-
gress in applying it to a range of model types, including geospa-
tial movement, behavioral models, discourse models, narrative 
generators, and social networks. Finally, we outline work that 
needs to be done to advance the D2REEM agenda. 

Keywords—retrieval, querying, semantic models, big data, sto-
chastic search, any-time methods 

I. INTRODUCTION 
Analysts in many areas of national security face a massive, 

dynamically changing flood of possibly relevant information. 
“Big data” is typically described in terms of Volume (the 
amount of data), Velocity (how fast it changes), and Variety 
(the diversity of data formats); our concern here focuses on 
high-volume, high-velocity data. Activities of crucial interest 
can be expected to leave many “footprints” in available data, 
but identifying reasonable suspects confronts a tension between 
data that is too atomic to be diagnostic and knowledge that is 
too complex to guide search. 

The data problem is that no single data item is diagnostic of 
an attack. Any one data item that might be part of an attack 
could also be part of a benign scenario. For example, a 
purchase of fermentation equipment might be a precursor to 
anthrax cultivation...or to opening a microbrewery. A new 
dissertation on gene splicing in microbes might point to a 
potential perpetrator...or just a promising new assistant 
professor. In data retrieval terms, static single-item queries give 
very low precision in identifying the overall event. 

The knowledge problem is that while we can capture 
overall patterns of behavior that are diagnostic, matching them 
against massive data is combinatorially prohibitive. 
Representations that are available include discourse models 

that capture the different forms a conversation in social media 
might take [1, 2], hierarchical task networks (HTN) that 
capture goal-oriented behaviors [3, 4], social networks that 
show possible connections and flows among people and 
organizations [5, 6], and narrative models that capture causal 
dependencies [7]. Such a structure covers many possible 
behaviors, depending on which combinations of constraints are 
satisfied. If we could match such a structure against data, we 
would expect very high precision and recall. However, realistic 
structures can grow very large (for instance, an HTN might 
contain hundreds or thousands of atomic behaviors and 
constraints), and naïvely matching such a structure against 
massive data all at once is combinatorially prohibitive. 

This paper describes D2REEM (Dynamic Data Relevance 
Estimation by Exploring Models), a knowledge-based 
metaheuristic that uses stochastic search of a semantic model to 
guide successive queries of high-volume, high-velocity data. 
Section II explores the challenge that D2REEM addresses and 
the current state of the art. Section III outlines the D2REEM 
metaheuristic. The heart of D2REEM is a knowledge-based 
model of the domain, and Section IV reviews several classes of 
models to which D2REEM may be applied and documents our 
success so far. D2REEM is a work in progress. Section V 
identifies a series of next steps for advancing this approach to 
semantic-driven search of big data. Section VI concludes. 

II. THE CHALLENGE AND PRIOR WORK 
Figure 1 summarizes the challenge that D2REEM 

addresses. Static single-record queries are simple, but can be 
efficiently applied to high-volume high-velocity data. 
Conventional matching methods are too inefficient to apply 
knowledge-rich patterns to such data. D2REEM is a novel way 
to match complex patterns to big data. 

For years, the staple of information retrieval has been the 
record-oriented query, in which the analyst describes single 
data items that might be of interest. Static queries can be 
matched very efficiently, but their relevance depends on the 
state of knowledge about the world, which changes with each 
new piece of information. 

The last 25 years have produced an explosion in graph 
databases, that is, databases that capture semantic relationships 
among data items in a graph structure. Graph databases can be 
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used to answer a range of queries in such data, including 
subgraph matching (does a specified pattern appear), shortest 
path discovery, path comparison, and computation of aggregate 
graph properties. Our focus in this paper is on subgraph 
matching. Queries against graph databases are done by 
specifying constraints over multiple nodes, such as a subgraph 
of the database, or a path that satisfies certain criteria, or 
specified aggregate characteristics of the graph [8]. Examples 
of such query languages are Cypher for Neo4J [9], or XPath 
for XML [10], or SPARQL [11] for RDF [12]. 

Graphs are a natural way to capture a knowledge model, 
but classical graphical query languages have several 
disadvantages for knowledge-based subgraph matching.  

• They are generic to any graph-structured data, and do 
not take advantage of specific semantics in various 
kinds of graphical models. We wish to exploit the 
knowledge in a model. 

• They require the entire query to match a subset of the 
data. We would like to search the data against a 
graphical structure (such as a hierarchical task network 
[HTN]) that expresses a range of possibilities, and 
identify coherent subsets of the pattern that the data 
support. 

• In general, graph matching is intractable [13], with 
either exponential or NP-complete complexity in the 
size of the query. Thus queries must be kept small [8]. 
We wish to exploit large knowledge models. 

• Graph databases require the data to be represented as a 
graph. We address high-volume high-velocity data 
streams (such as social media) where such 
preprocessing is not feasible. 

III. THE D2REEM METAHEURISTIC 
D2REEM is a metaheuristic, a high-level procedure that 

guides a lower-level process (in this case, record-level 
querying). Like many metaheuristics (e.g., genetic algorithms, 
ant-colony optimization, swarm optmization, artificial immune 
systems), its methods are strongly inspired by biological 
models. 

In this section we introduce the metaheuristic, then explore 
two of its key components in more detail. The next section 
discusses classes of knowledge models to which it can be 
applied, and surveys our experience so far with each of them. 

A. Overview 
D2REEM shifts the focus of computation in doing 

knowledge-based exploration of big data. It moves 
computation away from matching the model against the data, 
and toward executing a process over the model that embodies 
the distinctive semantics of the model. Table I summarizes the 
differences between D2REEM and subgraph matching in a 
graph database. 

Because D2REEM works with data as a stream of records, 
rather than a pre-processed graph, it must issue many record-
level queries in order to match a knowledge model. It does this 
by executing a continuous cycle (Figure 2). Repeatedly, 
D2REEM 

• explores the current state of the model,  

• updates the priority for learning more about each node 
in the model,  

• adaptively generates a query for the highest-priority 
node, and  

• updates the model with what is learned from that query.  

The queries can be posed to any data source, and do not 

Complexity+of+Pa/ern+

Vo
lu
m
e+
&
+V
el
oc
ity

+o
f+D

at
a+

Sta8c+Single:
Record+Query+

D2REEM+

Complex+
Pa/ern+Query+

 
Figure 1: D2REEM 's Advantage 

TABLE I. COMPARISON OF D2REEM WITH SUBGRAPH MATCHING IN GRAPH 
DBS 

 Graph DB D2REEM 

Query 
Size 

Small 
Expresses complete 

structure of interest 
Search is for the entire 

query graph 

Large 
Describes a range of structures of 

interest 
Search is for a matching subset 

Data Graph-structured Record-structured 

Query 
Semantics 

Implicit 
Depends on use of same 

graph grammar for 
query and data 

Explicit 
Enforced by PSE and EPM 

Matching Match entire query graph 
against data 

Repeatedly match most relevant 
query node against data 

Processing 

Focus is on matching 
query graph against 
data graph 

Complexity is NP 
complete (subgraph 
isomorphism) 

Focus is on exploring query graph 
in light of current data, and 
pursuing information on most 
relevant node 

Complexity is linear in size of 
knowledge model 
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Figure 2: Basic D2REEM Processing Cycle 
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require predefining relationships among separate data items. 
The relationships among retrieved nodes are computed by 
exploring the model, not by a complex matching process, a 
strategy similar to graph simulation [14] (though unlike that 
work, we do not require that the data already form a graph).  

Figure 1 shows the result. Static single-record queries can 
be applied to big data, but cannot capture complex patterns 
among records. Graphical databases can express patterns, but 
computational complexity forces the patterns to be smaller than 
a realistic behavioral model, and the data must be small enough 
and stationary enough to preprocess into a graph. By taking 
advantage of model semantics, D2REEM can match very large 
knowledge-rich patterns (with thousands of nodes) against 
high-volume, high-velocity data streams that are not in 
graphical form. 

Figure 3 shows the D2REEM architecture. The heart of 
D2REEM is a Graphical Knowledge Model (GKM) with two 
characteristics: 

• Edges in the graph represent causal or other sequential 
dependencies between nodes, so that a trajectory is a 
possible evolution of the world, and  

• The likelihood of visiting a given node can be 
modulated by evidence attached to the node. 

The Polyagent Sampling Engine (PSE) continuously 
samples alternative trajectories through the GKM to generate a 
distribution over possible trajectories reflecting current 
knowledge of the domain. The Evidence Prioritizer and 
Marshaller (EPM) examines these distributions to identify 
nodes about which more information would be useful, issues 
queries to retrieve that information, and updates the GKM with 
the results. The PSE’s ongoing exploration takes account of 
this new information, modifying the distributions over 
trajectories, and thus leading to new rounds of queries, 
implementing the processing cycle shown in Figure 2.  

B. Polyagent Sampling Engine 
By construction, each trajectory through a GKM 

corresponds to a possible instance of the dynamics implicit in 
the graph. Evidence currently on each node of the graph 
modulates the probability assigned to trajectories involving that 
node. We wish to construct a distribution over all possible 
trajectories. An approach we have found particularly tractable 
over many types of GKM is polyagent sampling. 

A polyagent is a set of agents that collectively explore 
possible trajectories for a single entity or behavioral instance of 
interest. It consists of a single persistent coordinating agent (the 
“avatar”), which continuously generates a stream of simple 
agents (“ghosts”), each exploring a single trajectory. 
Figure 4 shows a polyagent sampling possible paths 
through a geospatial domain. 

Ghosts have three biologically-inspired 
characteristics: they are manifold, apoptotic, and 
tropistic. “Manifold” means that many of them explore 
the domain in parallel, like multiple ants in an ant, or 
multiple chromosomes in genetic evolution, or multiple 
antibodies in an immune system, or agents in swarm 

optimization. “Apoptotic” means that they die after a fixed 
number of cycles. Thus the avatar can continue to generate new 
ghosts without overloading the system. “Tropistic” means that 
they move based on the characteristics of their environment, 
like ants. Physical ants plan paths through complex 
environments by depositing and responding to chemical 
pheromones. Polyagent ghosts respond to “digital 
pheromones,” scalar fields maintained on the nodes of the 
GKM. These fields may reflect evidence supporting or refuting 
a given node. In addition, ghosts deposit a presence pheromone 
on each node that they visit. The normalized presence 
pheromone over the entire graph gives a probability 
distribution over possible trajectories of the entity that the 
polyagent represents. 

While the immediate inspiration of the PSE is biological, 
its mathematical underpinnings are based on Monte-Carlo tree 
search (MCTS) [15, 16], which explores multiple descendants 
of a single node to estimate the probability with which that 
node should be visited. In MCTS, the graph being explored is a 
game tree, in which the same game rules are applied in 
expanding each node. The PSE generalizes this concept to 
other graph structures, taking advantage of their distinctive 
semantics in the decision rules used by the ghosts and the 
digital pheromone fields they manipulate.  

C. Evidence Prioritizer and Marshaller 
The EPM has three functions: 

• Based on the distribution of trajectories through the 
GKM determined by the PSE, identify the nodes for 
which additional information would be most valuable.  

• Formulate and execute queries that will provide more 
information on the selected nodes 
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Figure 4: A polyagent (one avatar and four ghosts) in a geospatial domain 

STIDS 2013 Proceedings Page 65



• Update evidence on the selected nodes based on the 
results of the queries. 

We consider these in turn. 

Identify nodes to guide queries.—Intuitively, D2REEM 
estimates the relevance of candidate queries based on the nodes 
for which additional information would be most valuable. The 
precise sense of “valuable” depends on the kind of GKM that is 
guiding the search, and the decisions that it is guiding. Here are 
some alternatives that are useful in different settings. In the 
next section, we give further examples of each of these. 

In sparse environments, the most valuable query is one 
most likely to yield a hit. In our PROPS system, polyagent 
sampling over a geospatial lattice generates candidate 
trajectories for adversaries, and the most probable trajectory 
guides the decision of where to deploy scarce surveillance 
assets to increase the probability of detecting an adversary. 

One might try to maximize some global measure over the 
GKM. One use for an HTN in D2REEM is to model a potential 
adversary’s behavior (e.g., mounting a biological attack). In an 
HTN (using the rTÆMS dialect [4]), each leaf task that is 
executed contributes to the quality that accumulates at the root, 
and the higher that quality, the better the objective is achieved. 
By examining a set of possible trajectories identified by the 
PSE, the EPM can identify which trajectory would yield the 
highest root quality. If the HTN models adversarial behavior, 
this trajectory is most consistent with the adversarial intent we 
are seeking to detect. In this case, we want to select the nodes 
for which gaining more information might increase the 
probability of that trajectory.  

In some cases, the nodes about which we want to learn 
more are those for which more information would sharpen the 
distribution over alternative trajectories. We estimate the 
effect of this choice by changing the evidence levels for 
various nodes in copies of the GKM and run the PSE on them, 
then compare the resulting distributions. 

Formulate and Execute Queries.—The EPM submits 
queries to external data sources for those nodes that have been 
identified as of highest priority. Currently, we construct queries 
for each node manually in the course of formulating the GKM, 
and the EPM retrieves the specified query and submits it.  

Update Node Evidence.—The EPM updates the evidence 
supporting the node on the basis of the response to the query. 
This change modulates the ongoing execution of the PSE, 
potentially changing the highest priority nodes in the next 
invocation of the EPM and directing the search process to the 
most relevant potential data.  

IV. EXAMPLES OF D2REEM MODELS 
The heart of D2REEM is a semantic model of some facet of 

the real world. We have identified numerous such models, and 
demonstrated various facets of D2REEM on them. This section 
outlines these examples. For each, it discusses 

• how the model supports the two requirements identified 
in Section III.A (trajectories represent possible 

evolutions of the world; evidence on nodes modulates 
probability of trajectory) 

• how it supports the PSE and EPM (in particular, what 
makes a node “relevant”), and  

• what aspects of D2REEM have been implemented in it.  

A. Movement on Geospatial Maps 
The most mature class of GKM for polyagent sampling is 

the geospatial lattice, whose nodes correspond to tiles of the 
environment and whose edges represent adjacency among tiles 
[17].  

A trajectory represents the movement of a target, and the 
probability that a trajectory visits a node depends on 
externally-provided information such as terrain, presence of 
friendly or adversarial forces, and combat activity. The 
cumulative distribution of presence pheromone thus reflects the 
probability of encountering the target as a function of location. 

In the DARPA RAID project, we applied the PSE on such a 
model to urban combat. Figure 5 shows the close correlation of 
predictions of red force movement in a human-commanded 
wargame, compared with the actual movement of troops. 
Quantitatively, the PSE produced more accurate forecasts than 
both experienced human observers and game-theoretic or 
Bayesian reasoners [18]. 

In the ARL PROPS project, we used the PSE on a 
geospatial lattice to direct collection management. The 
relevance criterion in this case is to give priority to queries 
(intelligence requests) on areas most likely to generate a hit. 

PROPS is the most mature implementation of the D2REEM 
metaheuristic to date, including ongoing PSE exploration of the 
knowledge model, dynamic query formulation, and updating of 
the knowledge model. 

B. Hierarchical Task Networks 
Goal-oriented behavior by intelligent agents is often 

represented with a hierarchical task network (HTN) [4, 19]. 
Figure 6 is a fragment of an HTN model for a mix of benign 
and nefarious cyber-activities. The nodes are actions, and are 
joined by two kinds of edges: subtask edges (solid) that 
connect a higher-level task (the goal) to lower-level tasks that 

15 min predictions 
t = 140 sec 

Forces w/ 15 min tails  
t = 140 + 900 sec 

 
Figure 5: Example geospatial forecasts 
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carry it out, and sequence edges (dashed) that reflect 
precedence constraints. These precedence constraints 
are inherited by the leaves of the HTN. The graphical 
language in the figure is a simplification; our full 
formalism, derived from the TÆMS language [19], is 
much more sophisticated. In TÆMS, successful 
execution of a task generates “quality,” a scalar value, 
that propagates upward via combination rules. The 
degree to which a sequence of leaf actions satisfies a 
top-level goal is measured by the amount of quality 
that accumulates at that top node. 

Polyagent sampling explores alternative 
trajectories through the leaf tasks. Each trajectory 
reflects a sequence of actions that an agent might 
execute in the world. The probability that an agent’s 
next step will move to a given task depends on the 
task’s feasibility (the satisfaction of its prerequisites), 
its desirability (based on the degree to which higher-
level tasks have been achieved), and evidence for the 
task from the external world (provided by the EPM). 

The HTN is an example of a GKM for which the 
value of generating a query for a node depends on a global 
characteristic of the model, namely, the change in the quality 
of the root node that a response to the query might generate. 
We have demonstrated the PSE on HTNs [4, 20], but not yet 
implemented an EPM for it.  

C. Social Networks 
We represent a social network [5] as a bipartite graph, in 

which one set of nodes represents people or organizations, and 
another indicates class of transaction. Several different kinds of 
transaction are possible, including communication, transfer of 
wealth, transfer of power (e.g., by confrontation), or transfer of 
status (e.g., by endorsement). Figure 7 is an example social 
network in our PSTK system (Power Structure ToolKit), in 
which the Agents are people and the bar graphs between them 
represent the levels of the different transaction types (in this 
example, Political, Military, Economic, Social, from the 
PMESII ontology).  

A trajectory in a social network indicates a sequential 
transfer of social capital. For example, one may seek evidence 
for a money laundering operation that moves a financial 
payment makes its way through a series of organizations. 
Evidence of a specific transaction increases the likelihood of a 
transition from one agent to another. 

Our current PSTK system explores possible flows using 
specialized processes residing on each agent, not the PSE. We 
have not implemented a EPM for social networks. If one is 
seeking to identify sequences of transactions, the relevance of a 
node to generate a query is measured by the degree to which 
additional information on that node would sharpen the 
distribution over alternative trajectories. For example, a node 
that is shared by several emerging trajectories would not rank 
as high as one that is unique to a single candidate trajectory. 

D. Narrative Space Models 
A Narrative Space Model (NSM) captures a set of many 

possible narratives that could explain the evolution of a 
situation [7, 21], and is an external representation for the 
mental activity of an analyst who is seeking to explain how a 
given state of affairs might come about. Each node in an NSM 
consists of a statement about the world to which belief may be 
assigned. The NSM has an edge from one node to another just 
if the first statement followed by the second forms a coherent 
segment of narrative.  

Each trajectory through an NSM represents a coherent 
narrative about how the world might evolve from the origin to 
the destination. Figure 8 shows an abbreviated NSM that 
captures ways that al-Assad might stay in power or lose power 
in Syria. The ‘????’ notation on edges between nodes are 
placeholders for edge weights that the PSE fits based on 
evidence on the nodes. In an NSM, external evidence for 
(against) an individual node increases (decreases) the 
probability of trajectories including that node.  

We have implemented the PSE on NSMs, and modulated 
its behavior by attaching external evidence to nodes in the 
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Figure 6: HTNs can model the structure of complex activities. 
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NSM. In our work so far, this 
evidence has been attached by a 
human analyst, not by the EPM. Since 
our interest is in identifying the most 
likely narrative given the evidence 
available to date, the EPM for a NSM 
would weight nodes based on how 
much evidence for a given node 
would sharpen the distribution over 
emerging narratives.  

E. Discourse Models 
Dooley Graphs [2] reflect a 

speech-act view of discourse [22], in 
which each utterance seeks to 
accomplish something (e.g., Solicit an 
action or a statement, Inform, 
Commit, or Refuse). In a coherent 
conversation (a sequence of speech 
acts), later utterances may be related in different ways to earlier 
ones: they may Respond, Reply, Resolve, or Complete them. 
Detecting such coherent conversations from a high-volume, 
high-velocity stream of data (for example, a Twitter feed) 
would make a great contribution to surveillance activities.  

There are a number of ways one could graph a sequence of 
utterances, depending on what one chooses as the nodes. 

• The nodes could represent specific utterances, and 
edges would reflect the sequences among them. This 
representation loses critical information about who 
issues each utterance. 

• One might analyze the conversation to characterize 
different states that it could assume, and then represent 
each state as a node, with edges representing possible 
state transitions. A state model, like an utterance 
model, deemphasizes the participants, and in addition 
makes it difficult to distinguish specific conversations. 

• We could represent participants as nodes, with edges 
representing utterances from the source to the target. 
Like the state model, the participant model does not 

clearly capture the progress of an individual 
conversation. 

A Dooley graph (e.g., Figure 9) is a bipartite graph. One 
class of nodes (circles in  Figure 9) represents characters, 
which are participants at distinguished stages of the discourse, 
based on the notions of resolution and completion. Thus 
participant A may appear as nodes A1 and A2. The other class 
of nodes (squares in  Figure 9) represents utterances, which are 
characterized by type of speech act. Utterances that resolve or 
complete one another tend to form tightly-connected 
components of the graph, while those that take off in new 
directions spawn new components. A trajectory through the 
Dooley graph represents a realization of a conversation. 
Retrieving a tweet from (say) A to B adds evidence to A-
characters and B-characters; recognizing the tweet as a specific 
speech act adds evidence to utterance nodes requiring that 
speech act. 

We have not yet implemented either the PSE or the EPM 
on Dooley Graphs. In using a Dooley Graph for surveillance of 
social media, one would seek to identify well-formed 
conversations and classify them (e.g., meeting organization, 
viral propagation of opinion, purchase activities). For this 
purpose, the EPM should prefer nodes based on their potential 
for sharpening the distribution over alternative trajectories. 

V. NEXT STEPS 
Four main avenues for extension of D2REEM provide a 

range of challenging and important research opportunities: 
multiple model types, model management, query generation, 
and model linking. 

Multiple Model Types: Our most complete example of 
D2REEM is the PROPS system, which treats the geospatial 
domain. The NSM is the next most mature, demonstrating the 
effectiveness and computational efficiency of modulating the 
state of a non-geospatial knowledge model by external 
evidence. In addition to refining these applications, we seek to 
extend the complete D2REEM cycle to other model types. As 
we configure the PSE and EPM to different model types, we 

 
Figure 8: Abbreviated Narrative Space Model for Syria 
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Figure 9: Example Dooley Graphs for purchase negotiation (top) and arrang-
ing a meeting (bottom) 

STIDS 2013 Proceedings Page 68



gain valuable insights into how the underlying mechanisms of 
the metaheuristic can be generalized. 

Model Management: As noted in Section II.A, an 
important difference between D2REEM and graph DBs is how 
knowledge is expressed. Graph DBs construct a small 
graphical query using the same graph syntax that governs the 
data, and seek to match the entire query graph against the data 
graph. D2REEM uses a large GKM that captures a range of 
hypotheses, and then explores this model in the light of the 
data to identify high-priority record-level queries. The use of a 
complex knowledge model is a strength, in that it externalizes 
analysts’ internal mental models, facilitating collaborative 
review and enhancement. But it is also a weakness, since 
constructing such models is itself a labor-intensive process.  

For many long-standing problems, model construction is 
integral to the analytic effort [21], and D2REEM offers an 
additional incentive to construct such models. But it will be 
even more useful if model construction can be partially 
automated. For example, in the case of the NSM, techniques 
exist to merge specific narratives in a domain of interest into a 
NSM [23, 24]. Such technology could exploit past analytic 
products (which often include a narrative of the event under 
investigation) to enhance a NSM of the domain. Another 
example is the Disciple technology [25], which has been used 
successfully to learn inferential relations of the sort one might 
encounter in a belief network. 

A strength of the PSE approach to model exploration is the 
locality of ghost movement and pheromone-based interaction. 
This locality means that GKMs can be extended incrementally, 
and encourages the notion of a persistent library of 
dynamically updated models as a central resource in analysis. 
Development of mechanisms for managing such a library will 
considerably advance the analytic enterprise. 

Query Generation: One task of the EPM is formulating 
queries that can provide additonal information on GKM nodes 
that it identifies as highly relevant. In our current 
implementations, these queries are manually constructed along 
with the GKM. Given the description of a node in a model and 
schemata for external data sources, one would like to generate 
queries automatically, a task that will rely heavily on research 
in ontological reasoning and semantic web technologies.  

Model Linking: The same analytic tasking can be viewed 
through the lens of multiple model types, and we would like to 
facilitate the flow of information between these model types by 
defining mappings between nodes in different model types. 
Like the previous topic, this one depends on advances in 
ontological reasoning, as well as model theory and other 
formal tools [26], and will require attention to aligning multiple 
levels of meaning [26, 27], not all of which may be represented 
in each model. 

VI. CONCLUSION 
Matching knowledge-rich patterns against high-volume, 

high-velocity data is combinatorially prohibitive. The 
D2REEM metaheuristic is a new approach to such retrieval 
problems that shifts the computational burden from graph 
matching (a NP-complete problem) to iteratively exploring a 

knowledge model and issuing focused queries for the data that 
is most relevant in the light of current knowledge (a process 
that is linear in the size of the knowledge model). D2REEM 
can be applied to any graphical knowledge model in which 
edges represent causal or or other sequential dependencies and 
in which adding data to individual nodes can change the 
probability of a trajectory.  
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