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Abstract 
Classification models (“machine learners” or “learners”) were developed using 
machine learning techniques to predict mortality at discharge from an intensive 
care unit (ICU) and evaluated based on a large training data set from a single 
ICU. The best models were tested on data on subsequent patient admissions. 
Excellent model performance (AUCROC (area under the receiver operating 
curve) =0.896 on a test set), possibly superior to a widely used existing model 
based on conventional logistic regression models was obtained, with fewer per-
patient data than that model. 

1 Introduction 

Intensive care clinicians use explicit judgement and heuristics to formulate prog-
noses as soon as reasonable after patient referral and admission to an intensive care 
unit [1]. 

Models to predict outcome in such patients have been in use for over 30 years [2] 
but are considered to have insufficient discriminatory power for individual decision 
making in a situation where patient variables that are difficult or impossible to meas-
ure may be relevant. Indeed even variables that have little or nothing to do with the 
patient directly (such as bed availability or staffing levels [3]) may be important in 
determining outcome. 

There are further challenges for model development. Any model used should be 
able to deal with the problem of class imbalance, which refers in this case to the fact 
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that mortality should be much less common than survival. Many patient data are 
probably only loosely or indeed not related to outcome and many are highly corre-
lated. For example, elevated measurements of serum urea, creatinine, urine output, 
diagnosis of renal failure and use of dialysis will all be closely correlated. 

Nevertheless, models are used to risk adjust for comparison within an institution 
over time or between institutions, and model performance is obviously important if 
this is to be meaningful. It is also likely that a model with excellent performance 
could augment clinical assessment of prognosis. Furthermore, a model that performs 
well while requiring fewer data would be helpful as accurate data acquisition is an 
expensive task.  

The APACHE III-J (Acute Physiology and Chronic Health Evaluation revision III-
J [4]) model is used extensively within Australasia by the Centre for Outcomes Re-
search of the Australian and New Zealand Intensive Care Society (ANZICS) and a 
good understanding of its local performance is available in the published literature 
[4]. It should be noted that death at hospital discharge is the outcome variable usually 
considered by these models. Unfortunately the coefficients for all variables for this 
model are no longer in the public domain so direct comparison with new models is 
difficult. The APACHE (Acute Physiology and Chronic Health Evaluation) models 
are based largely on baseline demographic and illness data and physiological mea-
surements taken within the first day after ICU admission. 

This study aims to explore machine learning methods that may outperform the lo-
gistic regression models that have previously been used. 

The reader may like to consult a useful introduction to the concepts and practice of 
machine learning [5] if terms or concepts are unfamiliar. 

2 Methods 

The study is comprised of three parts: 

1.  An empirical exploration of raw and processed admission data with a variety of 
attribute selection methods, filters, base classifiers and metalearning techniques 
(which are overarching models that have other methods nested within them) that 
were felt to be suitable to develop the best classification models. Metamodels and 
base classifiers may be nested within other metamodels and learning schemes can 
be varied in very many ways .These experiments are represented below in Figure 1 
where we used up to two metaclassifiers with up to two base classifiers nested 
within a metaclassifier. 
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Fig. 1. Schematic of phase 1 experiments. Different color arrows indicate that one or more 
metamodels and base classifiers may optionally be combined in multiple different ways. One or 
more base classifiers are always required. 

2.  Further testing with the best performing data set (full unimputed training set) and 
learners with manual hyperparameter setting. A hyperparameter is a particular 
model configuration that is selected by the user, either manually or following an 
automatic tuning process. This is represented in a schematic below: 

 

 
 

Fig. 2. Schematic of phase 2 experiments. As in phase 1, one or more metamodels may be 
optionally combined with one or more base classifiers. 

3.  Testing of the best models from phase 2 above on a new set of test data to better 
understand generalizability of the models. This is depicted in Figure 3 below. 

 
 

Choose 
Dataset Metamodel 1 Metamodel 2

Base Classifier (s)
Evaluate 
Classifier 
Results
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Fig. 3.   Schematic of phase 3 

The training data for adult patients (8122 patients over 16 years of age) were ob-
tained from the  database of a multidisciplinary ICU in a tertiary referral centre from a 
period between July 2004 and July 2012.Data extracted were comprised of a demo-
graphic variable (age), diagnostic category (with diagnostic coefficient from  the 
APACHE III-J scoring system, including ANZICS modifications), and an extensive 
list of  numeric variables relating to patient physiology and composite scores based on 
these, along with the classification variable: either  survival,  or alternatively, death at 
ICU discharge (as opposed to death at hospital discharge as in the APACHE models). 
Much of the data collected is used in APACHE III-J model mentioned above, and 
represents a subset of the data used in that model. Training data, prior to the imputa-
tion process, but following discretization of selected variables are represented in Ta-
ble 1. Test data for the identical variable set were obtained from the same database for 
the period July 2012 to March 2013. 

Of particular interest is that the data is clearly class imbalanced with mortality dur-
ing ICU stay of approximately 12%. This has important implications for modelling 
the data. 

There were many strongly correlated attributes within the data sets. Many of the 
model variables are collected as highest and lowest measures within twenty four 
hours of admission to the ICU. Correlated variables may bring special problems with 
conventional modelling including logistic regression. The extent of correlation is 
demonstrated in Figure 4. 

Matching 
Test Set

Four Best Models 
based on 4 
Evaluation 
Measures

Evaluate Classifier 
Results on Test Set
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Fig. 4. Pearson correlations between variables are shown using colour. Blue colouration indi-

cates positive correlation. Red colouration indicates negative correlation. The flatter the ellipse, 
the higher the correlation. White circles indicate no significant correlation between variables.  

Patterns of missing data are indicated in Table 1 and represented graphically in 
Figure 5. 
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Fig. 5. Patterns of missing data in the raw training set. Missing data is represented by red 

colouration.  
 
Missing numeric data in the training set was imputed using multiple imputation 

with the R program [6] and the R package Amelia [7], which utilises bootstrapping of 
non-missing data followed by imputation by expectation maximisation. We initially 
used the average of five multiple imputation runs. 

Using the last imputed set was also trialled, as it may be expected to be the most 
accurate based on the iterative nature of the Amelia algorithm. No categorical data 
were missing. Date of admission was discretized to the year of admission, age was 
converted to months of age, and the diagnostic categories were converted to five to 
eight (depending on study phase) ordinal risk categories by using coefficients from 
the existing APACHE III-J risk model. 

A summary of data is presented below in Table 1.  

Table 1. Data Structure 

 
Variable 

 

Type Missing Distinct 

values 

Min. Max. 

CareUnitAdmDate numeric 0 9 2004 2012 

AgeMonths numeric 0 880 192 1125 

Sex pure factor 0 2 F M 

Risk pure factor 0 8 Vlow High 
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CoreTempHi numeric 50 89 29 42.3 

CoreTempLo numeric 53 102 25.2 40.7 

HeartRateHi numeric 25 141 38.5 210 

HeartRateLo numeric 26 121 0 152 

RespRateHi numeric 38 60 8 80 

RespRateLo numeric 40 42 2 37 

SystolicHi numeric 27 161 24 288 

SystolicLo numeric 55 151 11 260 

DiastolicHi numeric 27 105 19 159 

MAPHi numeric 28 124 20 200 

MAPLo numeric 43 103 3 176 

NaHi numeric 46 240 112 193 

NaLo numeric 51 245 101 162 

KHi numeric 46 348 2.7 11.7 

KLo numeric 51 275 1.4 9.9 

BicarbonateHi numeric 218 322 3.57 48 

BicarbonateLo numeric 221 319 2 44.2 

CreatinineHi numeric 130 606 10.2 2025 

CreatinineLo numeric 134 552 10 2025 

UreaHiOnly numeric 232 433 1 99 

UrineOutputHiOnly numeric 184 3501 0 15720 

AlbuminLoOnly numeric 281 66 5 65 

BilirubinHiOnly numeric 1579 183 0.4 618 

GlucoseHi numeric 172 255 1.95 87.7 

GlucoseLo numeric 177 198 0.1 60 

HaemoglobinHi numeric 54 153 1.8 25 

HaemoglobinLo numeric 59 151 1.1 25 

WhiteCellCountHi numeric 131 470 0.1 293 

WhiteCellCountLo numeric 135 393 0.08 293 

PlateletsHi numeric 149 653 7 1448 

PlateletsLo numeric 153 621 0.27 1405 

OxygenScore numeric 0 8 0 15 

pHAcidosisScore numeric 0 9 0 12 

GCSScore numeric 0 11 0 48 

ChronicHealthScore numeric 0 6 0 16 

Status at ICU Discharge pure factor 0 2 A D 

 
 
 
Phase 1 consisted of an exploration of machine learning techniques thought suit-

able to this classification problem, and in particular those thought to be appropriate to 
a class imbalanced data set. Attribute selection, examining the effect of using imputed 
and unimputed data sets and application of a variety of base learners and metaclassifi-
ers without major hyperparameter variation occurred in this phase. The importance of 
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attributes was examined in multiple ways including using random forest methodology 
for variable selection, using improvement in Gini index using particular attributes. 
This information is displayed in figure 6. 

 
 

Fig. 6. Variable importance as measured by Gini index using random forest methodology. A 
substantial decrease in Gini index indicates better classification with variable inclusion. Va-
riables used in the study are ranked by their contribution to Gini index. 

A comprehensive evaluation of all techniques is nearly impossible given the 
enormous variety of techniques and the ability to combine up to several of these at a 
time in any particular model. Techniques were chosen based on the likely success of 
their application. WEKA [8] was used to apply learners and all models were eva-
luated with tenfold cross validation. WEKA default settings were commonly used in 
phase 1 and the details of these defaults are widely available [9]. Unless otherwise 
stated all settings in all study phases were the default settings of WEKA for each clas-
sifier or filter. Two results were used to judge overall model performance during 
phase 1. These were: 

1. Area under the receiver operating curve (AUC ROC) 
2.  Area under the precision recall curve (AUC PRC) 

 The results are presented in Table 3 in the results section. 
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Phase 2 of our study involved training and evaluation on the same data sets with 
learners that had performed well in phase 1. Hyperparameters were mostly selected 
manually, as automatic hyperparameter selection in any software is limited and ham-
pered by a lack of explicitness. Class imbalance issues were addressed with appropri-
ate WEKA filters (spread subsample and SMOTE, a filter which generates a synthetic 
data set to balance the classes [10]), or the use of cost sensitive learners [11]. Unless 
otherwise stated in Table 3, WEKA default settings were used for each filter or classi-
fier. Evaluation of these models proceeded with tenfold cross-validation and the re-
sults were examined in light of four measures: 

1. Area under the receiver operating curve with 95% confidence intervals by the 
method of Hanley and McNeill [12] 

2. Area under the precision recall curve  
3. Matthews correlation coefficient and, 
4. F-measure 

Additionally, scaling the quantitative variables by standardizing or normalizing the 
data was explored as this is known to sometimes improve model performance [13]. 
The results of phase 2 are presented in Table 2 in the results section. 
Phase 3 involved evaluating the accuracy of the best classification models from phase 
2 on a new test set of 813 patient admissions. Missing data in the test set were not 
imputed. Results are shown in Table 3. 

3 Results 

Table 2 presents the results following tenfold cross validation on a variety of 
techniques thought suitable for trial in the modelling problem. These are listed in 
order of descending area under the curve of the receiver operating curve and the area 
under the precision recall curve is also presented. 

Table 2. Phase 2 of study.  

 

Data Preprocess 
Meta 

Model 1 

Meta model 

2 

Meta 

model 3 

Base classi-

fier 1 

Base 

classifier 

2 

ROC  PRC 

Unimputed 

all variables 
NA 

Cost 

Sensitive 

Classifier 

matrix 

0,5;1,0 

NA NA 

Random 

Forest 500 

trees 

NA 0.895 0.629 

Unimputed 

all variables 
NA 

Cost 

Sensitive 

Classifier 

matrix 

0,5;1,0 

NA NA 

Random 

Forest 200 

trees 

NA 0.894 0.416 

Unimputed 

all variables 
NA 

Cost 

Sensitive 

Classifier 

matrix 

0,5;1,0 

NA NA Naïve Bayes NA 0.864 0.418 
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Unimputed 

all variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 

Attribute 

selected 

classifier 20 

variables 

selected on 

info. Gain 

and ranked 

Vote J4.8 tree 
Naïve 

Bayes 
0.854 0.439 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 

Logistic 

regression 
NA 

Logistic 

Regression 
NA 0.766 0.283 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
NA NA 

SimpleLogis-

tic 
NA 0.766 0.28 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 

Random 

Comm  
NA REP tree NA 0.753 0.259 

Imputed ten 

variables 
NA 

Filtered 

Classifier 
NA NA Naïve Bayes NA 0.742 0.248 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
Adaboost M1 NA J48 NA 0.741 0.254 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
Vote NA 

Random 

Forest 10 

trees 

Naïve 

Bayes 
0.741 0.252 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
Bagging NA J48 NA 0.736 0.258 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
Decorate NA Naïve Bayes NA 0.735 0.238 

Imputed all 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 

Attribute 

selected 

classifier 20 

variables 

selected on 

info. Gain 

and ranked 

Vote J4.8 tree 
Naïve 

Bayes 
0.735 0.238 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
NA NA J4.8 tree NA 0.734 0.234 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
NA NA 

Random 

Forest 10 

trees 

NA 0.713 0.221 

Imputed ten 

variables 

Spread-

subsample 

uniform 

Filtered 

Classifier 
SMO NA SMO NA 0.5 0.117 

 
ROC-area under receiver operating characteristic curve 
CI-confidence interval 
PRC-area under precision-recall curve 
NA-not applicable 
 
Table 3 presents the results of tenfold cross validation on the best models from 

phase 1 trained on the training set in phase 2 of our study. Models are listed in des-
cending order of AUC ROC. The data set used in the modelling is indicated, along 
with any pre-processing of data, base learners, metalearners if applicable, and other 
evaluation tools as listed in the methods section above. The model which performs 
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best of all models on any of the four classification methods is shaded in red to empha-
sise that no one performance measure dominates a classifier’s overall utility. 

Table 3. Phase 2 results 

Preprocess Metamodel1 Metamodel2 Base Model 1 
Base 

model 2 
ROC ROC 95% CI's PRC MCC 

F-

measure 

Spread 

subsample 

uniform 

Filtered 

classifier 

Rotation 

forest 100 

iterations 

Alternating 

decision tree 

100 iterations 

NA 0.903 (0.892,0.912) 0.622 0.47 0.51 

NA 

Cost sensi-

tive classi-

fier 0,5;1,0 

NA 
Rotationforest 

500 iterations  
J 48 0.901 (0.881,0.921) 0.625 0.482 0.481 

Spread 

subsample 

uniform 

Filtered 

classifier 

Rotationforest 

200 iterations  
NA J 48 0.897 (0.888,0.906) 0.606 0.452 0.494 

Spread 

subsample 

uniform 

Filtered 

classifier 
NA 

Rotationforest 

500 iterations  
J 48 0.897 (0.888,0.906) 0.608 0.45 0.493 

Spread 

subsample 

uniform 

Filtered 

classifier 
NA 

Rotation 

forest 500 

iterations 

J48 

graft 
0.897 (0.888,0.906) 0.611 0.456 0.5 

Spread 

subsample 

uniform 

Filtered 

classifier 

Rotation 

forest 50 

iterations 

Alternating 

decision tree 

50 iterations 

NA 0.896 (0.887,0.905) 0.608 0.452 0.495 

Spread 

subsample 

uniform 

Filtered 

classifier 
NA 

Rotation 

forest 100 

iterations  

J 48 0.895 (0.886,0.904) 0.602 0.443 0.488 

NA 

Cost sensi-

tive classi-

fier 0,5;1,0 

NA 

Random 

forests (RF) 

1000 trees 2 

features each 

tree 

NA 0.893 (0.879,0.907) 0.599 0.506 0.561 

NA 

Cost sensi-

tive classi-

fier 0,5;1,0 

NA 

RF 500 trees 2 

features each 

tree 

NA 0.892 (0.878.0.906) 0.598 0.511 0.567 

NA 

Cost sensi-

tive classi-

fier 0,1;1,0 

NA 

RF 500 trees 2 

features each 

tree 

NA 0.891 (0.867,0.915) 0.602 0.416 0.398 

NA 

Cost sensi-

tive classi-

fier 0,1;1,0 

NA 

RF 1000 trees 

2 features 

each tree 

NA 0.891 (0.867,0.915) 0.603 0.422 0.391 

NA 

Cost sensi-

tive classi-

fier 0,10;1,0 

NA 

RF 500 trees 2 

features each 

tree 

NA 0.891 (0.878,0.904) 0.594 0.497 0.558 

NA 

Cost sensi-

tive classi-

fier 0,5;1,0 

NA 

Rotation 

Forest 50 

iterations 

J48 0.891 (0.871,0.911) 0.606 0.479 0.485 

Spread 

subsample  

Filtered 

classifier 

Bagging 150 

iterations 

J 48 C 0.25 M 

2 
NA 0.89 (0.869,0.911) 0.609 0.474 0.471 

Spread 

subsample  

Filtered 

classifier 

Bagging 200 

iterations 

J 48 C 0.25 M 

3 
NA 0.889 (0.868,0.910) 0.61 0.474 0.473 

NA 

Cost sensi-

tive classi-

fier 0,1;1,1 

NA 

RF 200 trees 2 

features each 

tree 

NA 0.889 (0.865,0.913) 0.598 0.425 0.395 

Spread 

subsample  

Filtered 

classifier 

Bagging 100 

iterations 

J 48 C 0.25 M 

2 
NA 0.888 (0.867,0.909) 0.605 0.47 0.467 
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RF-random forest 
REP-representative 
NA-not applicable 
MCC-Matthews correlation coefficient 
 

Normalizing or standardizing the data did not improve model performance and in-
deed tended to moderately worsen it. 

 Table 4 presents the results of applying four of the best models from phase 2 on a 
test data set of 813 patient admissions which should be from the same population 
distribution (if date of admission is not a relevant attribute). Evaluation is based on 
AUC ROC, AUC PRC, Matthews’s correlation coefficient and F-measure. These 
evaluations were obtained by WEKA’s knowledge flow interface. 

Table 4. Model results with new test set in Phase 3 

 
Data prepro-

cessing 

Metamo-

del 1 

Metamo-

del 2 

Base 

Classifer 1 

Base 

Clas-

sifier 2 

ROC 
95% CI 

ROC 
PRC MCC F-meas 

Spread 

subsample 

uniform 

Filtered 

classifier 

Rotation 

forest 100 

iterations 

Alternat-

ing 

decision 

tree 100 

iterations 

NA 0.896 
(0.854,0

.938) 
0.592 0.401 0.426 

Spread 

subsample 

uniform 

Filtered 

classifier 

Rotation 

forest 200 

iterations 

NA J 48 0.893 
(0.863,0

.923) 
0.571 0.525 0.534 

NA 

Cost 

sensitive 

classifier 

0,5;1,0 

NA 

Rotation 

forest 500 

iterations 

J 48 0.887 
(0.821,0

.953) 
0.561 0.386 0.411 

NA 

Cost 

sensitive 

classifier 

0,5;1,0 

NA 

Random 

forest 500 

trees, 2 

features 

each tree 

NA 0.885 
(0.855,0

.915) 
0.551 0.51 0.555 

 

NA 

Cost sensi-

tive classi-

fier 0,5;1,0 

NA 

RF 100 trees 2 

features each 

tree 

NA 0.888 (0.864,0.912) 0.594 0.42 0.396 

Spread 

subsample 

uniform 

Filtered 

classifier 
NA 

Random 

committee 

500 iterations 

Random 

tree 
0.887 (0.879,0.895) 0.578 0.373 0.409 

Spread 

subsample  

Filtered 

classifier 

Adaboost M1 

150 iterations 

J 48 C 0.25 M 

2 
NA 0.886 (0.865,0.907) 0.584 0.48 0.476 

Spread 

subsample  

Filtered 

classifier 

Adaboost M1 

100 iterations 

J 48 C 0.25 M 

2 
NA 0.884 (0.863,0.905) 0.577 0.469 0.467 

Spread 

subsample  

Filtered 

classifier 

Bagging 50 

iterations 

J 48 C 0.25 M 

2 
NA 0.883 (0.862,0.904) 0.597 0.465 0.465 

Spread 

subsample 

uniform 

Filtered 

classifier 
NA 

Random 

subspace 100 

iterations 

REP 

tree 
0.877 (0.868,0.886) 0.563 0.423 0.473 

Spread 

subsample 

uniform 

Filtered 

classifier 
NA 

Multiboost AB 

50 iterations 
J 48 0.874 (0.864,0.884) 0.428 0.435 0.482 

Joint Proceedings - AIH 2013 / CARE 2013

Page 16



ROC-area under receiver operating characteristic curve 
CI-confidence interval 
PRC-area under precision-recall curve 
MCC-Matthews correlation coefficient 
F-meas-F-measure 
 

 

4 Discussion 

It is unrealistic to expect models to perfectly represent such a complex reality as 
that of survival from critical illness. Perfect classification is impossible because of the 
limitations of any combination of currently available measurements made on such 
patients to accurately reflect survival potential. Patient factors such as attitudes to-
wards artificial support and presumably health practitioner and institution related 
factors are important. Additionally non-patient related factors which may be purely 
logistical will continue to thwart perfect prediction by any future model. For instance, 
a patient may die soon after discharge from the ICU if a ward bed is available and 
conversely will die within the ICU if a ward bed is not available and transfer cannot 
proceed. Models currently employed generally consider death at hospital discharge, 
but new factors that increase randomness can enter in the hospital stay following ICU 
discharge, so problems are not necessarily decreased with this approach. 

The best models we have studied have excellent performance when evaluated fol-
lowing tenfold cross validation in the single ICU setting with use of fewer data points 
than the current gold standard model. Machine learning techniques usually make few 
distributional assumptions about the data when compared with the traditional logistic 
regression model. Missing data are often dealt with effectively with machine learning 
techniques while complete cases are generally used in traditional general linear mod-
elling such as logistic regression. Clinical data will never be complete, as some data 
will not be required for a given patient, while some patients may die prior to collec-
tion of data which cannot subsequently be obtained. Imputation may be performed on 
data prior to modelling but has limitations. It is interesting that models trained on 
unimputed data tend to perform better than imputed data, both in phase 2 and with the 
test set in phase 3. 

The best comparison we can make in the published literature is the work of Paul et 
al [4] which demonstrates that the AUC ROC of the APACHE-III-J model has varied 
between 0.879 and 0.890 when applied to over half a million adult admissions to Aus-
tralasian ICUs between 2000 and 2009. Routine exclusions in this study included 
readmissions, transfers to other ICUs, and missing outcome and other data, and ad-
mission post coronary artery bypass grafting prior to introduction of the ANZICS 
modification to APACHE-III-J for this category. None of these were exclusions in our 
study. The Paul et al paper looks at outcome at hospital discharge, while ours ex-
amines outcome at ICU discharge. For these reasons the results are not directly com-
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parable but our results for AUC ROC of up to 0.896 on a separate validation set clear-
ly demonstrate excellent model performance. 

The techniques associated with the best performance involve addressing class im-
balance (i.e. pre-processing data to create a dataset with similar numbers of those who 
survive and those that die). This class imbalance is a well-known problem in classifi-
cation. Mortality data from any healthcare setting tend to be class imbalanced. Our 
study shows that any approach to class imbalance in the data greatly enhance model 
performance. Cost sensitive metalearners [11], synthetic minority generation tech-
niques (SMOTE [10]) and creating a uniform class distribution by subsampling across 
the data all improve model performance. 

A cost sensitive learner indicates a technique that reweights cases according to a 
cost matrix that the user sets to reflect differing “cost” of misclassification of positive 
and negative cases. This intuitively lends itself to the intensive care treatment process 
where such a framework is likely implemented at least subconsciously by the inten-
sive care clinician. For instance the cost of clinically “misclassifying” a patient may 
be substantial and clinicians would likely try hard to avoid this situation. 
In our study, the  ensemble learner random forests [14] with or without a technique to 
address class imbalance tends to outperform many more complex metalearners, or 
enhancements of single base classifiers such as bagging [15] and boosting [16]. Ran-
dom forests involve generation of many different tree models, each of which splits the 
cases based on different variables and a criterion to increase information gain. Voting 
then occurs across the “forest” to decide on the best way to split the cases and this 
produces the model. The term ensemble simply represents the fact that multiple learn-
ers are involved, rather than a single tree. As many as 500 or 1000 trees are com-
monly required before the error of the forest is at a minimum. The number of vari-
ables to be considered by each tree may also be set to try and improve performance. 
The other techniques that produced excellent results were rotation forests either alone, 
with a cost sensitive classifier, or in combination with a technique known as alternat-
ing decision tree. Alternating decision tree takes a “weak” classifier (such as a tree 
classifier) and uses a technique similar to boosting to improve performance. 
The reason extensive experimentation may be required to produce the best model is 
attributed to Wolpert [17] and described as the “no free lunch theorem”,  meaning that 
there is no one single technique that will model the best in every  given scenario. Of 
course the same is true of any conventional statistical technique applied to multidi-
mensional problems. Data processing and model selection are crucial to performance 
although if prediction alone is important, a pragmatic approach can be taken to the 
usual statistical assumptions. Machine learning techniques are generally not a “black 
box” approach however and deserve the same credibility as any older method, if ap-
plication is appropriate. 
Similarly, no single evaluation measure can summarize a classifier’s performance and 
different model strengths and weaknesses may be more or less tolerable depending on 
the circumstances of model use and hence a range of measures are usually presented 
as we have done. 

There are several weaknesses to our study. It is clearly from a single centre and 
may not generalize to other ICUs in other healthcare systems. Mortality remains a 
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crude measure of ICU performance but remains simple to measure and of great rele-
vance nevertheless. The existing gold standard models usually measure classification 
of survival or death at hospital discharge, so are not necessarily directly comparable 
to our models which measures survival or death at ICU discharge. 

We are unable to directly compare our models with what may be considered gold 
standards as some of these (e.g. APACHE IV) are only commercially available, and 
as mentioned before, even the details of APACHE-III-J are not in the public domain. 
The best comparison involving Australasian data using APACHE-III-J comes from 
the paper of Paul et al. [4] but as with all APACHE models, this predicts death at 
hospital discharge. Additionally, re-admissions were excluded which may be a sig-
nificant factor beyond what are often relatively small numbers of re-admissions in any 
given ICU, as re-admissions suffer a disproportionately high mortality. 

Exploration of the available hyperparameters of the many models examined has 
been relatively limited. The ability to do this automatically, and explicitly or in a re-
producible way in WEKA and indeed any available software is limited although this 
may be changing [18]. Yet minor changes to these hyperparameters may produce 
meaningful enhancements in model performance. Tuning hyperparameters runs the 
risk of overfitting a model, but we have tried to guard against this by testing the data 
on a separate validation set. 

Likewise, the ability to combine models with the best characteristics [19], which is 
becoming more common in prediction of continuous variables [20] is not yet easily 
performed with the available software. 

We have not examined the calibration of our models. Good calibration is not re-
quired for accurate classification. Accurate performance across all risk categories is 
highly desirable in a model. Similarly, performance including calibration for different 
diagnostic categories that may become more significant in an ICU’s case mix is not 
accounted for. 

 Modelling using imputed data in every phase of our study tends to show inconsis-
tent or suboptimal performance. It may be that imputation could be applied more 
accurately by another approach that would improve model performance.  

The major current use of these scores is in quality improvement activities. Once a 
score is developed which accurately quantitates risk, the expected number of deaths 
may be compared to those observed [21]. The exact risk for a given integer valued 
number of deaths may be derived from the Poisson binomial distribution and com-
pared to the number observed [22]. A variety of risk adjusted control charts can be 
constructed with confidence intervals [23]. 

5 Conclusions 

We have presented alternative approaches to the classification problem involving 
prediction of mortality at ICU discharge using machine learning techniques. Such 
techniques may hold substantial advantage over traditional logistic regression ap-
proaches and should be considered to replace these. Complete clinical data may be 
unnecessary when using machine learning techniques, and in any case are frequently 
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not available. Out of the techniques studied, random forests seems to be  the model-
ling approach with the best performance and has an advantage that it is relatively easy 
to conceptualise and implement with open source software. During model training a 
method to address class imbalance should be used. 

6 Bibliography 

[1]. Downar, J. (2013, April 18). Even without our biases, the outlook for prognos-
tication is grim. Available from ccforum: 
http://ccforum.com/content/13/4/168 

[2]. Knaus WA, W. D. (1981). APACHE-acute physiology and chronic health 
evaluation: a physiologically based classification system. Crit Care Med, 591-597. 

[3]. Tucker, J. (2002). Patient volume, staffing, and workload in relation to risk-
adjusted outcomes in a random stratified sample of UK neonatal intensive care units: 
a prospective evaluation. Lancet, 99-107. 

[4]. Paul, E., Bailey, M., Van Lint, A., & Pilcher, D. (2012). Performance of 
APACHE III over time in Australia and New Zealand: a retrospective cohort study. 
Anaesthesia and Intensive Care, 980-994. 

[5]. Domingos, P. (2013, May 6). A few useful things to know about machine 
learning. Available from Washington University: 
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf 

[6]. R Core Team. (2013, April 25). Available from CRAN: http://www.R-
project.org/. 

[7]. Honaker, J., King, G., & Blackwell, M. (2013, April 25). Amelia II: a program 
for missing data. Available from Journal of Statistical Software: 
http://www.jstatsoft.org/v45/i07/. 

[8]. Hall, M., Eibe, F., Holmes, G., Pfahringer, B., & Reutemann, P. (2009, 1). The 
WEKA Data Mining Software: An Update. SIGKDD Explorations. 

[9]. Weka overview. (2013, April 25). Available from Sourceforge: 
http://weka.sourceforge.net/doc/ 

[10]. Chawla, N. O., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). 
SMOTE: Synthetic Minority Over-sampling Technique. Journal of Ariticial Intelli-
gence Research, 321-357. 

[11]. Ling, C. X., & Sheng, V. S. (2008). Cost-sensitive learning and the class im-
balance problem. In C. Sammat; G. Webb, editors. Encyclopaedia of Machine Learn-
ing. Springer.p.231-235. 

[12]. Hanley, J., & McNeil, B. (1982). The meaning and use of the area under a re-
ceiver operating characteristic (ROC) curve. Radiology, 29-36. 

[13]. Aksoy, S., & Haralick, R. M. (2013, May 20). Feature Normalization and Li-
kelihood-based Similarity Measures for Image Retrieval. Available from 
cs.bilkent.edu: http://www.cs.bilkent.edu.tr/~saksoy/papers/prletters01_likelihood.pdf 

[14]. Breiman, L. (2001). Random Forests. Machine Learning, 5-32. 
[15]. Breiman, L. (1996). Bagging predictors. Machine Learning, 123-140. 

Joint Proceedings - AIH 2013 / CARE 2013

Page 20



[16]. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algo-
rithm.In Machine Learning:Proceedings of the Thirteenth International Conference on 
Machine Learning, (pp. 148-156). San Francisco. 

[17]. Wolpert, D. (1996). The lack of a priori distinctions between learning algo-
rithms. Neural computation, 1341-1390. 

[18]. Thornton, C., Hutter, F., Hoos, H., & Leyton-Brown, K. (2013, April 21). 
Auto-WEKA: Combined selection and hyperparameter optimisation of classification 
algorithms. Available from arxiv.org: 
http://arxiv.org/pdf/1208.3719.pdf 

[19]. Carauna, R., Nikilescu-Mizil, A., Crew, G., & Ksikes, A. (2013, May 
20).[Internet]Ensemble selection from libraries of models. Available from 
cs.cornell.edu: 
http://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icm
l04.icdm06long.pdf 

[20]. Meyer, Z. (2013, April 21). New package for ensembling R models [Internet]. 
Available from Modern Toolmaking: 
http://moderntoolmaking.blogspot.co.nz/2013/03/new-package-
for-ensembling-r-models.html 

[21]. Gallivan, S; (2003) How likely is it that a run of poor outcomes is unlike-
ly? European Journal of Operational Research , 150 46 - 52.  

[22]. Hong, Y. (2013) On computing the distribution function for the Poisson bi-
nomial distribution. Computational Statistics and Data Analysis 59 41–51 

[23]. Sherlaw-Johnson C. 2005 A method for detecting runs of good and bad clini-
cal outcomes on Variable Life-Adjusted Display (VLAD) charts. Health Care Manag 
Sci. Feb;8(1):61-5. 

Joint Proceedings - AIH 2013 / CARE 2013

Page 21




