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Abstract—Complex computational systems – such as perva-
sive, adaptive, and self-organising ones – typically rely on simple
yet expressive coordination mechanisms: this is why coordination
models and languages can be exploited as the sources of the
essential abstractions and mechanisms to build such systems.
While the features of tuple-based models make them well suited
for complex system coordination, they lack the probabilistic
mechanisms for modelling the stochastic behaviours typically
required by adaptivity and self-organisation.

To this end, in this paper we explicitly introduce uniform
primitives as a probabilistic specialisation of standard tuple-based
coordination primitives, replacing don’t know non-determinism
with uniform distribution. We define their semantics and discuss
their expressiveness and their impact on system predictability.

I. INTRODUCTION

While computational systems grow in complexity, coordi-
nation models and technologies are more and more essential to
harness the intricacies of intra- and inter-system interaction [1],
[2]. In particular, tuple-based coordination models – derived
from the original LINDA [3] – have shown their power in
the coordination of pervasive, adaptive, and self-organising
systems [4], such as SAPERE [5] and MoK [6].

A foremost feature of computational models for open,
adaptive and self-* systems is non-determinism. LINDA fea-
tures don’t know non-determinism in the access to tuples in
tuple spaces, handled with a don’t care approach: (i) a tuple
space is a multiset of tuples where multiple tuples possibly
match a given template; (ii) which tuple among the matching
ones is actually retrieved by a getter operation (in, rd) can be
neither specified nor predicted (don’t know); (iii) nonetheless,
the coordinated system is designed so as to keep on working
whichever is the matching tuple returned (don’t care).

The latter assumption requires that when a process uses
a template matching multiple tuples, which specific tuple is
actually retrieved is not relevant for that process. This is
not the case, however, in many of today adaptive and self-
organising systems, where processes may need to implement
stochastic behaviours like “most of the time do this” or “not
always do that”—which obviously do not cope well with
don’t know non-determinism. For instance, all the nature-
inspired models and systems emerged in the last decade –
such as chemical, biochemical, stigmergic, and field-based –
are examples of the broad class of self-organising systems that
precisely require such a sort of behaviour [7]—which by no
means can be enabled by the canonical LINDA model and its
direct derivatives.

To this end, in this paper we define uniform coordination
primitives (uin, urd) – first mentioned in [8] – as the special-
isation of LINDA getter primitives featuring probabilistic non-
determinism instead of don’t know non-determinism. Roughly
speaking, uniform primitives allow programmers to both spec-
ify and (statistically) predict the probability to retrieve one
specific tuple among a bag of matching tuples, thus making it
possible to statistically control non-deterministic systems.

Accordingly, in this paper we first define uniform prim-
itives based on the probabilistic framework from [9] (Sec-
tion II), then demonstrate their expressive power both formally
– by exploiting probabilistic modular embedding [10] – and by
discussing some examples (Section III). Finally, we compare
uniform primitives with other approaches in probabilistic and
stochastic coordination (Section IV).

II. UNIFORM PRIMITIVES

LINDA getter primitives – that is, data-retrieval primitives
in and rd – are shared by all tuple-based coordination models,
and provide them with don’t know non-determinism: when one
or more tuples in a tuple space match a given template, any
of the matching tuples can be non-deterministically returned.

In a single getter operation, only a point-wise property
affects tuple retrieval: that is, the conformance of a tuple to
the template, independently of the spatial context—namely,
the other tuples in the same space. Furthermore, in a sequence
of getter operations, don’t know non-determinism makes any
prediction of the overall behaviour impossible: e.g., reading
one thousand times the same template in a tuple space with
ten matching tuples could possibly lead to retrieving the
same tuple all times, or one hundred times each, or whatever
admissible combination one could think of—no prediction
possible, according to the model. Again, then, only a point-
wise property can be ensured even in time: that is, only the
mere compliance to the model of each individual operation in
the sequence.

Instead, uniform primitives enrich tuple-based coordination
models with the ability of performing operations that ensure
global system properties instead of point-wise ones, both
in space and in time. More precisely, uniform primitives
replace don’t know non-determinism with probabilistic non-
determinism to situate a primitive invocation in space – the
tuple actually retrieved depends on the other tuples in the
space – and to predict its behaviour in time — statistically,



the distribution of the tuples retrieved will tend to be uniform,
over time.

Whereas exploiting probabilistic non-determinism to its
full extent would lead to the definition of the complete set of
uniform coordination primitives – including, e.g., uinp and
urdp primitives –, here we aim at understanding the fun-
damental mechanisms making tuple-based models well suited
for complex system coordination, by enhancing them with
the probabilistic mechanisms for modelling the stochastic be-
haviours typically required by adaptivity and self-organisation.
Accordingly, in this paper we focus only on the two uniform
primitives (uin, urd) that specialise the basic LINDA getter
primitives. In the remainder of this section, first (Subsec-
tion II-A) we define them informally, then (Subsection II-B)
we provide them with a formal semantic specification accord-
ing to the probabilistic framework defined in [9].

A. Informal semantics

The main motivation behind uniform primitives is to intro-
duce a simple yet expressive probabilistic mechanism in tuple-
based coordination: simple enough to work as a specialisation
of standard LINDA operations, expressive enough to model the
most relevant stochastic behaviours of complex computational
systems such as adaptive and self-organising ones.

Whereas expressiveness is discussed in Section III, simplic-
ity is achieved by defining uniform primitives as specialised
versions of standard LINDA primitives: so, first of all, uin
and urd are compliant with the standard semantics of in and
rd. In the same way as in and rd, uin and urd ask tuple
spaces for one tuple matching a given template, suspend when
no matching tuple is available, return a matching tuple chosen
non-deterministically when one or more matching tuples are
available in the tuple space. As a straightforward consequence,
any tuple-based coordination system working with in and rd
would also work by using instead uin and urd, respectively—
and any process using in and rd could adopt uin and urd
instead without any further change.

On the other hand, the nature of the specialisation lays
precisely in the way in which a tuple is non-deterministically
chosen among the (possibly) many tuples matching the tem-
plate. While in standard LINDA the choice is performed
based on don’t know non-determinism, uniform primitives
exploit instead probabilistic non-determinism with uniform
distribution. So, if a standard getter primitive requires a tuple
with template T , and m tuples t1, .., tm matching T are
in the tuple space when the request is executed, any tuple
ti∈{1..m} could be retrieved, but nothing more could be said—
no other assertion is possible about the result of the getter
operation. Instead, when a uniform getter primitive requires a
tuple with template T , and m tuples t1, .., tm matching T are
available in the tuple space when the request is served, one
assertion is possible about the result of the getter operation:
that is, each of the m matching tuples ti∈{1..m} has exactly
the same probability 1/m to be returned. So, for instance,
if 2 colour(blue) and 3 colour(red) tuples occur in
the tuple space when a urd(colour(X)) is executed, the
probability of the tuple retrieved to be colour(blue) or
colour(red)) is exactly 40% or 60%, respectively.

Operationally, uniform primitives behave as follows. When
executed, a uniform primitive takes a snapshot of the tuple
space, “freezing” its state at a certain point in time—and space,
being a single tuple space the target of basic LINDA primitives.
The snapshot is then exploited to assign a probabilistic value
pi ∈ [0, 1] to any tuple ti∈{1..n} in the space—where n is the
total number of tuples in the space. There, non-matching tuples
have value p = 0, matching tuples have value p = 1/m (where
m ≤ n is the number of matching tuples), and the overall sum
of probability values is

∑
i=1..n pi = 1. The choice of the

matching tuple to be returned is then statistically based on the
computed probabilistic values.

As a consequence, while standard getter primitives exhibit
point-wise properties only, uniform primitives feature global
properties, both in space and time. In terms of spatial con-
text, in fact, standard getter primitives can return a matching
tuple independently of the other tuples currently in the same
space—so, they are “context unaware”. Instead, uniform getter
primitives return matching tuples based on the overall state
of the tuple space—so, their behaviour is context aware. In
terms of time, too, sequences of standard getter operations
present no meaningful properties. Instead, by definition, se-
quences of uniform getter operations tend to globally exhibit a
uniform distribution over time. So, for instance, performing N
urd(colour(X)) operations over a tuple space containing
10 colour(white) and 100 colour(black) tuples,
leads to a sequence of returned tuples which, while N grows,
would tend to contain ten times more colour(black)
tuples than colour(white) ones.

B. Formal semantics

In order to define the semantics of (getter) uniform prim-
itives, we rely upon a simplified version of the process-
algebraic framework in [9], dropping multi-level priority prob-
abilities. In detail, we exploit closure operator ↑, handles h,
and closure term G as follows:

(i) handles coupled to actions (open transitions) represent
tuple templates associated with primitives;

(ii) handles listed in closure term G represent tuples
offered (as synchronisation items) by the tuple space
(modelled as a process);

(iii) closure term G associates handles (tuples) with their
cardinality in the tuple space;

(iv) closure operator ↑ (a) matches admissible synchroni-
sations between processes and the tuple space, and
(b) computes their associated probability distribution
based upon handle-associated values.

It is worth to note that closure operator ↑ could be seen as
following our statistical interpretation of a uniform primitive:
it takes a snapshot of the tuple space state – matching, step
(a) – then samples it probabilistically — sampling, step (b).

1) Semantics of uin (uniform consumption): Three transi-
tion rules define the operational semantics of the uin primitive
for uniform consumption:

[SYNCH-C] Open transition representing the request for process-
space synchronisation upon template T , which leads
to the snapshot:



uinT .P | 〈t1, .., tn〉
T−→

uinT .P | 〈t1, .., tn〉 ↑ {(t1, v1), .., (tn, vn)}

where vi=1..n = µ(T, ti), and µ(·, ·) is the standard
matching function of LINDA, hence ∀i, vi ::= 1 | 0.

[CLOSE-C] Closed unlabelled transition (reduction) representing
the internal computation assigning probabilities to
synchronisation items (uniform distribution computa-
tion):

uinT .P | 〈t1, .., tn〉 ↑ {(t1, v1), .., (tn, vn)}
↪→

uinT .P | 〈t1, .., tn〉 ↑ {(t1, p1), .., (tn, pn)}

where pj =
vj∑n
i=1 vi

is the absolute probability of
retrieving tuple tj , with j = 1..n.

[EXEC-C] Open transition representing the probabilistic response
to the requested synchronisation (the sampling):

uinT .P | 〈t1, .., tn〉 ↑ {.., (tj , pj), ..}
tj−→pj

P [tj/T ] | 〈t1, .., tn〉\tj

where [·/·] represents term substitution in process P
continuation, and \ is multiset difference, expressing
removal of tuple tj from the tuple space.

2) Semantics of urd (uniform reading): As for standard
LINDA getter primitives, the only difference between uniform
reading (urd) and uniform consumption (uin) is the non-
destructive semantics of the reading primitive urd. This is
reflected by EXEC-R open transition:

[EXEC-R] The same as EXEC-C, except for the fact that it does not
remove matching tuple

urdT .P | 〈t1, .., tn〉 ↑ {.., (tj , pj), ..}
tj−→pj

P [tj/T ] | 〈t1, .., tn〉

whereas other transitions are left unchanged.

3) Example: As an example, in the following system state

uinT .P | 〈ta, ta, tb, tc〉

where µ(T, tx) holds for x = a, b, c, the following synchroni-
sation transitions are enabled:

(a) uinT .P | 〈ta, ta, tb, tc〉
ta−→0.5 P [ta/T ] | 〈ta, tb, tc〉

(b) uinT .P | 〈ta, ta, tb, tc〉
tb−→0.25 P [tb/T ] | 〈ta, ta, tc〉

(c) uinT .P | 〈ta, ta, tb, tc〉
tc−→0.25 P [tc/T ] | 〈ta, ta, tb〉

For instance, if transition (a) wins the probabilistic selection,
then the system evolves according to the following trace—
simplified by summing up cardinalities and probabilities in
order to enhance readability:

uinT .P | 〈ta, ta, tb, tc〉
T−→

uinT .P | 〈ta, ta, tb, tc〉 ↑ {(ta, 2), (tb, 1), (tc, 1)}

↪→
uinT .P | 〈ta, ta, tb, tc〉 ↑ {(ta, 12 ), (tb,

1
4 ), (tc,

1
4 )}

ta−→ 1
2

P [ta/T ] | 〈ta, tb, tc〉

III. EXPRESSIVENESS

In [11], authors demonstrate that LINDA-based languages
cannot implement probabilistic models: a LINDA process cal-
culus, although Turing-complete, is not expressive enough to
express probabilistic choice [11]. In our specific case, the gain
of expressiveness is formally proven in [12], where uniform
primitives are formally proven to be strictly more expressive
than standard LINDA coordination primitives by exploiting
probabilistic modular embedding (PME) [10], an extension
to modular embedding [13] explicitly meant to capture the
expressiveness of stochastic systems.

In particular, if we denote with ULINDA the LINDA co-
ordination model where standard getter primitives rd and in
are replaced with uniform getter primitives urd and uin, then
ULINDA is proven to be strictly more expressive than LINDA
according to PME, since ULINDA probabilistically embeds
(�p) LINDA, but not the other way around—so that formally,
according to PME, LINDA and ULINDA are not observationally
equivalent (6≡o):

ULINDA �p LINDA, LINDA 6�p ULINDA
=⇒ ULINDA 6≡o LINDA

Since formally asserting a gap in expressiveness does not
necessarily make it easy for the reader to fully appreciate
how much this can make the difference for adaptive and
self-organising systems, in the remainder of this section we
discuss two examples showing how uniform primitives make
it possible to (i) have some self-organising property appear by
emergence (Subsection III-A), and (ii) straightforwardly design
stochastic systems reproducing some simple yet meaningful
nature-inspired behavioural pattern, such as pheromone-based
coordination (Subsection III-B).

1 LogicTuple templ;
2 while(!die){
3 templ = LogicTuple.parse("ad(S)");
4 // Pick a server probabilistically
5 op = acc.urd(tid, templ, null);
6 // Plain Linda version
7 // op = acc.rd(tid, templ, null);
8 if (op.isResultSuccess()) {
9 service = op.getLogicTupleResult();

10 // Submit request
11 req = LogicTuple.parse(
12 "req("+service.getArg(0)+","+reqID+")"
13 );
14 acc.out(tid, req, null);
15 }
16 }

Fig. 1. Java code for clients looking for services.



Fig. 2. Clients using rd primitive: service provider 1 is under-exploited.

A. Load Balancing

In order to better explain what the “basic mechanisms
enabling self-organising coordination” actually are – that is,
a minimal construct able (alone) to impact the observable
properties of a coordinated system – we discuss the following
scenario: two service providers are both offering the same ser-
vice to clients – through proper “advertising tuples” –; the first
is slower than the second, that is, it needs more time to process
a request—thus modelling differences in computational power.

Their working cycle is quite simple: a worker thread gets
requests from a shared tuple space, then puts them in the
master thread (the actual service provider) bounded queue. The
master thread continuously polls the queue looking for requests
to serve: when one is found, it is served, then the master
emits another advertising tuple; if none is found, the master
does something else, then re-polls the queue—no advertising is
done. The decoupling enforced by the queue is useful to model
the fact that service providers should not block on the space
waiting for incoming requests, so as to be free of performing
other jobs meanwhile—e.g. reporting, resource clean-up, etc.
The queue is bounded to model memory constraints.

In this setting, clients (whose Java code is listed in Fig. 1)
search for available services first via rd primitive (Fig. 2),
then via urd (Fig. 3). All charts’ values are not single runs,
but average values resulting from different runs—e.g., value
plotted at time step 60 is not that of a single run, but the
average of the number of requests observable at time step 60
of a number of runs (actually, 30).

By using the rd primitive we blindly commit to the actual
implementation of the LINDA model currently at hand. For in-
stance, Fig. 2 gives some hints about the implementation used

Fig. 3. Clients using urd primitive: a certain degree of fairness is guaranteed,
based on self-organisation.

for our simulation – the TuCSoN coordination middleware
[14], [15] –: since provider 1 is almost unused, we understand
that rd is implemented as a FIFO queue, always matching the
first tuple among many ones—provider 2 advertising tuple,
in this case. The point here is that such a prediction was not
possible prior to the simulation, and with no information about
the actual LINDA implementation used.

By using primitive urd instead (Fig. 3), we know – and
can predict – how much each service provider will be exploited
by clients: since we know by design that after successfully
serving a request a provider emits an advertising tuple, and that
such tuples are those looked for by clients, we know that the
faster provider will produce more tuples, hence it will be more
frequently found than the slower one. From Fig. 3 charts, in
fact, we can see how the system of competing service providers
self-organises by splitting incoming requests. Furthermore,
such split is not statically designed or superimposed, but
results by emergence from a number of run-time factors, such
as clients interactions, service providers computational load,
computational power, and memory. It should also be noted
that such form of load balancing is not the only benefit
gained when using urd over rd: actually, the urd simulation
successfully serves ' 1600 requests – distributed among
providers 1 and 2 according to uniform primitive semantics –
losing ' 600, whereas the rd simulation serves successfully
' 1250 – leaving provider 1 unused – losing over 2500.

B. Pheromone-based coordination

In pheromone-based coordination used by ants to find
optimal paths – as well as by many ant-inspired computational
systems, such as [16], [17] – each agent basically wanders



Fig. 4. Digital ants search food (top box) wandering randomly from their
anthill (bottom box).

randomly through the network until it finds a pheromone trail,
which the agent is likely to follow based on the trail “strength”.

Here, aspects such as pheromone release, scent, and evap-
oration [16] are not relevant: instead, the above-mentioned
notions of “randomness” and “likelihood” are on the one hand
essential for pheromone-based coordination, on the other hand
require uniform primitives to be designed using a tuple-based
coordination model. In particular, we consider a network of
n nodes representing places pi, with i = 1..n, through which
ant agents walk. The default tuple space in node pi contains
at least one neighbour tuple n(pj) for each neighbour node
pj and the neighbourhood relation is reflexive—so, if node pi
and pj are neighbours, pi tuple space contains tuple n(pj)
and pj tuple space contains tuple n(pi). Pheromone deposit
in node pi is modelled by the insertion of a new tuple n(pi)
in every neighbour node pi.

Thus, ants wandering through places and ants following
trails can both be easily modelled using uniform primitives: ant
agents just need to look locally for neighbour tuples through a
urd(n(P)). If no pheromone trail is to be detected nearby,
every neighbour place is represented by a single tuple, so all
neighbour places have the same probability to be chosen—
thus leading to random wandering of ants. In case some of
the neighbours contains a detectable trail, the corresponding

Fig. 5. By urd-ing digital pheromones left while carrying food, digital ants
stochastically find the optimal path toward the food source.

neighbour tuple occurs more than once in the local tuple
space: so, by using uniform primitives, the tuple corresponding
to a neighbour place with a pheromone trail has a greater
probability to be chosen than the others.

For instance, say p1, p2, p3 are neighbour places. Without
a pheromone trail, an ant in p1 moves to either p2 or p3 with
the same probability, starting from the following system state:

urd(n(X)).P | 〈n(p2),n(p3)〉

There, the enabled synchronisation transitions are

(a) urd(n(X)).P | 〈n(p2),n(p3)〉
n(p2)−→ 0.5

P [p2/X] | 〈n(p2),n(p3)〉

(b) urd(n(X)).P | 〈n(p2),n(p3)〉
n(p3)−→ 0.5

P [p3/X] | 〈n(p2),n(p3)〉

that is, an ant agent in p1 has the same probability (50%) to
move to either p2 or p3—which exactly models random ant
wandering.



Instead, if a pheromone trail involves p3 – so that for
instance p1 contains 2 tuples n(p3) – the initial system state
would be

urd(n(X)).P | 〈n(p2),n(p3),n(p3)〉

There, the enabled synchronisation transitions are

(c) urd(n(X)).P | 〈n(p2),n(p3),n(p3)〉
n(p2)−→ 0.3

P [p2/X] | 〈n(p2),n(p3),n(p3)〉

(d) urd(n(X)).P | 〈n(p2),n(p3),n(p3)〉
n(p3)−→ 0.6

P [p3/X] | 〈n(p2),n(p3),n(p3)〉

which exactly models the fact that the ant agent in p1 is
more likely to move to p3 than to p2, thus (probabilistically)
following the pheromone trail.

A crucial point, here, is to understand the issue of system
predictability with / without uniform primitives. Reachable
states for the system above would not change by replacing
urd with rd: the transitions above would work in the same
way apart from probabilistic labelling. This essentially means
that a standard LINDA coordinated system would potentially
reach the same states as the one with uniform primitives: the
point is, nevertheless, that quantitative information would be
available for the latter system, not for the former.

In particular, in the second example above, the reachable
states are (c) P [p2/X] | 〈n(p2),n(p3),n(p3)〉 and (d)
P [p3/X] | 〈n(p2),n(p3),n(p3)〉. Using urd, we know
that states (c) and (d) would be reached with probability .3 and
.6, respectively: so, both a probabilistic prediction on the single
system run, and a statistic prediction over multiple system runs
are made possible by the use of uniform primitives. The usage
of rd, instead, allows for nothing similar: we just know that
both states (c) and (d) could be reached, but no quantitative
predictions of any sort are possible.

Fig. 6. Pheromones strength across time. Descending phase corresponds to
food depletion in food tuple centre: no new pheromones added, evaporation
makes strength decline.

Our experiments are conducted in a toy scenario involving
digital ants and pheromones programmed in ReSpecT [18]
upon the TuCSoN coordination middleware [14]. The experi-
ment involves ten digital ants starting from the anthill with the
goal of finding food, and follows the “canonical” assumptions
of ant systems. So, at the beginning, any path has equal
probability of being chosen, thus modelling random walking of
ants in absence of pheromone. As ants begin to wander around,
eventually they find food, and release pheromone on their path
while coming back home. As a consequence, the shortest path
eventually gets more pheromone since it takes less time to
travel on it rather than on the longest path. Pheromones as well
as connections between tuple centres are modelled as described
above, with “neighbour” tuples: the more neighbour tuples of
a certain type, the more likely ants will move to that neighbour
tuple centre with their next step.

Fig. 4 and Fig. 5 depict a few screenshots of our toy
scenario: there, five distributed tuple centres (the larger boxes)
model a topology connecting the anthill (bottom box) to a
food source (top box): the leftmost path is longer, whereas
the rightmost is shorter. The green “spray-like” effect on paths
(black lines) models the strength of the pheromone scent: the
greater and greener the path, the more pheromones lay on it.

By plotting pheromones strength evolution over time, Fig. 6
simply shows how our expectations about digital ants be-
haviour are met: in fact, despite starting from the situation in
which any path is equi-probable (the amount of pheromones on
the shortest path is the same as on the longest path), eventually
the system detects the shortest path, which becomes the most
exploited—and contains in fact more pheromone units.

In the Java code describing the behaviour of ants (Fig. 7), in
particular in method smellPheromone() (line 10), usage
of the uniform primitive urd is visible on line 27, whereas
line 29 shows the tuple template given as its argument, that
is, n(NBR): at runtime, NBR unifies with a TuCSoN tuple
centre identifier, making it possible for the ant to move there.
Quite obviously, the idea here is not just showing a new
way to model ant-like systems. Instead, the example above
is meant to point out how a non-trivial behaviour – that is,
dynamically solving a shortest path problem – can be achieved
by simply substituting uniform primitives to traditional LINDA
getter primitives—which instead would not allow the system
to work as required. Furthermore, the solution is adaptive,
fully distributed, and based upon local information solely –
thus, it appears by emergence –, and robust against topology
changes—a ReSpecT specification implementing evaporation
was used, although not shown for the lack of space.

IV. RELATED WORKS

Uniform primitives were first used in [19] as a tool for
solving a specific coordination problem, called collective sort:
however, neither there, nor in subsequent papers [20], [8],
they were given but a few lines of informal definition, and
their general role in the coordination of complex computational
systems was not yet clarified.

In [21], similar primitives are presented and formally
defined to forge the biochemical tuple space notion, leading a
tuple space to act as a chemical simulator. There, tuples are
enriched with an activity/pertinency value – similarly to the



quantitative information defined in [11] – to resemble chemical
concentrations, therefore LINDA primitives are necessarily
refined with the ability to consider such numerical label. So,
the main point of difference w.r.t. therein defined primitives is
that (i) here we rely on tuples multiplicity to model probability,
leaving the LINDA tuples structure untouched, (ii) uniform
primitives are scheduled and executed as LINDA classical get-
ter primitives, while in [21] their primitives have a stochastic
rate of execution equipped.

To the best of our knowledge, proposals presented to extend
LINDA with probabilities follow two main approaches [22]:

• data-driven models, where the quantitative informa-
tion required to model probability is associated with
the data items – the tuples – in the form of weights.
This approach is adopted in ProbLinCa [11], the
probabilistic version of a LINDA-based process calcu-
lus.

• schedule-driven models, where the quantitative in-
formation is added to the processes using special
“probabilistic schedulers”. This is the approach taken
by [22] to define a probabilistic extension of the
KLAIM model named PKLAIM.

Instead, our approach belongs to a third, novel category –

1 while (!stopped) {
2 if (!carryingFood) {
3 // If not carrying food
4 isFood = smellFood();
5 if (isFood) {
6 // pick up food if any
7 pickFood();
8 } else {
9 // or stochastically follow pheromone

10 direction = smellPheromone();
11 move(direction);
12 }
13 } else {
14 // If carrying food
15 if (isAnthill()) {
16 // drop food if in anthill
17 dropFood();
18 } else {
19 // or move toward anthill
20 direction = smellAnthill();
21 move(direction);
22 }
23 }
24 }
25
26 private LogicTuple smellPheromone() {
27 ITucsonOperation op = acc.urd(
28 tcid,
29 LogicTuple.parse("n(NBR)"),
30 TIMEOUT
31 );
32 if (op.isResultSuccess()) {
33 return op.getLogicTupleResult();
34 }
35 }

Fig. 7. Java code for ants.

which we call interaction-driven – where probabilistic be-
haviour is (i) associated to communication primitives – thus,
neither to processes (or schedulers), nor to tuples – and (ii)
enacted during the interaction between a process and the
coordination medium—that is, solely through such primitives.

Also, uniform primitives can be seen as complementary
to both the approaches taken in ProbLinCa and PKLAIM,
where the basic LINDA model is changed quite deeply. Uni-
form primitives, instead, extend LINDA by specialising stan-
dard LINDA primitives, without changing neither tuple struc-
ture nor scheduling policy. Furthermore, uniform primitives
could be used to emulate both approaches: tuple weights could
be reified by their multiplicity in the space, whereas probabilis-
tic scheduling could be obtained by properly synchronising
processes upon probabilistic consumption of shared tuples.
Moreover, uniform coordination primitives could be used in
place of LINDA standard ones without affecting the model,
merely refining don’t care non-determinism as probabilistic
non-determinism: as a result, all the expressiveness results and
all the applications based on the canonical LINDA model do
still hold using uin and urd instead of in and rd.

More complex coordination models exist in literature for
which uniform primitives could play a key role in providing
the probabilistic mechanisms required for the engineering of
stochastic systems like adaptive and self-organising ones.

STOKLAIM [23] is an extension to KLAIM in which
process actions are equipped with rates affecting execution
probability, and execution delays as well—that is, time needed
to carry out an action. By reifying action rates as tuples in
the space, with multiplicity proportional to rates, uniform-
reading such tuples would allow to probabilistically schedule
actions’ execution à la STOKLAIM. Furthermore, delays could
be emulated, too, by uniform-reading a set of “time tuples”,
where a higher value corresponds to a lower action rate.

SAPERE [5] is a biochemically-inspired model for the
engineering of complex self-organising and adaptive pervasive
service ecosystems, where agents share LSAs (Live Semantic
Annotation), which could be thought of as a special kind of
tuples, representing them in shared contexts, and allowing them
to interact and pursue their own goals. LSAs are managed
through eco-laws, which are some sort of chemical-like rules,
scheduled according to their rates Hence, uniform primitives
could play in SAPERE the same role as in STOKLAIM—once
eco-laws are reified as tuples with a multiplicity proportional to
execution rate. Furthermore, from the pool of all LSAs which
can participate in a eco-law, the ones actually consumed by the
law – as chemical reactants – are selected probabilistically.
Once again, such behaviour could be enabled by uniform
consumption of reactant LSAs in eco-laws.

V. CONCLUSION

In this paper we formally define uniform primitives as
simple specialisation of standard LINDA coordination prim-
itives, exploiting probabilistic non-determinism in place of
don’t know non-determinism. We argue that uniform primitives
introduce a simple yet powerful mechanism enhancing tuple-
based coordination with the ability to express and predict
stochastic behaviours, thus to design complex coordinated
systems featuring adaptiveness and self-organisation.
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