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Abstract—To cope with nowadays MAS complexity, nature-
inspired coordination models and languages gained increasing
attention: in particular, biochemical coordination models. Being
intrinsically stochastic and self-organising, the effectiveness of
their outcome likely depends on a correct parameter tuning stage.
In this paper, we focus on chemical reactions rates, showing
that simply imitating chemistry “as it is” may be not enough
for the purpose of effectively engineer complex, self-organising
coordinated systems such as MoK .

I. INTRODUCTION

Nowadays MAS are demanding new paradigms and ab-
stractions to deal with their increasing complexity [1]. Such
complexity is mostly due to the number and nature of interac-
tions happening within and between MAS [2], [3]. Coordina-
tion models and languages – whose main goal is to govern
such interactions [4] – have historically drawn inspiration
from self-organising coordination in natural phenomena—
e.g., pheromone-based [5] and chemical [6] coordination.
Among the many, biochemical coordination has been shown
to be particularly effective [7], [8]. Here, there is no central
authority ruling the interaction space. Instead, a number of
local, stochastic coordination rules, to which all the interacting
agents “implicitly” obey – as they are the “laws of nature” –
drive MAS coordination. Thus, it happens by emergence as
a consequence of the self-organisation between MAS coordi-
nated entities. Being a self-organising process, coordination
effectiveness likely depends on a correct parameter tuning
stage, often performed in loop with a simulation stage [9].

In the case of biochemical coordination, being the “laws
of nature” the (artificial) chemical reactions installed in the
coordination medium, such parameters are, e.g., the rate of
application of a chemical reaction, the concentration of the
chemicals participating the reaction and their stoichiometry—
the “extent” to which chemicals participate. In this paper, we
focus on rates, aiming at a twofold goal:

• on one hand, showing that the law of mass action
for rate expressions may be not enough to effectively
engineer a biochemical coordination middleware

• on the other hand, highlighting that designing arbitrary
functional rates demands for a disciplined and prin-
cipled approach different from “parameter tuning”,
which we call parameter engineering.

In particular, such goals are defined w.r.t. the MoK model
and the BioPEPA tool, used as the subject and the means
of investigation, respectively. Nevertheless, a generalisation

of such goals suitable for any kind of nature-inspired MAS
is possible. First of all, the fact that a given natural system
works properly relying on a given set of parameters, each of
which has a given set of functional dependencies with others,
doesn’t necessarily mean that the same sets of parameters
and functional dependencies will work for an artificial system
drawing inspiration from the natural one. Then, to proficiently
identify the relevant parameters and engineer their (possibly
reciprocal) functional dependencies, a proper methodology is
needed—which will likely rely on simulations.

Accordingly, the remainder of the paper is organized as
follows: Section II explains what biochemical coordination
is (Subsection II-A) and reminds the importance of simula-
tion tools for self-organising systems development (Subsec-
tion II-B), also describing the MoK model (Subsection II-A1)
as well as the BioPEPA tool (Subsection II-B1); Section III
conveys the main contribution of the paper, introducing and
motivating the notion of parameter engineering through a
number of functional rates engineering examples; finally, Sec-
tion IV concludes also giving some hints about further works.

II. BACKGROUND

A. Biochemical Coordination

The chemical metaphor appears particularly appealing for
MAS coordination due to the simplicity of its foundation
[6]. The idea is to coordinate any MAS entity (agents as
well as information) as “molecules” floating in a chemical
“solution”, whose evolution is driven by chemical “reactions”
continuously and spontaneously consuming and producing
molecules. As many chemical reactions can occur at a given
time, chemical solution evolution is driven by race conditions
among their rates, which means certain reactions are stochas-
tically executing over others—as in chemistry actually is [10].

Biochemical tuple spaces [7] enhance such metaphor by
adding a spatial abstraction: the compartment. A compartment
is a tuple space equipped with biochemical reactions, driving
the evolution of the molecules floating in it. Compartments
may be networked in “neighbourhoods” as in chemistry hap-
pens through membranes, so as to shape more complex spatial
structures—such as tissues and organs. Computationally, bio-
chemical tuple spaces are a stochastic extension of the LINDA
model [11]: the idea is to equip each tuple with a “concentra-
tion” value, representing a measure of the pertinency/activity
of the tuple (molecule) within the space (compartment)—
the higher it is, the more likely and frequently the tuple
will influence system coordination [7]. Such concentration is



evolved by biochemical rules installed into the compartment,
affecting concentration values over time exactly in the same
way chemical substances evolve into chemical solutions [10]—
that is, according to the law of mass action [12], [10].

The law of mass action is1 a mathematical model that
explains and predicts the behaviour of solutions in dynamic
equilibrium. It can be described with respect to two aspects:
(i) the equilibrium aspect, concerning the composition of a
reaction mixture at equilibrium and (ii) the kinetic aspect,
concerning the rate equations for elementary reactions. The
law states that the rate of an elementary reaction (rf ) – a
reaction that proceeds through only one transition state, that is
one mechanistic step – is proportional (kf ) to the product of
the concentrations of the participating molecules (R1, R2):

rf = kf [R
1][R2]

kf is called rate constant and, in chemistry, is a function of
participating molecules affinity—to learn more, please refer to
[12] and therein cited bibliography.

The MoK model, briefly described in next section, models
MAS coordinated entities as well as coordination processes
by (i) adopting the chemical metaphor abstractions and (ii)
borrowing (to some extent) from biochemical tuple spaces the
computational model.

1) The MoK Model: M olecules of K nowledge [13]
(MoK for short) is a model for knowledge self-organisation
in MAS. The main goals of MoK are:

• to let information chunks autonomously aggregate into
heaps of knowledge

• to let knowledge autonomously flow toward the inter-
ested agents—rather than be searched

Here follows a brief summary of MoK model components—
consider reading [13] and [14] for MoK formalisation and
early application respectively:

• MoK atoms — produced by a given source to convey
an “atomic piece of information”, atoms should also
store some metadata to ease semantic characterisation

• MoK molecules — “heaps” for information aggrega-
tion, they cluster together semantically related atoms

• MoK enzymes — enzymes reify knowledge-oriented
(inter-)actions made by agents and are meant to influ-
ence molecules’ concentration2

• FM oK function — as a knowledge-driven model,
MoK must have a way to determine the seman-
tic correlation between information, therefore, the
MoK function FM oK should be defined, taking two
molecules and returning a value m ∈ [0, 1].

• MoK reactions — the behaviour of a MoK system is
determined by biochemical reactions, which stochas-
tically – according to their rate – drive molecules
aggregation, reinforcement, decay, and diffusion:

1From http://en.wikipedia.org/wiki/Law of mass action.
2Please, notice that an atom is a “singleton molecule”, hence the term

“molecule” will be used also for “atom” from now on.

◦ Aggregation3 — bounds together semantically
related molecules

◦ Reinforcement — consumes an enzyme to
reinforce the related molecule
enzyme(Molecule1) + Molecule1c 7−→rreinf

Molecule1c+1

◦ Decay — enforcing time situatedness,
molecules should fade away as time passes

Moleculec 7−→rdecay Moleculec−1

◦ Diffusion — space situatedness is inspired
by biology, therefore based upon diffusion to
neighbouring compartments (tuple spaces)

{Molecule1
⋃
Molecules1}σi

+ {Molecules2}σii
7−→rdiffusion

{Molecules1}σi + {Molecules2
⋃
Molecule1}σii

These four biochemical reactions are the minimum set of
coordination mechanisms believed (at the moment) to be
necessary and sufficient to properly drive a MoK -coordinated
MAS toward the desired behaviour regarding knowledge self-
organisation. Nevertheless, this set may be refined and ex-
tended if its lack of expressiveness w.r.t. MoK desiderata be-
comes evident. Anyway, having a well-defined set of primitives
is a necessary step to start distinguishing what sorts of self-
organising behaviours can and cannot be achieved with MoK .

In fact, once such primitives are fixed, we can focus on the
issue of properly engineering their rate expressions—rreinf ,
rdecay , rdiffusion. In particular: is it sufficient to stick with the
law of mass action to achieve MoK goals, or should we build
our “custom” functional dependencies? If so, which parameters
and which kind of dependencies (direct, inverse, etc.) are to
be used in each rate expression? And how can MAS designers
make such decisions?

Section III answers these questions through a number of
examples exploiting the BioPEPA simulation tool – briefly
described in next section – to analyse different alternatives
regarding MoK reactions rate expressions.

B. Biochemical Simulation

Simulation has been widely recognized as a fundamental
development stage in the process of designing and implement-
ing both MAS as well as biochemical processes [16], [9]. This
is mostly due to the high number of system parameters needed,
the huge number of local interactions between components, the
influence of randomness and probability on system evolution.
A number of different simulation tools capable of modeling
biochemical-like processes exist, either born in the biochem-
istry field (see [17] for a survey) or in the (Multi-)Agent Based
Simulation research area (survey in [18]). Among the many,
ALCHEMIST [19], PRISM [20], and BioPEPA [12] at least,
are worth to be mentioned. Our choice fell on the latter for its
appealing features – briefly described in next section – which
perfectly suit the purpose of the paper.

3Aggregation reaction formalisation is not shown here because it has been
left out from BioPEPA simulations for the lack of expressiveness of the tool.
To learn more, please refer to the technical report [15].

http://en.wikipedia.org/wiki/Law_of_mass_action


1) The Bio-PEPA Tool: BioPEPA [12] is a language for
modeling and analysis of biochemical processes. It is based on
PEPA [21], a process algebra originally aimed at performance
analysis of software systems, extending it to deal with some
features of biochemical networks, such as stoichiometry and
different kinds of kinetic laws—including the law of mass
action. The most appealing features of BioPEPA are:

• custom kinetic laws represented by means of func-
tional rates

• definition of stoichiometry (“how many” molecules of
a given kind participate) and role played by the species
(reactant, product, enzyme, . . . ) in a given reaction

• theoretical roots in CTMC semantics—behind any
BioPEPA specification lies a stochastic labelled tran-
sition system modeling a CTMC

In BioPEPA, rate expressions are defined as mathematical
equations involving reactants’ concentrations (denoted with
the reactant name and dynamically computed at run-time)
and supporting mathematical operators (e.g. exp and log
functions) as well as built-in kinetic laws (e.g. the law of mass
action, denoted with the keyword fMA) and time dependency
(through the variable time, changing value dynamically ac-
cording to the current simulation time step)4. The BioPEPA
Eclipse plugin5 is the tool used in next section to investigate
MoK reactions’ rates influence on system behaviour.

III. PARAMETER ENGINEERING IN RATE EXPRESSIONS

As far as nature-inspired MAS are concerned, simulation
tools are usually exploited to study how those parameters
inherited from the natural metaphor influence the overall MAS
behaviour. This is done with the aim to fine-tune such param-
eters value so as to get the better run-time “performances”—
whatever this means (often, a behaviour closer to that exhibited
in nature).

But, what about the question of wether the natural system’s
parameters are well suited also for the artificial one? In
particular, w.r.t. biochemical coordination (thus, MoK also):
what about shaping our own rate expressions for biochemical
reactions rather than blindly relying on the law of mass action
to define their functional dependencies? Do we gain any
improvement w.r.t. the overall coordinated MAS behaviour?
Furthermore: can the same improvement be achieved by simply
fine-tuning the natural system’s parameters as they are in
nature (e.g. the law of mass action constant rate)?

Through the following experiments, we aim at answering
this kind of questions, hopefully achieving our twofold goal:

• showing that the law of mass action is too weak
to effectively express a number of self-organising
behaviours—such as MoK ’s

• highlighting that shaping custom functional dependen-
cies for rate expressions is a complex task demanding

4To learn more about BioPEPA syntax, please refer to [12].
5Instructions on how to install at http://homepages.inf.ed.ac.uk/s9552712/

bio-pepa/download.html, manual at http://homepages.inf.ed.ac.uk/stg/research/
biopepa/eclipse/manual/manual.pdf

a well-engineered approach—indeed, parameter engi-
neering prior to parameter tuning

By generalisation, our first goal aims at showing there is the
need to consider re-engineering natural system’s parameters, as
well as their functional dependencies, so as to better cope with
the problem at hand—as done with other natural metaphors:
most notably, the ACO approach to distributed optimisation, in
which the original “ant” metaphor is indeed just a metaphor,
not the actual implementation [22].

Therefore, for each of the following experiments, we (i)
identify which are the desiderata for the MAS run-time be-
haviour, (ii) engineer rates by designing functional dependen-
cies which are likely to pursue the chosen goal, (iii) include a
pure parameter tuning stage to fine-tune the MAS behaviour (if
needed). All of this is done one reaction (coordination policy)
at a time, thus one functional rate at a time, incrementally
accumulated until composing the whole MAS behaviour. This
approach is what we call parameter engineering.

Furthermore, a principle we believe to be extremely im-
portant for engineering self-organsing systems will be kept in
mind: keeping the number of external parameters as small as
possible. For “external” we mean parameters which are ad hoc
added to the coordination model – MoK in our case – to better
design functional rate expressions—e.g., the law of mass action
constant rate. On the contrary, internal parameters are those
already present in the coordinated MAS—e.g., in the case of
MoK , the concentration of the reactants or the time flowing.
The advantage of using internal parameters as opposed to
external ones, lies in the fact that a system using more internal
parameters than external ones is much more adaptive and self-
regulating, since it only relies on “within-system” information
rather than on “outside-system” data to dynamically adjust its
behaviour—in the case of MoK , reactions’ rates.

Technical Notes on Experiments: Each of the following
experiments has been performed by using Gillespie’s stochastic
simulation algorithm in 30 independent replications. Each of
the following plots has been directly generated from BioPEPA
as a result of the correspondent experiment—hence, of the 30
Gillespie runs. In each chart, the x-axis plots the time steps of
the simulation, whereas the y-axis the concentration level of
the reactants expressed in units of molecules.

A. Injection Rate

Althought injection of atoms into a MoK compartment is
not yet part of MoK ’s core set of formalised reactions, its
influence on the system is so important to deserve its own
analysis. Basically, injection can be described as follows:

Injection — Produces atoms out of sources without
consuming them

source(Molecule1) + Molecule1c 7−→rinj

source(Molecule1) + Molecule1c+1

Two contrasting needs have to be addressed: on one hand,
atoms should be perpetually injected into the MAS, since there
is no way to know a-priori when some information will be
useful; on the other hand, we would likely avoid flooding the
system without any control on how many atoms are in play.
Thus, three options are viable:

http://homepages.inf.ed.ac.uk/s9552712/bio-pepa/download.html
http://homepages.inf.ed.ac.uk/s9552712/bio-pepa/download.html
http://homepages.inf.ed.ac.uk/stg/research/biopepa/eclipse/manual/manual.pdf
http://homepages.inf.ed.ac.uk/stg/research/biopepa/eclipse/manual/manual.pdf


1) make injection rates decreasing as time passes
2) enforce some kind of “saturation” to stop injection
3) a combination of the two

Fig. 1. Comparison of functional rates for atoms injection. Horizontal lines
represent correspondent sources’ concentration: purple dashed for option (1),
pink for option (2), orange for option (3), light-blue for option (4).

Fig. 1 shows option (1) in blue, option (2) in yellow and option
(3) in red. The green dashed line plots the law of mass action
rate, whereas horizontal lines are the sources. Fig. 2 shows the
BioPEPA functional rates specification used.

1 // option (1)
2 injE = [source_economics/atom_economics * (1 / (1 + time))];
3 // option (2)
4 injS = [source_sports - atom_sports];
5 // option (3)
6 injC = [(1 / (1 + time)) * (source_crime - atom_crime)];
7 // option (4)
8 injP = [fMA(0.05)];

Fig. 2. The fMA keyword calls a built-in function to compute the law of mass
action. Its only parameter is the rate constant. The fMA implicitly consider
reactants involved in the reaction exploiting its correspondent functional rate—
for the full BioPEPA specification, please refer to [15].

Clearly, using rate expressions based on the law of mass
action is out of question: its behaviour follows none of MoK
injection reaction desiderata. Once discarded also option (1),
whose trend is clearly too slow in reaching saturation, options
(2) and (3) may seem almost identical. Actually they are not:

• option (2) is “saturation-driven” only, thus if at some
point in time atom_sports will suddenly decrease
in concentration – e.g. due to agents consuming them –
they will go back to saturation-level as fast as possible,
no matter how long their sources are within the system

• option (3) instead, makes the saturation
process time-dependant. In particular, the longer
source_sports are within the system, the slower
saturation will be

Choosing among the two depends on the application-specific
context in which the MoK model is used. In MoK -News

[14], e.g., option (3) is better, since in the news management
scenario information (on average) loses relevance as time
passes.

B. Decay Rate

MoK decay reaction is an effective way to resemble the
relationship between information relevance and time flow. Fur-
thermore, decay enforces a kind of negative feedback which,
together with the positive feedback provided by MoK en-
zymes, enables the feedback loop peculiar of natural systems.

Time dependency alone is not enough for a meaningful
decay behaviour: by using, e.g., a fixed rate we end-up simply
slowing down the saturation process provided by injection
reaction. Hence, Fig. 3 shows three different combinations
of time dependency and concentration dependency for MoK
decay reaction—a fourth one (yellow line), based on the law
of mass action, is given for comparison purpose:

1) linear time dependency + relative concentration depen-
dency (blue dashed line)

2) logarithmic time dependency + relative concentration
dependency (red line)

3) linear time dependency + built-in law of mass action
(green dashed line)

Fig. 3. Comparison of functional rates for atoms decay. Again, horizontal
lines represent correspondent sources’ concentration: purple dashed for option
(1), orange for option (2), light-blue for option (3), pink for option (4).

Fig. 4 shows the BioPEPA functional rates specification used6.
Again, the law of mass action is unsatisfactory, as well as op-
tion (1). Options (2) and (3) are both viable solutions instead.
The choice is mostly driven by how fast are the dynamics
of the scenario in which MoK has to be deployed, thus how
fast information should lose relevance—e.g., in MoK -News,
choice (2) has been preferred. Nevertheless, please notice that
option (3) has an additional parameter w.r.t. option (2): the
law of mass action “rate constant”. Furthermore, even if such
parameter is made dynamic – e.g. the ratio between sources
and atoms concentrations as done in options (1), (2) – the

6Actually, the Heaviside function has been also used to counter BioPEPA
setting which allows rates to become negative—see [12].



1 // option (1)
2 decayE = [source_economics / atom_economics *
3 time];
4 // option (2)
5 decayC = [source_crime / atom_crime *
6 log(1+time)];
7 // option (3)
8 decayP = [fMA(0.05) * time];
9 // option (4)

10 decayS = [fMA(0.05)];

Fig. 4. BioPEPA specification of rate expressions for MoK decay reaction.

trend still would not match our desiderata for MoK decay
reaction—compare with yellow line of Figure 4 in [15].

C. Reinforcement Rate

To properly engineer MoK reinforcement reaction rate,
we have to keep in mind what enzymes are meant for, that
is, (i) representing a situated interest manifested by an agent
w.r.t. a piece of knowledge – an atom or a molecule –
(ii) to be exploited to reinforce such knowledge “relevance”
within the MAS. With the word “situated” we mean that
reinforcement should take into account the situatedness of
agents (inter-)actions along a number of dimensions: time,
space, type—a “search” action, a “read” action, etc. For these
reasons, MoK reinforcement reaction rate should:

• be prompt, that is rapidly increase molecules
concentration—despite decay

• limited both in time and space, to resemble relevance
relationship with situatedness of (inter-)actions

• depend on the (inter-)action type—e.g. a “read” action
could inject more enzymes and/or reinforce atoms
with greater stoichiometry w.r.t. a “search” action

Fig. 6 clearly shows that our desiderata are fulfilled only by
a reinforcement reaction having a functional dependency on
the ratio between the reinforced molecule’s concentration and
its source own—option (1) in Fig. 5. Once again, sticking

1 // option (1)
2 feedS = [(source_sports / atom_sports)];
3 // option (2)
4 feedE = [fMA(source_economics / atom_economics)];
5 // option (3)
6 feedC = [fMA(0.05)];

Fig. 5. BioPEPA specification of rate expressions for MoK reinforcement
reaction.

with the law of mass action alone is out of question: option
(2) – dashed blue line –, even if adopting a dynamic rate
constant, exhibits an exceedingly high and fast peak, option
(3) – red line –, using a fixed rate constant (as in the law
of mass action typically is), almost completely ignores the
feedback—enzymes are too slowly consumed (orange line,
plotting enzymes concentration).

Furthermore, Fig. 7 and Fig. 8 show, respectively, how
concentration and stoichiometry can influence MoK reinforce-
ment reaction behaviour, effectively modeling situatedness—
in particular, what we called the “type” of (inter-)actions. In
fact, (i) in Fig. 7 the initial concentration of “red” enzymes

Fig. 6. Comparison of functional rates for atoms reinforcement. Lines worth
to be considered are: the yellow one, plotting option (1), the dashed blue one,
plotting option (2), the red one, plotting option (3).

(red line) is doubled w.r.t. “yellow” enzymes (yellow line) in
Fig. 6: as a result, the “duration” of the feedback is doubled as
well; (ii) in Fig. 8 the stoichiometry of “red” atoms (red line) in
reinforcement reaction is doubled w.r.t. “yellow” atoms (yellow
line) in Fig. 6: as a result, the “intensity” of the feedback is
more than doubled.

Fig. 7. Enzymes concentration increment effect on reinforcement.

Notice also: (i) Fig. 7 shows the opposite holds too, that
is, halving the initial concentration halves the duration of the
feedback (yellow and blue lines); (ii) Fig. 8 shows that no
interference happens between concentration and stoichiometry
parameters, in fact, reinforcement lasts as long as in Fig. 7.

D. Diffusion Rate

As regards MoK diffusion reaction, the topology depicted
in Fig. 9 has been taken as a reference. Namely, four MoK
compartments are imagined to be connected one to each other,
allowing in principle any molecule to move anywhere.



Fig. 8. Atoms stoichiometry increment effect on reinforcement.

Fig. 9. MoK topology to experiment with diffusion reaction.

Our main desiderata regarding MoK diffusion reaction are
similar to those of MoK injection reaction: on one hand, we
would like to perpetually spread information around, because
agents working in other compartments may be interested in it;
on the other hand, we would also like to keep some degree of
control about “how much” information is moved around. Such
“degree of control” can be achieved by reusing the concept
of “saturation”, as shown by Fig. 11: in particular, it seems
reasonable to allow only a fraction of molecules to move from
their “origin” compartment—see Fig. 10. In practice, we can

1 // diffusion weight
2 DW = 0.75;
3 // diffusion functional rates (a@x => a@y)
4 diffSE = [DW * as@sports - as@economics]; // blue line
5 diffSC = [DW/2 * as@sports - as@crime]; // red line
6 diffSP = [DW/3 * as@sports - as@politics]; // green line

Fig. 10. Notation r@c refers to the concentration of reactant r in compartment
c. Previous listings did not follow such notation because there was only a
single compartment—MoK diffusion was not considered.

arbitrarily decrease/increase the saturation-level of the origin
compartment in the destination compartment. Furthermore,

Fig. 11. MoK diffusion reaction trend. The yellow line plots the concentra-
tion level of the atoms in their “origin” compartment (the orange horizontal
line represents their source).

they are functionally related. As a side note, notice a diffusion
reaction featuring the law of mass action is not depicted. The
motivation is that it exhibits an unexpected “malfunctioning”
affecting also other reactions. More on this “interference
problem” in next section.

E. On the Problem of Interference Between Reactions

All the experiments in the paper have been conducted
incrementally, that is, each MoK reaction has been added to
the BioPEPA specification one at a time. As reported in [15],
when adding diffusion to other MoK behaviours, BioPEPA
plots highlighted some interference between reactions. E.g.,
Fig. 12 depicts what happened when reinforcement has been
added to injection, decay and diffusion.

Fig. 12. MoK reinforcement reaction addition to injection, decay and
diffusion. Not only enzymes are not fully depleted, but also undesirable and
unexpected interferences with other reactions are clearly highlighted.

A number of unexpected behaviours can be seen:



• first of all, our desiderata for MoK reinforcement
reaction are not met (dashed blue line). In particu-
lar, it seems atoms cannot go beyond their original
compartment concentration level (yellow line)

• second, enzymes are not fully depleted (orange line)

• last but not least, other atoms are affected by a
successful application of MoK reinforcement reaction
(yellow, red and green lines): in particular, in the time
interval during which enzymes are consumed all other
trends experiment some fluctuations

The reason at the root of all these issues is still unknown:
being chemical-like reactions scheduling essentially based on
race conditions between the correspondent functional rates
– evaluated at a given point in time –, understanding what
exactly happens within the system at a given time step is not
trivial at all—or even impossible, depending on the debugging
services the simulation tool adopted provides. Nevertheless,
the satisfactory BioPEPA specification shown in Fig. 13 has
been found. In particular, MoK reinforcement reaction rate
has been added a “feed factor” parameter, used to weight the
influence of the atoms to be reinforced w.r.t. the concentration
of the corresponding source in the compartment the latter
belongs to. Fig. 14 shows that our desiderata are now met

1 // feed factor > 1
2 FF = 2;
3 // option (1)-revised
4 feedEC = [se@economics / (ae@crime * FF)];

Fig. 13. Adjusted BioPEPA specification of rate expressions for MoK
reinforcement reaction used together with MoK diffusion reaction.

successfully. Although not shown here for the lack of space,
also the functional dependencies on enzymes concentration and
atoms stoichiometry shown in Fig. 7 and Fig. 8 are preserved.

Fig. 14. Adjusted MoK reinforcement reaction: enzymes are now completely
depleted and other reactions no longer affected.

This clearly demonstrates the intricacies behind rates de-
sign in biochemical coordination, therefore motivating the

principled and disciplined – namely, engineered – approach
to parameter tuning we called parameter engineering.

IV. CONCLUSION & FURTHER WORKS ROADMAP

In this paper, we showed that simply imitating nature as
is may be not the optimal approach while engineering nature-
inspired MAS. Indeed, once a suitable natural metaphor has
been found, MAS designers should ask themselves if the
natural system’s parameters are the optimal ones also for the
artificial system they aim to build. If it is not the case, they
should clearly state which goals their MAS is pursuing then
detects, preferably within the MAS itself, which parameters
better suits their needs as well as which (if any) functional
dependencies between such parameters better cope with the
problem their MAS aims to solve.

In particular, we focussed on the case of biochemical
coordination in MoK , showing that sticking with the law of
mass action for rate expressions is not enough to model inter-
esting behaviours. Furthermore, designing more complex rate
expressions demands for a principled approach going beyond
parameter tuning, which we call parameter engineering, likely
to be supported by incremental simulation of each single basic
“law of nature” in play.

To the best of our knowledge, no closely related works
exists to date except, to some extent, [9]. Nevertheless, we
believe our work to be complementary to that in [23] about
self-organising design patterns as well as to [9]: in fact, once
a design pattern has been recognized as a potential solution to
a given problem, a simulation stage is out of doubts useful,
therefore a parameter engineering phase necessary.

As a last note, further works will be devoted to analyze
the tradeoff between designing more complex expressions and
sticking with the law of mass action at the cost employing more
(dual, complementary and/or opposite) reactions to reach the
same “complex trend” by composition.
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C. Bădică, M. Malgeri, and R. Unland, Eds., vol. 446. Springer, 2013,
pp. 17–22, 6th International Symposium on Intelligent Distributed
Computing (IDC 2012), Calabria, Italy, 24-26 Sep. 2012. Proceedings.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-32524-3 4

[14] ——, “Self-organising news management: The Molecules of Knowledge
approach,” in 1st International Workshop on Adaptive Service
Ecosystems: Natural and Socially Inspired Solutions (ASENSIS 2012),
J. L. Fernandez-Marquez, S. Montagna, A. Omicini, and F. Zambonelli,
Eds., SASO 2012, Lyon, France, 10 Sep. 2012, pp. 11–16, pre-
proceedings. [Online]. Available: http://dx.doi.org/10.1109/SASOW.
2012.48

[15] S. Mariani, “Analysis of the Molecules of Knowledge model with the
Bio-PEPA Eclipse plugin,” ALMA MATER STUDIORUM–Università di
Bologna, Bologna, Italy, AMS Acta Technical Report 3783, 20 Sep.
2013. [Online]. Available: http://amsacta.unibo.it/3783/

[16] E. Merelli, G. Armano, N. Cannata, F. Corradini, M. d’Inverno,
A. Doms, P. Lord, A. Martin, L. Milanesi, S. Möller, M. Schroeder,
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