
Classification Techniques for Conformance and
Performance Checking in Process Analysis

Hind Chfouka1, Andrea Corradini1 and Roberto Guanciale2

1 Department of Computer Science, University of Pisa, Italy
{chfouka,andrea}@di.unipi.it

2 School of Computer Science and Communication, KTH Royal Institute of
Technology, Stockholm, Sweden

robertog@kth.se

Abstract. Standard process analysis techniques, like conformance check-
ing or performance evaluation, are enabled by the existence of event logs
that trace the process executions and by the presence of a model that
formally represents the process. Such analysis techniques use only part
of the huge amount of data recorded in event logs. In this paper the
goal is to exploit this data to extract useful information for conformance
checking and performance analysis. We present an approach that using
standard classification technique, explores how data influence process
behaviors by affecting its conformance or performance.

1 Introduction

Today, many Information Systems that support the concept of business process
record all events occurring during the process execution in event logs. An event
log represents a trace of the process behavior that can be observed and analyzed
in order to tune it with the business objectives pursued. Process Mining provides
a set of techniques for process discovery and analysis. Through the knowledge
extracted from event logs, process discovery allows one to construct a process
model. Process analysis instead assumes the existence of a model and it consists
of checking the conformance and performance of the process executions with
respect to it.

The work presented in this paper is motivated by the observation that exist-
ing event logs are rich of data, but such data is used only in part by the existing
process analysis techniques. Since data is considered as a valid source of knowl-
edge, developing techniques based on data analysis can provide advantages for
process discovery and analysis. This fact has already been observed several times
in the literature, and it brought to the development of various approaches where
machine learning techniques are applied to workflow or process discovery (see
e.g. [4, 5, 8, 2]).

Here instead, we consider more specifically process analysis. Our goal is to
find a way to transform the data recorded during the process activities in knowl-
edge useful for the analysis. In particular, we try to determine how data may
affect the conformance and performance of process executions. Identifying this

influence can provide qualitative information about the causes of possible anoma-
lies in the process behaviors, facilitating the task of taking corrective measures.

In order to analyze data contained in event logs, we propose an approach
based on machine learning [10], where we exploit classification techniques to
find patterns on data in presence of which conformance errors occur. The same
approach has been extended to evaluate how data influences process efficiency,
by combining classification problems with performance evaluation: this is just
summarized briefly in the paper due to size constraints. Classification is a well-
known machine learning technique which consists of identifying to which cate-
gory, among a given set, a new observation belongs. This is done on the basis
of a training set of data containing observations whose category membership is
known.

After the presentation of a case study in Section 2, Section 3 introduces some
background concepts about process analysis. First the log replay algorithm is
briefly described, then conformance analysis is introduced using the business
process of Section 2. In Section 4 our approach to process analysis based on
classification is presented. First a few basic concepts about the classification
technique are described, next the conformance analysis based on classification
is presented in detail through an illustration with our case study. A possible
extension of the approach for performance analysis is briefly discussed. Finally,
Section 5 describes the implementation of our approach provided as ProM6 [12]
plug-ins.

2 The Case Study: a Sale Business Process

A business process can be seen as a collection of activities occurring within an
organization that lead to a specific goal. There are several formalisms for repre-
senting business processes. In this paper we represent them using Petri nets [7,
11] since this makes possible to exploit some existing process analysis techniques
that are based on such nets. However, in a business management context, Petri
nets can be not expressive enough and usually process models are presented as
workflows, for example using a standard notation for the business process mod-
eling: BPMN (Business Process Model and Notation) [6]. Transforming a BPMN
model into a Petri net is possible thanks to a mapping technique presented in [1].
Figure 1 presents the Petri net model for a sale process.3 This business process
abstractly represents a fragment of the procedure followed in a commercial or-
ganization for managing orders received from clients. In general this procedure
includes several activities and each of them involves a specific department of the
organization. We assume that the sale process begins with the notification of an
order from a client, so the first activity is simply called Order. After the order
is received, the sale process continues with some activities that can be done in

3 The Petri net of Figure 1 is obtained by transforming a BPMN model using the
algorithm of [1], and mapping each activity to a pair of start/end transitions. The
resulting net has been simplified by removing the unnecessary invisible transitions
used to encode the Join or Fork gateway [1].

Fig. 1. Petri net for a sale process

parallel, since they do not present any dependency. The FinancialCheck activity
represents the financial analysis of the order (i.e verifying the financial situation
of the client). Concurrently, the WarehouseCheck activity checks the availabil-
ity of merchandise requested by the order and, in case of a shortage, starts a
supplying procedure. This is done through the activity ExternalWarehouse. Af-
ter the completion of the parallel activities, a synchronization is needed before
continuing the sale procedure with the final activity called Notify, by which a
result regarding the acceptance of the order is communicated to the client.

3 Process Analysis

Process analysis is performed using the Petri net representing the process and
an event log recording the related executions, also called process instances. The
basic building blocks of event logs are events, that record the execution of the
process actions. Therefore an event e can be seen as a tuple including the action
recorded, a corresponding timestamp, and possibly other attributes describing
relevant information about the state of the process. Events that belong to the
same process instance are grouped in a trace, where events are ordered by times-
tamp. An event log is a set of traces, recording the activities performed by a
system during a finite number of process executions. In this paper the following
assumptions are made:

– All traces are instances of the same process.
– For each action there exists a corresponding transition in the net that will

be denoted, for simplicity, by the same name of the action.

3.1 Log replay algorithm

The key algorithm exploited to analyze a Petri net model with respect to an
event log is the log replay algorithm (see e.g. [9]). Given a Petri net model and an

event log as input to the algorithm, for each trace in the log, the algorithm starts
by placing one token in the start place of the net. For each event in the trace
the corresponding transition is fired assuming a non-blocking behavior, then
the marking of the net is updated. Non-blocking replay means that whenever
a firing of a disabled transition is needed, the algorithm enables the transition
either by creating artificial tokens in the pre-set or, if possible, by firing some
invisible transitions; the non-determinism in this procedure is resolved with a
suitable cost function. For each trace, the result of the log replay execution is
a map indicating which transitions of the model have been fired for each event
in the trace, and additionally which tokens were artificially created and which
remained upon completion of the trace. The output of the log replay algorithm
can be used to check the conformance of the traces.

3.2 Conformance Analysis

The goal of the conformance analysis is to check if a trace complies with the Petri
net modeling the business process. Conformance problems can be discovered by
analyzing tokens artificially created during the replay (the missing tokens) and
tokens not consumed (the remaining tokens). Figure 2 presents two different
traces, T and T ′, of the business process presented in Section 2, where only the
actions and the timestamps are reported. The log replay of trace T , which is
compliant with the Petri net, terminates with a single remaining token in the
end place {p13 → 1} and without reporting missing tokens.

Fig. 2. Conforming (T) and non-conforming (T ′) traces

The log replay of the trace T ′ terminates with remaining tokens {p5 → 1,
p13 → 1} and one missing token {p8 → 1}. The missing token is created arti-
ficially and this fact witnesses a wrong execution of the event Notify start. In
fact, in T ′ this event is executed before the termination of the activity Finan-
cialCheck : this is interpreted as a non-conformance to the process model.

4 Classification for Process Analysis

Exploiting machine learning techniques for process analysis is encouraged by
the presence of a huge amount of data recorded as attributes in event logs.
The implicit information contained in those data could be significant for the
process behavior analysis. In fact, this potential information could contain an
explanation for the deviations discovered during conformance analysis, and for

the performance level provided by the process. For this reason, we are interested
in discovering how the process data may influence the conformance and the
performance of the process executions. This is done with an approach based on
classification, a classical machine learning technique able to detect patterns on
data in correspondence to which the process assumes a specific behavior.

4.1 Classification: Basic Concepts

In a classification problem [10], data is represented by a collection of records
(called instances), and each of them is characterized by a tuple (x, y), where x
is a set of attributes and y is a special one called target attribute. The value of
the target attribute is a label identifying the class to which the record belongs.
The goal is to learn a classification model that maps each attribute set x to one
of the predefined class labels y.

The general approach for solving a classification problem consists of providing
a training set of records, whose class labels are already known, to the learning
algorithm in order to build a classification model. This model is then applied to a
test set, which consists of records with unknown class labels. This step allows to
estimate the model accuracy using one of the standard approaches. For example,
the accuracy can be represented by the percentage of records correctly predicted
with respect to the total number of records in the test set.

Many classification models can be applied to a classification problem. For
our purpose we choose the decision tree model since the rules detected by the
classification are shown explicitly, providing an overview of how process data
affects the process behavior. In a decision tree, a class label (possible value of
the target attribute) is assigned to each leaf node. The non-terminal nodes, which
include the root and the internal nodes, contain attribute test conditions to filter
records that have different characteristics.

4.2 Classification for Conformance Checking

In order to identify the possible causes of non-conformance, a classification prob-
lem can be formulated. The classification dataset is extracted from the process
data: for each process instance, relevant information is extracted and included as
a record in the dataset. For the process presented in Section 2, a record includes
the following attributes: an instance identifier, a client identifier, the client typol-
ogy (new or consolidated client), the sales manager responsible for the order, the
financial officer who conducts the financial evaluation activities, the warehouse-
man responsible for the warehouse checking, the supplying responsible name in
case of a provision, and finally the result communicated to the client for the order
issued. Furthemore, as target attribute we associate with each record the confor-
mance result for that instance, which is a boolean value that is extracted from
the output of the log replay. All these attributes are discrete and contribute to
build the dataset presented in Table 4.2 of the classification problem. In this pre-
liminary work, in order to explore the applicability of existing machine learning
techniques to process analysis, we just used synthetic data generated to emulate

process executions. Note that for this running example, attributes selected for
the classification task are all focused on the actors of the process activities, but
in general attributes can characterize several other aspects of activities.

In order to build the classification problem, the attributes characterizing the
process are extracted from the log, while the conformance attribute is computed
using the conformance checking algorithm. The Petri net of Figure 3 shows the
output of the conformance analysis executed on the event log: edges are labeled
with the number of times they were activated, places are labeled with the number
of remaining and missing tokens.

Fig. 3. Petri net: conformance results.

The resulting data highlight that there are 37 out of 250 process executions
with conformance errors. The presence of 37 missing tokens in p11 represents the
number of times that the log replay algorithm forced the execution of transition
Notify start, even if it was not enabled, in order to mimic a corresponding event
in the trace.

Moreover, 37 remaining tokens in place p3 indicate the number of times
that the financial check activities were not performed. Taking into account the
application scenario, we can conclude that 37 instances of the process are not
compliant with the sale policy since they did not execute the financial check
activity.

Table 1. Dataset for the conformance analysis.

OrdIde CltIde CltType SalMan FinOff WrhsMan SupplyResp OrdResut Conf

1 20 consolidate Marco Mary Alex Gianni positive no

2 15 new Anna Johann Roberto Mario positive yes

3 10 consolidate Maria Mary Alessio Gianni negative no

10 18 consolidate Johann Mary Roberto Gianni positive yes

...

Fig. 4. Decision tree for the conformance analysis.

The results of the conformance checking enable the use of existing machine
learning tools, allowing us to mine the decision tree of Figure 4 as classification
model for the sale process. The resulting decision tree describes a data pattern
in correspondence to which a process instance could present conformance errors:
order managed by the sales manager Mary and received from consolidate clients
of the organization may not respect the standard sale procedure.

From the analysis done for the sale process based on both classification and
log replay results, a new scenario of the sale procedure has emerged: orders done
by the consolidate clients of the organization are not checked from a financial
point of view. This fact can be accepted as a valid behavior in a sale proce-
dure, and consequently an extension of the business process model is needed to
include the new scenario (model extension activity). Alternatively, the misbe-
having scenario can be considered as an anomaly in the sale procedure. In this
case, since the analysis provides accurate information about the conformance
error, corrective measures can be taken in order to prevent such errors in the
future.

The classifier constructed with this approach can be used also in a predictive
way. Given a trace recording a process execution the decision tree can be used
to predict the conformance result. This brings an advantage in terms of the
time required by the analysis, since the replay of a process instance takes more
time than its classification using a decision tree. Moreover, it is worth noting
that whenever the set of attributes needed for the classification is known before
the completion of a process execution, the non-conformances predicted by the
decision tree can be used to promptly alert the stakeholders and activate proper
countermeasures.

4.3 Extension of the approach to Performance Analysis

Performance analysis of a process can be carried exploiting log replay. Since
an event log contains timestamps, during the replay of a trace it is possible to
compute (for each place of the Petri net model) some performance measures
such as: synchronization time (i.e. time interval between arrival of a token in the
place and enabling of a transition in the post-set of the place), sejour time (i.e.
the time interval between arrival and departure of tokens) and waiting time (i.e.

the time interval between enabling of a transition in the post-set of the place
and token departure).

Performing an analysis based on the measures computed by log replay gives
just a quantitative information about the process performance. In order to under-
stand the causes of performance anomalies that can affect the process behavior,
one can explore the process data. Discovering how data attribute can influence
process performance provides useful information in analyzing and optimizing
the process services. For example, discovering data patterns in correspondence
to which some activities need more time for completion than others, helps in
making decisions about resources distribution to the process activities or in
scheduling activities. In addition to the completion time, one could analyze a
process under more complex performance metrics such as the synchronization
time. A process with parallel branches and synchronizations can present bottle-
neck activities that lead to increase the execution time of other activities and
consequently the completion time of the entire process. To find out the possible
data influences on synchronization time, the approach presented in Section 4.2
for conformance analysis through classification can be easily extended to perfor-
mance analysis. For example, a classification problem can be formulated for each
synchronization point of the process. In this way, the classifier obtained in cor-
respondence to a synchronization point classifies the process instances based on
their attribute value and regarding the synchronization time of the point taken
into exam.

5 Implementation with ProM

In order to experiment with some business process prototypes, the approach
presented in this paper has been implemented as a set of plug-ins that integrates
ProM6 [12], an open-source framework implementing Process Mining tools, and
Weka [3], a data mining framework providing machine learning tools. We can
classify the developed plug-ins in three categories. The first one includes plug-ins
for building the dataset needed for the classification:

– Generate Instances with Conformance: this plug-in takes as input an
event log and its conformance results computed by log replay. It returns
as output a training set as shown in Table 4.2 in the format needed by the
Weka classification tool. Note that the plug-in extracts all the attributes
data recorded in the event log. If necessary, the resulting dataset can be
subject to some feature selection techniques before using it as a training set
for the classification task.

– Generate Instances to Classify: given an event log, the plug-in gener-
ates a dataset of instances that can be classified using a classification model.

The second category includes plug-ins for generating the classifier and for using
it as a predictive model:

– Generate Classifier: given a training set, the plug-in generates a decision
tree model using the J48 algorithm, an implementation of the algorithm
C4.5 provided by Weka.

– Classify Instances: given a set of non-classified instances and a classifier
model, this plug-in simply classifies the instances according to the classifier.

Finally, the last category includes a set of plug-ins useful for the serialization,
deserialization and visualization of the resources used by the previous plug-ins,
such as dataset and classifiers.

Figure 5 represents a data flow diagram that summarizes the data dependen-
cies among the plug-ins discussed in this section.

Fig. 5. Data dependencies among the implemented plug-ins.

6 Conclusions and Future Work

We presented some preliminary results of a research activity aimed at applying
machine learning techniques, i.e. classification algorithms, in the realm of pro-
cess analysis. The idea is to try to identify some correlation between the data
value of certain variables in the process instances of event logs, and the results of
conformance checking. A successful identification of such values could allow to
predict the conformance result of an instance during execution. The same tech-
nique was applied to performance checking as well, but only briefly summarized
here because of space constraints. The approach is implemented with a combina-
tion of plug-ins of the Process Mining framework ProM and of the classification
engine Weka. The approach has been successfully tested on synthetic event logs
only. An obvious continuation of this work includes experimentations with real
event logs: this will allow us to evaluate the scalability of the approach and its
robustness in presence of noise.

Classification techniques in the Process Mining field have already been ex-
plored in [8] and more recently in [2]. In those papers the idea is to explore how

data influences the case routing of process flow execution, by assigning a classifi-
cation problem with each decision point in the model. In particular, [2] improves
significantly the results of [8] by exploiting some recently developed alignment
techniques between process instances and the process model. We intend to ex-
plore how far these techniques can be applied fruitfully in our framework as
well.

References

1. R. Bruni, A. Corradini, G. L. Ferrari, T. Flagella, R. Guanciale, and G. Spagnolo.
Applying process analysis to the Italian e-government enterprise architecture. In
M. Carbone and J.-M. Petit, editors, WS-FM, volume 7176 of Lecture Notes in
Computer Science, pages 111–127. Springer, 2011.

2. M. de Leoni and W. M. P. van der Aalst. Data-aware process mining: discovering
decisions in processes using alignments. In S. Y. Shin and J. C. Maldonado, editors,
SAC, pages 1454–1461. ACM, 2013.

3. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA data mining software: an update. SIGKDD Explorations, 11(1):10–
18, 2009.

4. J. Herbst. A machine learning approach to workflow management. In R. L.
de Mántaras and E. Plaza, editors, ECML, volume 1810 of Lecture Notes in Com-
puter Science, pages 183–194. Springer, 2000.

5. L. Maruster. A machine learning approach to understand business processes. PhD
thesis, Eindhoven University of Technolog, 2003.

6. OMG. Business Process Model and Notation, http://www.bpmn.org/, 2011.
7. C. A. Petri. Fundamentals of a theory of asynchronous information flow. In IFIP

Congress, pages 386–390, 1962.
8. A. Rozinat and W. M. P. van der Aalst. Decision mining in ProM. In S. Dustdar,

J. L. Fiadeiro, and A. P. Sheth, editors, Business Process Management, volume
4102 of Lecture Notes in Computer Science, pages 420–425. Springer, 2006.

9. A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

10. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison
Wesley, May 2005.

11. W. M. P. van der Aalst. The application of Petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

12. W. M. P. van der Aalst, B. F. van Dongen, C. W. Günther, A. Rozinat, E. Verbeek,
and T. Weijters. ProM: The process mining toolkit. In A. K. A. de Medeiros and
B. Weber, editors, BPM (Demos), volume 489 of CEUR Workshop Proceedings.
CEUR-WS.org, 2009.

