

Goals, Domains, and Enterprise Architecture
in the Model-Driven Organization
Desmond D’Souza

Kinetium, Inc.
desmond.dsouza@kinetium.com www.kinetium.com

In a Model-Driven Organization (MDO), all aspects of planning, designing, implementing,

deploying, operating, and evolving the organization and its supporting infrastructure are based on

models. Goals form an anchor for other models in an MDO. This paper is a summary of my

keynote talk at AMINO 2013 in Miami, Florida, in which I covered a variety of ways to use Goal

Models as a recurrent focal point to improve model coherence in an MDO.

Goals, Domains, and Refinement

A goal is a property desired over a domain. In Figure 1(a), a goal of the Golden

Gate Bridge is shown with a green circle G1: Get vehicles from A to B i.e. given

some domain property about the inflow of vehicles at A, establish a corresponding

outflow at B. A goal is anchored to domain elements that are its subject matter,

and evaluates to true or false over any domain instance. G1 is anchored at end-

points A and B, controlling outflow based on inflow. A dashboard wired to the

anchor points can, in principle, monitor the goal.

Figure 1: (a) A goal with its end-points and a monitor. (b) Goal and domain refinement.

A goal refinement consists of sub-goals and domain properties that, combined,

satisfy a parent goal across its end-points. The bridge refinement (small white

circle in Figure 1(b)) moves inflow from A to B via a roadway, supported by

cables suspended from columns built on bedrock, and establishes sub-goals for

each of these based on their mutual load and support properties, bedrock

properties, and inflow. Domain properties (yellow rectangles) are facts or

Goal G1:
Get vehicles
from A to B

A

B

Inflow

Outflow

Ferry… Bay
currents

“Ferry”
Refinement

Vehicle Inflow, Outflow
A Domain Property

Bedrock
Strength

“Bridge”
Refinement

Suspensions Columns Roadway

Vehicle
Inflow

A B

Why?

What?

How?

assumptions about the domain, also anchored on domain elements. A goal can

have alternative refinements: G1 can be met by a bridge-refinement or a ferry-

refinement. Choosing one or the other uncovers different domain properties:

bedrock strength is vital for bridge columns, and bay currents is for a ferry, while

inflow and outflow is part of the problem context of G1 itself and common to both.

When analyzing any part of a goal model, only certain refinements apply, and the

corresponding domain model is composed from the domain properties of all

applicable refinements. Goal refinement, domains, and architecture choices are

intrinsically intertwined.

The domain model can range from a simple average vehicles-per-hour, to a

detailed “film-strip” with individual vehicles moving along the bridge. Goals are

predicates over that model, and evaluate to true or false on a domain instance. An

objective associated with a goal can quantify how well the goal is met, based on

measurable domain attributes and often in an aggregate sense.

By making intention explicit, goals answer some key questions (Figure 1(b)):

1. What are we trying to accomplish? The goal specification, G, with end-point

domain elements, gives a precise success criteria over any domain instance.

2. Why do we want to accomplish G? Refinement answers this in the form:

because if we meet G, given additional domain property X and assuming we

meet other sibling goals, then in concert we meet the higher level goal.

3. How will we accomplish G? Examine the refinement of G and follow the “line

of reasoning” through its domain properties and sub-goals.

4. How well does refinement R1 meet G? Provided all children of R1 can be

expressed in a sufficiently detailed form, evaluate G’s objective function

against domain instances assuming that all the sub-goals are met.

Monitoring a goal is clearly useful, but assumed domain properties are also

candidates for monitoring. As a secondary goal, the bridge should accommodate

shipping traffic, which introduces assumptions about ocean level and ship height,

and goals about minimum roadway height (Figure 2(a)). The assumptions can be

monitored, as changes could jeopardize a goal. In the larger feedback loop of an

extended enterprise with its environment, assumption tracking must happen in

some form, whether proactive or reactive.

Figure 2: (a) Monitoring assumptions. (b) Federated goal models and alignment.

Goal models can be federated. Figure 2(b) shows federated goal models for the

bridge, suspension, and columns. Note that each goal “frames” a problem; goals

and end-points must align from child to parent goal model; one model’s

assumption can be (or otherwise depend on) another model’s goal; and goal

models have different projections of shared domains. Since dependencies are

between properties of domain elements and not directly between elements, value,

risk, and impact can be assessed in terms of affected properties.

If the underlying domain fits within a governance structure, goals can be

extended with strategic dependency relations between the person desiring the

goal, the one responsible for meeting the goal, and the one with authority over any

domain element needed in refining the goal.

Goals, Architecture, and Architecture Style

An architecture of a system is a model describing system properties to be

understood and analyzed together. Architectural components are part of the

domain model. Goals and domain properties demarcated by refinement define

“together”-ness and are part of architecture. The "ends" in “end-to-end

architecture” are precisely framed by goals.

Figure 3(a) Example of fractal refinement. 3(b) Scheme for fractal goals with architecture.

Domain
Element

Domain Property
fact or assumption

Bridge

Suspension Columns

Get Vehicles
From A to B

Allow Ship
Traffic

Roadway
Height Ocean

level

Ship
Height

Roadway
Height

Roadway

Desired Properties and Given
or Assumed Properties can be

in terms of: active structure,
behavior, passive structure/

information

Goals are
desired

properties

Span of interest: boundary
of a box, or its outsides, or
its insides:
Component-Port-Connector
model

Properties of Concern can be
about functionality, security,
performance, manageability, etc.

Factory Supply Optimizer

production load predictions
supply scheduling

Functionality Security Performance Technology …

scheduler

predictor

supplier
inventory

deliveries

2: Goal - Factories supplied just in time
from supplier warehouses

3: Refinement to sub-goals + domain properties on sub-
domains

5: Applications, Components, Connectors
– specifications for each one
– end-to-end satisfaction of goals

6: Goals and Domain Model have
parallel refinement, to granular goals
and components

1: Problem Domain –
factories, supplies,

warehouses, partners,
existing systems

7: Multiple concerns: functionality, security,
performance, technology…

4: Scope of sub-goals get narrower.
Some assigned to components.

3b: predict production load, optimize supply schedule

3a: track inventories

3c: deliveries made

Figure 3(a) sketches an example of the approach used in a fractal manner for

factory supply optimization: the granularity of goals and domain elements,

including software components, events simple or complex, and other behaviors,

can all be refined recursively; 3(b) shows a general scheme for incorporating

goals as a fractal structure alongside other architecture descriptions.

An architecture description can obscure, suggest, or reveal intention. In Figure

1(b), hanging cables longer than some length need to be reinforced as their own

weight adds to the cable strain at the top. Below are three architecture descriptions

of the cables, ranging from obscuring to revealing intention.

1. Cables 1-6 are normal, and cables 7-9 are reinforced.

2. For every cable: (weight, strength, load) must satisfy a strength rule.

3. Cables = map cable_reinforcer basic_cables

The first reveals no intent; it simply lists the final result of implicit reasoning.

The 2nd reveals intent as a checkable rule, without helping shape the architecture.

The 3rd provides an intention-revealing transformation that is generative.

An architecture style defines a set of architectures, and is described like any

object type: attributes that name relevant architectural elements (cables), attributes

of those elements (weight, strength), functions that determine attributes from

others (cable_reinforcer), invariants (strength rule), desired and given domain

properties. Like the cables example, architecture styles can span a spectrum from

check-only (given an architecture, return Pass/Fail) to generative (given an

architecture, evaluate to a transformed architecture). Since architectures include

goals and domain properties, the most generative kind is an “architecture

compiler”: given goals and domain context, produce an architecture realization.

Goals and Roadmaps

Roadmapping is a decision-making technique used to support medium to long-

term strategic planning, examining linkages between the domains of technology

and business capabilities, organizational objectives, and the customer and market

environment, considering multiple perspectives and their relationships over time.

An MDO could analyze goals, facts, assumptions, and architecture elements in

these domains on a timeline; key assumptions could bear monitoring over this

timeline. Figure 4 illustrates what such a roadmap looks like.

Figure 4. Example of roadmap based on goal modeling.

Goals and Migration Plans

Large-scale architecture initiatives deliver an as-is and a to-be architecture, and

an MDO could use goal models in developing these. A migration plan is a

sequence of staged architecture changes from as-is to to-be.

Migration planning is a difficult problem, with its own goals and domains. The

obvious domain is a filmstrip of architectural stages, but there are peripheral

components, applications, processes, people, skills, and regulations to consider;

other roadmaps to co-ordinate, such as infrastructure upgrades. The obvious goal

is to convert as-is to to-be; but there are others, such as minimizing disruption risk

to critical business processes. Migration planning even has its own architecture

styles, such as Legacy Coexistence and High-Risk First / Fail Early.

Acknowledgements

This paper is based on a modeling approach we have evolved over several years

(called MAp, www.kinetium.com). It uses ideas from KAOS, Problem Frames,

Catalysis, and Model Driven Engineering. I also owe thanks to past collaborators

including Tony Clark and Hans Gyllstrom. The keynote slides also discussed

goal-models and portfolio management, excluded here for lack of space.

Market

Competition

Technology

Products

Components

Marketing

Market
Penetration
v1

Market
Penetration
v2

time

Goal

Fact,
Assumption

Refinement

As-Is To-Be

