
Meta-model Patterns for Expressing
Relationships Between Organization Model

Concepts and Software Implementation
Concepts

Jens Gulden

Information Systems and Enterprise Modeling
University of Duisburg-Essen

Universitätsstr. 9
45141 Essen, Germany

jens.gulden@uni-due.de

Abstract. The abstraction gap between organization models and mod-
els of software artifacts is of fundamental ontological nature, and bridging
this gap cannot be achieved with solutions located either on the techno-
logical abstraction level or on the conceptual level separately.
The work presented in this article describes a meta-model based ap-
proach to explicate design decisions on how to map conceptual organiza-
tional model constructs to software implementation specifications, from
which software for supporting an organization’s work can subsequently
be developed or generated. With the described meta-model patterns,
one methodical component of a development method is made available
to systematically guide the development of enterprise software systems,
based on knowledge given in organization models.

Keywords: Organization Modeling, Software Development, Business
Process Model Implementation, Meta-modeling

1 Aligning organization models and software
implementation

One central research goal in information systems science is to achieve an align-
ment between conceptualized enterprise models (EMs) and the enterprise sys-
tems (ESs) that are used to support their realization [7, 10]. With the use of
information technology (IT) systems as supporting units in organizations, this
task also covers the behavior of software, and it becomes a managerial task to
make sure that software systems in organizations operate in alignment with their
business purpose [5].

From this constellation, a dilemma arises in managing organizations. On the
one hand, it is an inherent managerial task to align the ideas and conceptual-
izations of strategic goals with the real actions going on in an organization. On
the other hand, once software gets involved, a high degree of technical expertise



Jens Gulden

is required to understand the operation of software, or even to develop software
according to intended managerial conceptualizations.

Traditionally, there is a methodical gap between describing organizational
structures and processes on the one hand, and software components and func-
tionality on the other hand, because organizations and software systems are
understood and constructed with different terminology and on different levels of
abstractions, typically also by differently educated groups of people.

In EMs, dedicated modeling language elements are used to express knowledge
about structures and processes in organizations, e. g., about who is responsible
for performing actions, involved resources, and strategic goals intended to be re-
alized by organizational means. With the use of EMs, a chance opens up to closer
involve the users of software systems into the process of developing and configur-
ing software. Building software from enterprise models is desirable, because once
a dedicated relationship between enterprise models and software functionality
has been established by a development method, involved users and responsible
stakeholders can adapt the software according to their business needs, without
having to deal with programming or technical details.

This article investigates the research question, how design decisions made
during a development process from conceptual organization models to ESs can
be formally captured in a model structure, and thus be made available to fur-
ther automatic evaluation, e. g., to code generation mechanism or runtime in-
terpreters. This is done by elaborating a set of meta-model patterns, which
allow to instantiate model instances that carry knowledge about how conceptual
model elements are understood in technical terms. Incorporating these patterns
as parts of meta-models of intermediate models used during the software devel-
opment process provides one possible solution for capturing design decisions in
the desired way, and further make use of this formalized knowledge in a partially
automatized software development process.

The following section takes a look at existing research that has covered com-
parable work or is located in the same area of research. Section 3 presents the
introduced meta-modeling patterns and sketches some methodical steps, which
would embed the use of these patterns into an overall software development
method to get from organizational EMs to supporting ESs. In section 4, an ex-
ample of applying the proposed approach in a prototypical ES development set-
ting is presented. The final section 5 summarizes the presented work and takes a
look at how the suggestions can further be integrated with other methodological
research in the field of organization modeling.

2 Related work

A number of research questions are addressed when enterprise models are con-
sulted for deriving executable software, especially when business process models
are to be interpreted as executable workflow models.

In [15], a method is suggested to convert models in the Business Process
Modeling Notation (BPMN) to executable Business Process Execution Language



Meta-model Patterns Between Organization and Software Concepts

(BPEL) workflows. Other process modeling languages are not looked at, neither
are other enterprise perspectives, such as organization models. The method is
limited to generate BPEL models, which are to be manually revised by software
developers.

Another approach for “bridging the gap between business models and work-
flow specifications” is discussed in [2]. The central idea of the proposed procedure
is to methodically guide human modelers, i. e., domain stakeholders, architects
and developers, through a process of human modeling actions to transform a
given conceptual business process model to an executable workflow model. The
methodical procedure is designed in a way to ensure that the resulting workflow
model fulfills the criterion of the soundness meta-property.

In [1], an approach is suggested, which explicates relationships between con-
ceptual elements in business process models, and workflow elements, through
an individual type of model, called the Business-IT Mapping Model (BIMM).
The approach appears like a specialization of the one presented here, since the
general notion of an explicit mapping between business-level model concepts and
implementation concepts using a mapping model is a building block in this work.
The approach, however, is not generalized to map to arbitrary variants of target
architecture platforms expressed via implementation strategy meta-models.

Enterprise models comprise more than business process models only, such as
actor and resource models, business rule models, or goal models. This is taken
into account by [17], in which a general methodical approach is suggested for
developing software from EMs. The approach uses a specifically adapted con-
ceptual modeling language to capture enterprise knowledge. Additionally, sev-
eral link types are introduced, instances of which can reference from elements of
the conceptual model to elements of implementation-level modeling languages.
Implementation-level elements are not further described by the proposed ap-
proach, it seems to be inherently assumed that existing modeling techniques for
technical artifacts can directly be applied for this task.

[12, 16] discuss a number of conceptual mismatches between BPMN [8] and
BPEL [11, 13], which in the first place is BPMN’s flow oriented process mod-
els, versus BPEL’s block-oriented approach. A flow-oriented way of modeling
processes makes use of interconnecting sequence elements between individual
process-members (i. e., between process-steps and events, if applicable). In con-
trast to the flow approach, a block-oriented way of expressing sequence-flows
makes use of specific language constructs, which determine, in what way in-
ner elements of the block are executed, e. g., If-blocks to express conditions,
While-blocks to form loops, or Flow-blocks to indicate parallelism.

Development methods, which consult models for expressing different layers
of system abstraction in a software development process, can generally be sub-
sumed under the term Model-Driven Architecture (MDA) [14]. Although MDA
approaches make use of the notions of computation independent models (CIMs),
platform independent models (PIMs), and platform specific models (PSMs), they
only consider isolated models on each of these abstraction layers, without inter-
linking constructs that capture the design decisions leading from one level to the



Jens Gulden

other. The meta-model patterns presented in the work at hand provide orthog-
onal modeling constructs which fulfil this task, and can potentially be used in
combination with the standard model types suggested by MDA.

3 Meta-model patterns for bridging between different
levels of abstraction

Methodical means for performing the required bridging between abstract domain-
specific enterprise model concepts on the one hand, and technically concrete
constructs describing desired target output artifacts on the other hand, can be
offered by explicit language constructs in a dedicated mapping model language.
A mapping model entry is a modeling construct, which allows to formally express
how conceptual elements from the enterprise models are interpreted in technical
terms. The use of such a construct as a central part of the development procedure
allows for a controlled bridging between both levels of abstraction.

Traditional business conceptualizations regard ESs as a kind of IT resources
that are involved when performing specific processes [3]. However, this conceptu-
alization does not allow for understanding ESs as a kind of formal representation
of parts of the organization itself. Since ESs are actively acting automatic entities
inside the organization, these entities necessarily encapsulate formal knowledge
about the organizational action system and the process contexts they are ap-
plied in. In this sense, ESs are more than production resources to foster efficient
process execution. They both reflect and shape the processes they are involved
in.

As a consequence, in descriptions of organizations’ action systems, there is
an internal connection between the action system, and the ESs that occur as
part of these descriptions. Whenever an ES is incorporated in the description
of an organization’s action system, it can be inherently assumed that the ES
contains formal internal descriptions of selected aspects of the action system, too,
since otherwise the software could not successfully contribute to the processes
it is intended to support. This connection makes it attractive to reason about a
software development approach which interconnects both EMs and ESs, as it is
carried out in this work, and justifies the assumption that it is possible to derive
formal software system descriptions from organization models using a defined
engineering method.

Implementation strategies represent formalized descriptions of technical de-
sign decisions about the desired software system to be developed or configured,
on a computation dependent, yet platform independent, level. They serve as
bridge concepts between the interpretation of enterprise models, and technical
realizations of software artifacts. With the notion of implementation strategies,
a group of model elements is introduced into the software development process,
which can systematically capture design decisions made during system devel-
opment. Which implementation strategies to apply, is either decided by human
software architects and developers, or automatic rules can be formulated before-



Meta-model Patterns Between Organization and Software Concepts

hand, which allow the automatic association of implementation strategies with
enterprise model concepts.

Implementation strategies can additionally be enriched by human-readable
descriptions of the design rationales behind the chosen decision, which offers an
additional level of documentation and justification of design decisions taken to
build an overall system.

After implementation strategies are specified and referenced from a mapping
model, code generation templates can be used to transform the chosen imple-
mentation strategies to software artifacts. Fig. 1 sketches the idea behind a
mapping model entry relating implementation strategies on the right-hand-side
to conceptual model elements of the left-hand-side.

configuration 
details (optional)

Mapping Association
Enterprise Model

Concept

Implementation
StrategyImplementation

StrategyImplementation
Strategy

Fig. 1: Pattern of a single mapping association

Examples of implementation strategies used to describe the implementation
of web applications are shown in the meta-model excerpt in Fig. 4. They describe
dedicated technological means available in a web application setting, without
already specifying implementation details on how the technology is realized.

The implementation strategy concept provides an abstraction over techno-
logical artifacts, while not being concerned with the actual implementation of
these artifacts. This way, it offers an adequate means of abstraction to serve
the purpose of a linking concept between interpreted domain-specific concepts
in enterprise models on the one hand, and design decisions for their technical
realizations on the other hand.

A formal meta-model representation of the mapping between a process step
element in a business process, and one or more assigned process step implemen-
tation strategies, is shown in Fig. 2 a). The abstract meta-class ProcessMember
on the left-hand-side represents a business process step specified in a concep-
tual business process model. AbstractProcessMemberImplementation on the
right-hand-side is a place-holder for any possible concrete implementation strat-
egy that can be decided to be applied to the given business process element,
depending on technical capabilities available for the ESs to be created or config-
ured. The meta-class ProcessMemberMapping in the middle represents the type



Jens Gulden

of a binding element, which declares an instance of the specified mapping when
design decisions are captured in models of this meta-model pattern.

Reasonable mapping structures for capturing knowledge about how to bridge
between different perspectives and levels of abstraction need not simply consist
of a one-to-many mapping from an organization model element to implementa-
tion strategies. Instead, the meta-model patterns suggested here cover specific
semantic aspects of different conceptual elements in organization models. As
a consequence, the mapping of process sequence steps, which interconnect in-
dividual process steps in business process models, resolves to specifying three
independent dimensions of what it means to proceed a step further in a process.
From a conceptual point of view, sequences may lead across boundaries of actor
responsibilities, resources and spatial or timely distribution. To provide sufficient
design decision knowledge about the implementation of sequence concepts, both
aspects of either passing the control flow to a different actor, and/or passing the
control flow to another spatially distributed system responsible for performing
the next process-step now or later, have to be taken into account. A third or-
thogonal dimension is the handling of conditions, under which sequence steps
are taken or ignored.

These three dimensions of sequence implementations are represented by the
corresponding meta-classes AbstractActorResolverImplementation, Abstract-
ControlFlowImplementation, and AbstractConditionImplementation in the
meta-model pattern. Fig. 2 b) shows the corresponding meta-model excerpt of
this example.

Other meta-model patterns for mapping actor concepts, resource concepts,
and other types of enterprise model elements, can be constructed accordingly.

The combined use of a mapping model and implementation strategies pro-
vides dedicated methodical abstractions for coping with the requirements to
bridge the abstraction gaps between conceptual enterprise model specifications,
and ES implementations.

4 Example application

This section introduces a simple web shop example to demonstrate the use of
the proposed approach. The example uses enterprise models in the MEMO [4]
language as conceptual models describing the socio-technical environment of the
software to be generated. The application architecture resembles a traditional
web application environment, with web-server and web-client running on physi-
cally remote machines, communicating through the internet via the Hyper-Text
Transfer Protocol (HTTP).

Fig. 3 shows an excerpt from the MEMO process control flow model in the
example, in which organizational roles and resources from other perspectives are
referenced.

The meta-classes suggested by the web implementation strategy meta-model
are shown in Fig. 4, and described in the following. To enrich the set of avail-
able event implementation strategies, the EventLinkHasBeenFollowed meta-



Meta-model Patterns Between Organization and Software Concepts

M
ap

p
in

g
M

o
d

el

n
am

e 
: E

St
ri

n
g

b
as

eP
ac

ka
g

e 
: E

St
ri

n
g

m
o

d
el

U
R

I :
 E

St
ri

n
g

P
ro

ce
ss

M
ap

p
in

g

m
o

d
el

U
R

I :
 E

St
ri

n
g

m
u

lt
ip

le
P

ar
al

le
l :

 E
B

o
o

le
an

A
bs
tr
ac
tC
on

di
ti
on

Im
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

R
e
so

u
rc

e
M

a
p
p
in

g
A
b
st
ra
ct
R
e
so
u
rc
e
Im

p
le
m
e
n
ta
ti
o
n

n
a
m

e
 :

 E
S
tr

in
g

A
bs
tr
ac
tM

ap
pi
ng

En
tr
y

n
am

e 
: E

St
ri

n
g

A
ct

o
rM

ap
p

in
g

A
bs
tr
ac
tA

rc
hi
te
ct
ur
eM

od
el

A
bs
tr
ac
tA

ct
or
Im

pl
em

en
ta
ti
on

P
ro

ce
ss

(f
ro

m
 e

em
)

A
ct
or

(f
ro

m
 e

em
)

R
es

o
u

rc
e

(f
ro

m
 e

em
)

P
ro
ce
ss
M
em

be
r

(f
ro

m
 e

em
)

A
bs
tr
ac
tP
ro
ce
ss
M
em

be
rI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

A
bs
tr
ac
tA

ct
or
R
es
ol
ve
rI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

Se
q

u
en

ce
(f

ro
m

 e
em

)
Se

q
u

en
ce

M
ap

p
in

g
A
bs
tr
ac
tC
on

tr
ol
Fl
ow

Im
pl
em

en
ta
ti
on

G
en

er
ic

A
rc

h
it

ec
tu

re
M

o
d

el

Ee
m

M
o

d
el

(f
ro

m
 e

em
)

P
ro

ce
ss

M
em

b
er

M
ap

p
in

g

A
bs
tr
ac
tI
m
pl
em

en
ta
ti
on

p
ro

ce
ss

M
ap

p
in

g
s

0
..*

re
so

u
rc

eM
ap

p
in

g
s

0
..*

ta
rg

et
A

rc
h

it
ec

tu
re

s
1

..*

re
so

u
rc

e
1

ac
to

r
1

im
p

le
m

en
ta

ti
o

n
s

1
..*

im
p

le
m

en
ta

ti
o

n
s

1
..*

se
q

u
en

ce
1

co
n

d
it

io
n

Im
p

le
m

en
ta

ti
o

n
0

..1

co
n

tr
o

lF
lo

w
Im

p
le

m
en

ta
ti

o
n

1

ac
to

rR
es

o
lv

er
Im

p
le

m
en

ta
ti

o
n

s
1

..*

p
ro

ce
ss

1

se
q

u
en

ce
M

ap
p

in
g

s
0

..*

g
en

er
ic

A
rc

h
it

ec
tu

re
1

ee
m

M
o

d
el

1

p
ro

ce
ss

M
em

b
er

M
ap

p
in

g
s

0
..*

p
ro

ce
ss

M
em

b
er

1
im

p
le

m
en

ta
ti

o
n

s
0

..*

im
p

le
m

en
ta

ti
o

n
s

0
..*

ac
to

rM
ap

p
in

g
s

0
..*

(a
)

P
ro

ce
ss

m
a
p
p
in

g
p
a
tt

er
n

M
ap

p
in

g
M

o
d

el

n
am

e 
: E

St
ri

n
g

b
as

eP
ac

ka
g

e 
: E

St
ri

n
g

m
o

d
el

U
R

I :
 E

St
ri

n
g

P
ro

ce
ss

M
ap

p
in

g

m
o

d
el

U
R

I :
 E

St
ri

n
g

m
u

lt
ip

le
P

ar
al

le
l :

 E
B

o
o

le
an

A
bs
tr
ac
tC
on

di
ti
on

Im
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

R
e
so

u
rc

e
M

a
p

p
in

g
A
b
st
ra
ct
R
e
so
u
rc
e
Im

p
le
m
e
n
ta
ti
o
n

n
a
m

e
 :

 E
S

tr
in

g

A
bs
tr
ac
tM

ap
pi
ng

En
tr
y

n
am

e 
: E

St
ri

n
g

A
ct

o
rM

ap
p

in
g

A
bs
tr
ac
tA

rc
hi
te
ct
ur
eM

od
el

A
bs
tr
ac
tA

ct
or
Im

pl
em

en
ta
ti
on

P
ro

ce
ss

(f
ro

m
 e

em
)

A
ct
or

(f
ro

m
 e

em
)

R
es

o
u

rc
e

(f
ro

m
 e

em
)

P
ro
ce
ss
M
em

be
r

(f
ro

m
 e

em
)

A
bs
tr
ac
tP
ro
ce
ss
M
em

be
rI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

A
bs
tr
ac
tA

ct
or
R
es
ol
ve
rI
m
pl
em

en
ta
ti
on

n
am

e 
: E

St
ri

n
g

Se
q

u
en

ce
(f

ro
m

 e
em

)
Se

q
u

en
ce

M
ap

p
in

g
A
bs
tr
ac
tC
on

tr
ol
Fl
ow

Im
pl
em

en
ta
ti
on

G
en

er
ic

A
rc

h
it

ec
tu

re
M

o
d

el

Ee
m

M
o

d
el

(f
ro

m
 e

em
)

P
ro

ce
ss

M
em

b
er

M
ap

p
in

g

A
bs
tr
ac
tI
m
pl
em

en
ta
ti
on

p
ro

ce
ss

M
ap

p
in

g
s

0
..*

re
so

u
rc

eM
ap

p
in

g
s

0
..*

ta
rg

et
A

rc
h

it
ec

tu
re

s
1

..*

re
so

u
rc

e
1

ac
to

r
1

im
p

le
m

en
ta

ti
o

n
s

1
..*

im
p

le
m

en
ta

ti
o

n
s

1
..*

se
q

u
en

ce
1

co
n

d
it

io
n

Im
p

le
m

en
ta

ti
o

n
0

..1

co
n

tr
o

lF
lo

w
Im

p
le

m
en

ta
ti

o
n

1

ac
to

rR
es

o
lv

er
Im

p
le

m
en

ta
ti

o
n

s
1

..*

p
ro

ce
ss

1

se
q

u
en

ce
M

ap
p

in
g

s
0

..*

g
en

er
ic

A
rc

h
it

ec
tu

re
1

ee
m

M
o

d
el

1

p
ro

ce
ss

M
em

b
er

M
ap

p
in

g
s

0
..*

p
ro

ce
ss

M
em

b
er

1
im

p
le

m
en

ta
ti

o
n

s
0

..*

im
p

le
m

en
ta

ti
o

n
s

0
..*

ac
to

rM
ap

p
in

g
s

0
..*

(b
)

S
eq

u
en

ce
m

a
p
p
in

g
p
a
tt

er
n

F
ig

.2
:

E
x
ce

rp
ts

of
th

e
m

ap
p

in
g

m
et

a
-m

o
d

el
sh

ow
in

g
th

e
p

ro
ce

ss
m

a
p

p
in

g
p

a
tt

er
n

a
n

d
th

e
se

q
u

en
ce

m
a
p

p
in

g
p

a
tt

er
n



Jens Gulden

Cancel Order

Webshop entered Select products
from catalog

< Customer >

Order canceled

Fill-in order form
or cancel

< Customer >

Order is valid Pick goods from storage

< ShippingEmployee >

Goods are picked Package goods and send

< ShippingEmployee >

Order complete

Product List Order Web Browser

Order is invalid Send cancellation e-mail

Storage Management IS

Confirmation
is read

Goods are packaged
and sent

Send confirmation e-mail

Confirmation Text Cancelation Text

Submit Order
Products 
are selected

Order is submitted Read confirmation

< Customer >

Validate order

< ShippingEmployee >

Fig. 3: Excerpt from a MEMO process control flow model referencing elements
from other organization model perspectives

class has been included in the meta-model as a subclass of the mapping meta-
model’s abstract meta-class ArchitectureSpecificEventImplementation. It
allows to describe that an ES reacts on user actions on a web page.

To resolve concrete users that fulfill an actor role, the WebSessionUser meta-
class is part of the meta-model. It subclasses the abstract meta-class Architec-
tureSpecificActorResolverImplementation from the mapping meta-model,
and allows to describe an additional actor resolver implementation strategy,
implemented e. g. based on session ids. Session ids are a concept specifically
available on the underlying technological platform of web applications.

5 Conclusion and future work

The presented approach forms one building block of an overall development
method for creating ESs from EMs, which is described elsewhere [6]. The de-
scribed model types, the mapping model, and one or more implementation strat-
egy models, can be integrated into various possible procedures for deriving soft-
ware from conceptual models. They offer a general construct for explicating
understanding of two distinct conceptual domains, and corresponding interre-
lationships expressed for the purpose of deriving software functionality from
organization models.

One proposal of such an overall development method has been made in [6].
Further methodical integrations are subject to future research, possibly the pro-
posed approach can be used within existing methodical frameworks, such as the
Rational Unified Process (RUP) [9].

Applications for the proposed meta-modeling patterns other than software
development are possible. When examining the possible range of mappings that
can be constructed between organization models and software models, research
on the semantics of conceptual modeling languages is inherently part of the eval-
uation. In combination with this work, further theoretical insight can be gained
into the expressiveness of organization and enterprise modeling languages, which



Meta-model Patterns Between Organization and Software Concepts

can result in scientifically justified suggestions for improving future organization
modeling languages.

AbstractArchitectureModel
(from mapping)

WebArchitectureModel
conÞgurationFilename : EString

WebMainNavigationLink
name : EString

ArchitectureSpecificControlFlowImplementation
(from mapping)

WebNavigationLink

ArchitectureSpecificEventImplementation
(from mapping)

WebSessionUser

ArchitectureSpecificActorImplementation
(from mapping)

ArchitectureSpecificActorResolverImplementation
(from mapping)

EventLinkHasBeenFollowed

Link

ArchitectureSpecificUserInteraction
(from mapping)

link1

Fig. 4: Example implementation strategy meta-model excerpt for a web applica-
tion architecture

References

1. Stephan Buchwald, Thomas Bauer, and Manfred Reichert. Bridging the Gap Be-
tween Business Process Models and Service Composition Specifications, pages 124–
153. IGI Global, Hershey, 2011.

2. Juliane Dehnert and Wil M. P. van der Aalst. Bridging the gap between business
models and workflow specifications. International Journal of Cooperative Informa-
tion Systems, 13(3):289–323, 2004.

3. Joaquim Filipe and José Cordiero, editors. Enterprise Information Systems,
Berlin/Heidelberg, 2008. Springer. 10th International Conference ICEIS 2008,
Barcelona, Spain, June 2008.

4. Ulrich Frank. Multi-perspective enterprise modelling: Background and terminolog-
ical foundation. Technical Report 46, ICB Institute for Computer Science and Busi-
ness Information Systems, University of Duisburg-Essen, Essen, December 2011.



Jens Gulden

5. Wim Van Grembergen and Steven De Haes. Enterprise Governance of IT: Achiev-
ing Strategic Alignment and Value. Springer, New York, 2009.

6. Jens Gulden. Methodical Support for Model-Driven Software Engineering with En-
terprise Models. Logos, Berlin, 2013. PhD thesis.

7. John C. Henderson and N. Venkatraman. Strategic alignment: Leveraging informa-
tion technology for transforming organizations. IBM Systems Journal, 32(1):4–16,
1993.

8. Business Process Management Initiative. Business process modeling notation 2.0
(bpmn 2.0), 2011.

9. Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley, Upper Saddle River, 3rd edition, 2003.

10. Martin Op’t Land, Erik Proper, Maarten Waage, Jeroen Cloo, and Claudia
Steghuis. Enterprise Architecture. Springer, Berlin Heidelberg, 2009.

11. Jan Mendling. Business process execution language for web service (bpel). EMISA
Forum, 26(2):5–8, 2006.

12. Jan Mendling, Kristian Bisgaard Lassen, and Uwe Zdun. On the transforma-
tion of control flow between block-oriented and graph-oriented process modeling
languages. International Journal of Business Process Integration and Management
(IJBPIM). Special Issue on Model-Driven Engineering of Executable Business Pro-
cess Models, 3(2):96–108, 2008.

13. OASIS Web Services Business Process Execution Language (WSBPEL) Technical
Committee. Web services business process execution language version 2.0, 2007.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

14. Object Management Group. Mda guide version 1.0.1, 2003. http://www.omg.org/
mda.

15. Chung Ouyang, Marlon Dumas, Wil M. P. van der Aalst, Arthur H. ter Hofstede,
and Jan Mendling. From business process models to process-oriented software
systems. ACM Transactions on Software Engineering and Methodology (TOSEM),
19(1):1–37, 2009.

16. Jan Recker and Jan Mendling. On the translation between bpmn and bpel: Con-
ceptual mismatch between process modeling languages. In Thibaud Latour and
Michael Petit, editors, CAiSE 2006 Workshop Proceedings - Eleventh International
Workshop on Exploring Modeling Methods in Systems Analysis and Design (EMM-
SAD 2006), pages 521–532, 2006.

17. Iyad Zikra, Janis Stirna, and Jelena Zdravkovic. Bringing enterprise modeling
closer to model-driven development. In The Practice of Enterprise Modeling, 4th
IFIP WG 8.1 Working Conference, PoEM 2011 Oslo, Norway, November 2-3, 2011
Proceedings, volume 92 of Lecture Notes in Business Information Processing, pages
268–282. Springer, 2011.


