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Abstract. Most of existing approaches for test cases generation to transformation 

mechanisms use a main criterion which is the coverage of source and target meta-

model elements. However, this criterion is not sufficient in a real-world scenario. 

In fact, test-cases generated to cover meta-model elements cannot detect some 

transformation errors due to model-scalability reasons. These generated test cases 

are simple and different, in general, from source models that are used in an 

industrial setting. To make the situation worse, source models cannot be provided 

by industrial companies due to security/confidentiality reasons. Instead of real 

data (source models), corporations can provide structural information about their 

source models (e.g. number of classes, number of relationships, etc.). We propose 

a search-based approach for generating test cases based on the coverage of 

structural information in addition to meta-models coverage. The validation 

results on a transformation mechanism used by an industrial partner confirm the 

effectiveness of our approach. 
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1. Introduction  

Model-driven engineering (MDE) is increasingly adopted in industry for being a new 

paradigm helping software developers to manage the growing complexity of systems 

being designed and implemented. In MDE, software models constitute the central 

artifacts in the software life cycle, going beyond their traditional use for automatically 

generating executable software. In fact, MDE aims to provide automated support for 

the creation, refactoring, and transformation of software models 24. 

Although MDE is a promising approach to automated models transformation, so far it 

lacks techniques and tools for validating model transformations. One of the efficient 

techniques proposed recently is model transformation testing 14.Model transformation 

testing consists of generating a large number of different source models as test cases, 

running the transformation mechanism on them, and verifying the result using an oracle 

function such as a comparison with an expected results. Thus, model transformations 

testing includes with two challenging steps : the efficient generation of test cases and 

the definition of the oracle function. In this paper, we focus on the first step. 

The generating of test cases for model transformation mechanisms is challenging.  As 

explained in 5, testing model transformation is distinct from testing traditional 

implementations: the input data are models that are complex when compared to simple 

data types which complicate the generation and evaluation of test cases 6. These test 



 

 
cases should be in general conformed to specific source metamodel such UML, 

database, etc. The main criteria used by existing work to evaluate test cases are the 

coverage of metamodel elements and reducing the number of test cases 789. However, 

these criteria are sometimes not enough to ensure the generation of efficient test cases. 

Simple test cases are generated to cover metamodel elements which are completely 

different from the real used data (source models to be transformed/ company’s 

projects). When executing transformation mechanisms on industrial data many 

scalability issues can be detected due to some complex model fragments to transform 

or the huge number of transformation possibilities. One can use directly the 

real/industrial source models to test transformation rules. However, most of industrial 

companies, such as banks, do not accept to share their source models due to some 

security/confidentiality reasons.  

To address these issues, we start from the observation that structural information, such 

as quality metrics, characterizing the source models can be collected from the industrial 

partner since it did not contains confidential information (e.g. name of model elements, 

information about customers, etc.). In this paper, we extend existing work by adding a 

new objective to maximize which the coverage of structural information to the real 

source models that will be transformed. To formally define the structural information, 

we used a set of metrics that characterize the proprieties of metamodel elements. Thus, 

in order to maximize the closeness to the real source models to be transformed, we 

minimize the distance between the metrics values of test cases and those of expected 

data to be transformed. To this end, we use a mono-objective optimization algorithm to 

generate test cases that maximize the coverage of metamodel elements while 

minimizing the structural-distance and the number of test cases. The proposed 

algorithm is an adaptation of Genetic Algorithm (GA) 12. The GA aims to explore the 

huge search space of the source metamodel in order to find the best solution ensuring 

the satisfaction of the three objectives described previously. For this, a custom tool was 

developed to generate test cases for the known case of transforming UML class 

diagrams (CD) to relational schemas (RS). The data related to CD was provided by an 

industrial partner, where the goal is to define and test a transformation mechanism to 

migrate to database. Of course, the bank gives us the structural information and not the 

real source models.  

The primary contributions of the paper can be summarized as follows: 

 We present a new approach to generate test cases for model transformations. 

Our proposal generates efficient test cases that are similar to the expected real-

world data to be transformed. 

 We report the results of an evaluation of our approach on industrial data and 

promising results are obtained. In fact, we success to generate artificial source 

models that are similar to expected industrial data with a maximum coverage of 

the source metamodels. 

 We report the comparison results of our approach with an existing work 5 

where only one and/or two evaluation criteria are used to evaluate test cases.  

The remainder of this paper is as follows: Section 2 presents the relevant background 

and the motivation for the presented work using a real-world scenario; Section 3 

describes the heuristic search algorithm; an evaluation of the algorithm with industrial 

validation is explained and its results are discussed in Section 4; Section 5 is dedicated 



 

 
to related work. Finally, concluding remarks and future work are provided in Section 

6. 

2. Test-cases Generation for Model Transformation 

Mechanisms 

This section describes the principles that underlie the proposed method for model 

transformation testing. It starts by presenting the overview of our proposal to generate 

test cases from structural information. Then, we provide the details of the approach and 

our adaptation of the genetic algorithm to the model transformation testing problem. 

As showed in Figure 1, our approach can be divided into two important components: 

the input/output of the testing process, and the main algorithm. We describe these 

components next. 

 

 
Fig. 1 Structural-based test cases generation overview 
 

The Inputs of our approach are the source and target metamodels, the transformation 

mechanism (rules) to test, and structural metrics that characterize the company projects 

that will be transformed. The metamodels describe the     source and target languages 

as described in Section 2. The transformation mechanism is a set of transformation rules 

mapping the different elements of source metamodel to their equivalent elements in the 

target metamodel such as class-to-table, attribute-to-column, etc. When defining a 

transformation mechanism some errors can be detected in the rules or the generated 

target models by executing a set of test cases.   The third input of our approach is the 

metrics that provide useful information about the structure of projects to migrate. For 

class diagrams, we are using the most widely used metrics defined by Genero et al. 

[10]. These metrics include Number of associations (Naccoc): the total number of 

associations; Number of aggregations (Nagg): the total number of aggregation 

relationships; Number of dependencies (Ndep): the total number of dependency 

relationships; Number of generalizations (Ngen): the total number of generalisation 

relationships (each parent-child pair in a generalization relationship); Number of 

aggregations hierarchies (NAggH): the total number of aggregation hierarchies; 

Number of generalization hierarchies (NGenH): the total number of generalisation 

hierarchies; Maximum DIT (MaxDIT): the maximum of the DIT (Depth of Inheritance 



 

 
Tree) values for each class in a class diagram. The DIT value for a class within a 

generalisation hierarchy is the longest path from the class to the root of the hierarchy; 

Number of attributes (NA): the total number of attributes; Number of methods 

(LOCMETHOD): the total number of methods; etc. 

Using these inputs, the main goal (output) of our genetic algorithm is to generate 

artificial data (test cases) satisfying three objectives: maximizing the similarities with 

the expected metrics value, maximizing the coverage of metamodels elements, and 

minimizing the number of test cases. In this setting, a test case can be defined as any 

possible instantiation form the source metamodel. 

As a huge number of test cases that can be generated to satisfy the three objectives, the 

test cases generation process is a seen as a combinatorial optimization problem. The 

number of possible solutions quickly becomes huge as the number of structural metrics 

and metamodel elements increases. A deterministic search is not practical in such cases, 

and the use of heuristic search is warranted. The search is guided by the quality of the 

solution according to the three described objectives. In the experiments, we tested 

different weights accorded to these objectives. 
A high level view of our Genetic Algorithm approach to the test cases generation 
problem is introduced by Figure 2. As this figure shows, the algorithm takes as inputs 
the source and target metamodels, the transformation mechanism (rules) to test, and 
structural metrics that characterize the company projects that will be transformed.  It 
finds a set of test cases (artificial source models) that best maximize the similarity with 
the structure of company-source models,maximize the coverage of metamodels, and 
minimize the number of test cases. 

Input: Initial metamodels IMM 

Input: Structural metrics STM 

Input: Transformation mechanism (rules) TR 

Output: Set of Test cases TC 

1: I:= Instantiation(IMM) 

2: Pop:= set_of(I)  

3: initial_population(Pop, Max_size)  

4: repeat 

5:  for all I   Pop do 

6:   execute_test_cases(I, TR) 

7:  fitness(I) := compare(TR,   STM)+ numberOfTestCases(TC) + (NumberOf 

elements(IMM) - coverage (IMM))  

8: end for 

9: best_solution := best_fitness(I); 

10:  Pop := generate_new_population(Pop) 

11: it:=it+1; 

12: until it=max_it 

13: return best_solution 

 
Fig. 2 Structural-based test cases generation overview 

Lines 1–3 construct an initial GA population, which is a set of individuals that stand for 
possible test case solutions. Lines 4–13 encode the main GA loop, which explores the 
search space and constructs new individuals by combining model elements. For each 



 

 
iteration, we evaluate the quality of each individual in the population, and save the 
individual having the best fitness (line 9). We generate a new population (pop+1) of 
individuals (line 10) by iteratively selecting pairs of parent individuals from population 
p and applying the crossover operator to them; each pair of parent individuals produces 
two children (new solutions). We include both the parent and child variants in the new 
population pop. Then we apply the mutation operator, with a probability score, for both 
parent and child to ensure the solution diversity; this produces the population for the next 
generation. The algorithm terminates when the termination criterion (maximum iteration 
number) is met, and returns the best set of test cases (best solution found during all 
iterations). 

The encoding of an individual should be formalized as a mathematical function called 
fitness function. The fitness function quantifies the quality of the set of generated test 
cases. This function, to minimize, is based on three components and defined as: 
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Where n is the number of generated test cases; nbMMe is the number of metamodel 
elements; nbCovMMe is the number of covered metamodel elements; m is the number 
model elements in all test cases. Thus, the first objective is to minimize the number of 
test cases, the second objective is to maximize the coverage of metamodel elements (by 
minimizing the difference between the number of metamodel elements and the covered 
ones) and finally the third objective is to maximize the similarity with structural 
information of real source models to be transformed (by minimizing the difference 
between the metric values of test cases and real source models).  

3. Experiments 

To evaluate our approach, we conducted an experiment with industrial data. We start 
this section by presenting the data used and the types of transformation errors we 
considered in this study that should be detected using the generated test cases. Then, we 
report and discuss the obtained results. 

In our experiments, we used structural information related to a set of class diagrams 
source models (CD) provided by an industrial partner acting in the banking sector. The 
efficiency of our generated test cases is evaluated using a precision score defined as 
follows: 

errors ofnumber 

cases test by the errors covered ofnumber 
Precision   

In fact, the important criterion to evaluate test cases is the coverage of the majority of 
expected errors. In addition, we compared the precision of our results with classical 
model testing approaches where mainly the coverage of metamodels is used. We 
presented in the next section the average precision (using different GA parameters) 
obtained using the coverage of structural information of the four class diagrams. 

Finally, we evaluate the number of test cases required to cover all the expected errors. 



 

 
Table 1.  Class diagram statistics  

Class diargram #Elements 
CD1 417 

CD2 589 

CD3 298 

CD4 53  

 

 

Fig 3. Precision results 
As showed in Figure 3, the best precision scores are obtained when we combined 
metamodel coverage and strcutural informaiton coverage. In fact, for all the scenarios 
our proposal performs better than classical model-testing approach with a precision 
higher than 89%. Especially in the scenario where a high number of errors (15) are 
introduced in the tranformation mechanism to test. In this case the test cases generated 
using the combination of the three objectives cover more than 93% (14/15) of expected 
errors however using only one objective (metamodel coverage) only 64% of errors are 
covered by the generated test cases.  We also investigated the types of transformation 
errors that were identified. As mentioned previously, the possible error sources were 
during specification of the model transformation mechanism: (i) the metamodels; (ii) 
the transformation logic (rules). Using our approach, all the error types were covered 
by the generated test cases. For instance, we obtained 100% precision in the scenario 
where 9 errors (3 rules-errors and 6 metamodel-coverage errors) are introduced. To 
conclude, the generated test cases using our proposal covered successfully most of 
expected errors much better than metamodel-coverage approach. 



 

 

 

Fig 4. Number of generated test cases 
 

An important consideration is the number of test cases used to cover the expected 
transformation errors. Since our approach takes into consideration the minimization of 
the number of generated test cases, Figure 4 shows that we obtained reasonable number 
of test cases that cover both structural information and metamodel elements. It is 
evident that low number of test cases is generated for structural information coverage 
since only real source models projects are expected to be covered. This is explains why 
few number of test cases are needed in this case. However, the coverage of metamodel 
elements requires the higher number of test cases in all the scenarios especially that 
minimizing the number of test cases is not considered as objective. Our proposal 
obtained lower test cases than the metamodel-coverage-technique with a better 
precision. For instance, in the scenario where 15 errors are introduced more than 160 
test cases are generated by the metamodel-coverage technique. However, with our 
technique only 108 test cases are required. When we checked the results manually, we 
found that many redundant/similar test cases are generated when minimizing the 
number of test cases is not considered as an objective.   

 

Fig 5. Precision vs. number of metrics used for structural information (scenario1=12 

errors introduced) 
 

Another important factor to evaluate when generating test cases from structural 
information is the number of structural metrics required to characterize the structure of 



 

 
real source models to generate similar artificial data (test cases). Figure 5 shows the 
precision scores obtained on the first scenario (where 12 errors to cover are introduced) 
when we varied the number of structural metrics used. Our approach provides 
acceptable results (more than 80% as precision) when only 8 metrics are used thus we 
can conclude that the number of structural metrics required to collect from the industrial 
partner is not huge. This is important because our objective is to reduce the data 
required from the industrial partner as much as possible. However, the number of 
structural metrics depends on the used metamodels. We are planning to extend our 
validation in the future to covers other metamodels and then evaluating the impact of 
the structural metric information. 

We executed our algorithm on a standard desktop computer and only a maximum of 
twenty minutes is required to generate the different results (with different GA 
parameters). Thus, our approach appears to be scalable from the performance 
standpoint. However, the execution time depends on the number of metrics used, 
number of metamodel elements and the number of rules used. 

The precision results might vary depending on the test cases used, which are randomly 
generated, though guided by a metaheuristic. To ensure that our results are relatively 
stable, we compared the results of multiple executions for test cases generation using SA 
as showed in Figure 6. We consequently believe that our technique is stable, since the 
precision scores are approximately the same for seven different executions. 

 

Fig 6. Stability results  

   

4. CONCLUSION 

 In this paper, we described a new search-based for model transformation testing that 

take into consideration structural information of expected real source models to 

transform. The Inputs of our approach are the source and target metamodels, the 

transformation mechanism (rules) to test, and structural metrics that characterize the 

company projects that will be transformed. Using these inputs, the main goal (output) 

of our genetic algorithm is to generate artificial data (test cases) satisfying three 



 

 
objectives: maximizing the similarities with the expected metrics value, maximizing 

the coverage of metamodels elements, and minimizing the number of test cases. 

We evaluate our approach on industrial data and promising results are obtained. In fact, 

we success to generate artificial source models that are similar to expected industrial 

data with a maximum coverage of the source metamodels. Furthermore, we report the 

comparison results of our approach with an existing work where only one and/or two 

evaluation criteria are used to evaluate test cases.  

Future work should validate our approach with more complex transformation 

mechanisms in order to conclude about the general applicability of our methodology. 

Also, in this paper, we only focused on the generation of test cases. We are planning to 

extend the approach by automating the detection of transformation errors. Furthermore, 

since we are considering many objectives to evaluate test case the use of multi-objective 

algorithms such as NSGA-II will be evaluated to find the best comprise. In addition, 

we will study the adaptation of the proposed approach to test object oriented code. 
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