
CroMatcher - Results for OAEI 2013

Marko Gulić1, Boris Vrdoljak
2

1 Faculty of Maritime Studies, Rijeka, Croatia

marko.gulic@pfri.hr
2 Faculty of Electrical Engineering and Computing, Zagreb, Croatia

boris.vrdoljak@fer.hr

Abstract. CroMatcher is an ontology matching system based on terminological

and structural matchers. The most important part of the system is automated

weighted aggregation of correspondences produced by using different basic

ontology matchers. This is the first year CroMatcher has been involved in the

OAEI campaign. The results obtained this year will certainly help in finding

and resolving shortcomings in the system before the next campaign.

1 Presentation of the system

CroMatcher is an automatic ontology matching system for determining

correspondences between entities of two different ontologies. There are several

terminological and structural basic matchers in CroMatcher. The system is based on a

weighted aggregation that automatically determines the importance of each basic

matcher according to the produced correspondences. As this is the first time the

CroMatcher has taken part in the OAEI campaign, CroMatcher is fully prepared only

for benchmark test set.

1.1 State, purpose, general statement

CroMatcher is a system that executes several basic matchers and then aggregates the

results obtained by these matchers. The system does not use any external resource.

After the execution of terminological basic matchers, the automatic weighted

aggregation is executed. The results of certain terminological basic matcher are

included into the common results depending on their importance. The importance of

certain basic matcher is determined automatically within weighted aggregation. Then,

the several iterative structural matchers are executed (e.g. if the child entities are

similar, the parent entities are similar too). To find correspondences with structural

matchers, the common results of terminological matchers are used. After the

execution of structural basic matchers, the automatic weighted aggregation is

executed too. At the end of matching process, the weighted aggregation is executed

for the terminological and structural common results. Finally, the method of final

alignment (choosing the relevant correspondences between entities of two ontologies)

is executed. This method iteratively takes the best correspondences between two

certain entities into the final alignment. Each entity can be related just to one entity of

other ontology.

1.2 Specific techniques used

In this section, the main components of the CroMatcher will be described in details.

The workflow and the main components of the system can be seen in the Fig. 1. The

CroMatcher consists of the following components:

1. Data extraction from ontologies - the information of every entity is extracted

from given ontologies. After extraction of all data about certain entity, all textual

data is normalized by tokenizing into set of tokens, and removing stop words.

Data extraction from

ontologies Terminological matchers

Autoweighted aggregation

(aggregated correspondences

of terminological matchers)
Structural matchers

Autoweighted aggregation

(final aggregation)

Autoweighted aggregation

(aggregated correspondences

of structural matchers)

Final

alignment

Parallel composition

Parallel composition

Fig. 1. The workflow and the main components of the Cromatcher

2. Terminological matchers:

 Matcher that compares ID and annotations’ text of two entities (classes or

properties) with the bi(tri)gram matcher (tests how many bi(tri)grams, i.e.

(substrings of length 2, 3) are the same within two names, e.g. FTP and

FTPServer have 2 bigrams - FT and TP) [1]

 Matcher that compares only label (or entity’s ID if the entity does not have label)

of two entities (classes or properties) with the bi(tri)gram matcher

 Matcher that compares textual profiles of two entities with TF/IDF [2] and

cosine similarity [3]. A profile of class entity contains annotations of actual class

entity (and all sub classes) and annotations of every property whose domain is

actual class. A profile of property entity contains annotations of actual property

entity and all sub properties.

 Matcher that compares individuals of two entities with TF/IDF and cosine

similarity. An individual of class entity contains individual values of actual class

entity and individual values of all subclasses. An individual of property entity

contains individual values of its range class entities.

 Matcher that compares extra individuals of two entities with TF/IDF and cosine

similarity. An extra individual of class entity contains individual values of first

super class of actual class entity. An extra individual of property entity contains

individual values of its domain and range class entities.

 Matcher that compares some general data about the entities. A general data of

class entity contains number of object (data) properties, number of restrictions

and number of sub (super) class entities. A general data of property entity

contains number of sub (super) property entities, number of domain class

entities. More similar the general data, there is the greater correspondence

between entities.

3. Structural matchers:

 Matcher that compares the similarity between super entities (classes or

properties) of currently compared entities. If the super entities are similar,

compared entities are similar too. The matcher is executed iteratively and it ends

when the correspondence value of compared entities stops changing. In each

step, the new correspondence value of compared entities is calculated by

summing 50% of the previous similarity value and 50% of the similarity value

between super entities.

 Matcher that compares the similarity between sub entities (classes or properties)

of currently compared entities. If the sub entities are similar, the compared

entities are similar too. The matcher is executed iteratively and it ends when the

correspondence value of compared entities stops changing. In each step, the new

correspondence value of compared entities is calculated by summing 50% of the

previous similarity value and 50% of the similarity value between sub entities.

 Matcher that compares the similarity between properties (and its range classes)

that have the currently compared classes as their domain. A part of matcher for

similarity between properties compares domain classes of properties.

 Matcher that compares the similarity between range classes of currently

compared properties.

4. Autoweighted aggregation for parallel composition of basic matchers:

After the execution of terminological and structural matchers, the results of these

matchers have to be aggregated together. In our system, we used a parallel

composition of matchers for integration of multiple matchers. The main problem in

parallel composition is how to aggregate the results obtained by every basic matcher.

Weighted aggregation is one of the methods for aggregation of matchers [4]. This

method determines a weighted sum of similarity values of the basic matchers and

needs relative weights which should correspond to the expected importance of the

basic matchers. The problem is how to determine the importance of every basic

matcher. Our automatic Autoweight method proposed in [5] automatically defines the

importance of various basic matchers in order to improve overall performance of the

matching system. In this method, the importance of certain basic matcher is specified

by determining the importance of individual best correspondences (greatest

correspondences between two entities in both directions of mapping, as those

correspondences are the most relevant) within the results obtained by that matcher.

The importance of a certain correspondence found within the results of a basic

matcher is higher when the same correspondence is found within a smaller number of

other basic matchers. The method that finds the same correspondences as all other

methods does not provide any new significant information for the matching process.

5. Process of final alignment:

At the end, the selection of relevant correspondences, for inclusion in the final

alignment, is executed iteratively. The final alignment includes only the greatest

correspondences between entity1i (first ontology) and entity2j (second ontology). A

correspondence between entity1i and entity2j is the greatest correspondence only if it

has the greatest value among all correspondences in which the entity1i (or entity2j) is

included. Threshold for these greatest correspondences is set to 0.15. We consider that

this threshold is sufficient because the final alignment included only those

correspondences that are the greatest for both compared entities.

1.3 Link to the system and parameters file

A system can be downloaded from the http://www.seals-project.eu (tool identifier:

e0fe95d5-943e-4652-bc53-5b36b712c9cb, version: 1.0).

2 Results

In this section, the evaluation results of CroMatcher matching system executed on the

SEALS platform are presented.

2.1 Benchmark

In OAEI 2013, benchmark includes one blind test (biblio). In Table 1 the result

obtained by running the CroMatcher ontology system can be seen.

Test set Recall Precision F-Measure Time (s)

Benchmark 0.82 0.95 0.88 1114

Table 1. CroMatcher result for benchmark track

2.2 Anatomy, conferences, multifarm, library, large biomedical ontologies and

instance matching

This is the first year CroMatcher has been involved in the OAEI campaign and the

focus was on benchmark track. Therefore, the system had problems with other tracks

because we did not manage to test the system for other tracks before the evaluation

due the lack of time. This year, the ontology matching system had to finish matching

the anatomy ontologies within 10 hours, and our system has not finished even after 30

hours therefore we need to speed up the system before the next OAEI campaign. In

the conference track, our system was partially evaluated because it could not process

several ontologies. In the multifarm, library, large biomedical ontologies, our system

gave an “OutOfMemory” exception so we need to solve that problem too before the

next evaluation. Regarding the instance matching, we did not participate in this track.

3 General comments

As we stated before, this is the first time the CroMatcher system participates in the

OAEI campaign. We are very pleased that our ontology matching system was

evaluated on the SEALS platform because this way we could compare our system

with existing systems. There are many different test cases and we think that these test

cases will help us to improve our system in the future.

3.1 Comments on the results

Our system shows great results in benchmark track. Considering the fact that the

benchmark track contains the largest number of ontologies in which the different parts

are missing, we can conclude that our system performs well but only while matching

small ontologies like these in the benchmark track. While matching big ontologies

(thousands of entities), our system is quite slow and it cannot handle big ontologies

yet.

3.2 Discussions on the way to improve the proposed system

We will have to find faster measure than TF/IDF to compare different documents of

entities. Also, we will have to store the data about the entities in a separate file instead

in the java objects in order to reduce the usage of memory in the system.

4 Conclusion

The CroMatcher ontology matching system and its results of evaluation on different

OAEI track were presented in this paper. The evaluation results show that CroMatcher

successfully matches small ontologies but it has problems dealing with ontologies that

have a large number of entities. We will try to solve this problem and prepare the

system to be competitive in all OAEI tracks next year.

References

1. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, 2007.

2. Salton, G., McGill, M.H.: Introduction to Modern Information Retrieval. McGraw-Hill,

New York (1983)

3. Baeza-Yates, R., Ribeiro-Neto B.: Modern Information Retrieval. Addison-Wesley, Boston

(1999)

4. Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching

approaches. In Proc. 28th International Conference on VLDB, pages 610-621, 2002.

5. Gulić, M., Magdalenić, I., Vrdoljak, B.: Automatically Specifying Parallel Composition of

Matchers in Ontology Matching Process. In: Barriocanal, E. G., Cebeci, Z., Okur, M. C.,

Öztürk, A. (eds.) MTSR 2011. Communications in Computer and Information Science, vol.

240, pp. 22-33. Springer, Berlin Heidelberg (2011)

