
A Domain-Specific Language for Dependency
Management in Model-Based Systems

Engineering

Ahsan Qamar1, Sebastian Herzig2, and Christiaan J. J. Paredis2

1 KTH-Royal Institute of Technology, Stockholm, Sweden
{ahsanq}@kth.se

2 Georgia Institute of Technology, Atlanta, Georgia, USA
{sebastian.herzig,chris.paredis}@me.gatech.edu

Abstract. The varying stakeholder concerns in product development
today introduces a number of design challenges. From the perspective
of Model-Based Systems Engineering (MBSE), a particular challenge is
that multiple views established to address the stakeholder concerns are
overlapping with many dependencies in between. The important question
is how to adequately manage such dependencies. The primary hypothesis
of this paper is that modeling dependencies explicitly adds value to the
design process and in addition supports consistency management. We
propose a domain-specific language called as the Dependency Modeling
Language (DML) to capture the dependencies between multiple views at
the appropriate level of abstraction, and utilize this knowledge to support
a dependency management process. The approach is illustrated through
a dependency model between three views of a robot design example. In
addition, we discuss how to analyze dependency graphs for consistency
checking, change management, traceability and workflow management.

Keywords: Dependency Modeling Language, Domain Specific Model-
ing Language, Model Based Systems Engineering, Consistency Manage-
ment, Change Management.

1 Introduction

Contemporary product development is a complex process. Primarily, this is the
case due to a large number of stakeholders being involved, all of which have
varying and overlapping concerns. Therefore, adequate methods to manage the
consequential conflicts are required. In this sense, the design of mechatronics
is a particularly interesting case, since stakeholders from a very diverse set of
disciplines are involved. This makes good decision making very challenging. To
support a model-based mechatronic design process, di↵erent viewpoints are de-
fined, each supported by one or more modeling views. Naturally, multiple view-
points are supported through multiple modeling languages, where the overlap-
ping stakeholder concerns lead to dependencies between the established views.
Traditionally, the dependencies are managed in an ad-hoc fashion by mainly

Proceedings of MPM 2013 7

relying on the communication between the stakeholders. However, ad-hoc de-
pendency management can prove to be ine↵ective, especially for complex and
large scale systems where there could be a large number of such dependencies.

In earlier work, consistency management was explored in the context of en-
gineering design, and a classification of several distinct type of inconsistencies
was identified [1]. It was concluded that no consistency check can ever be com-
plete and that only some inconsistencies can be identified, that too only in the
information captured explicitly and formally. Dependencies are interesting be-
cause they could be the cause of the arising inconsistency, and hence explicit
knowledge of dependencies is vital for consistency management. However, this is
not a trivial task since adequate support in terms of a modeling language and a
supporting tool for dependency management is currently lacking. In this paper,
we present a modeling language to help build a model of dependencies.

The fundamental question to answer is whether it is valuable to model depen-
dencies in contrast to current approaches where dependencies are not captured
formally. The work reported in this paper builds on the hypothesis that model-
ing dependencies adds value to the design process. The value can be measured
in terms of support for consistency management, change management, ensuring
traceability and managing the design process workflow, each of which can be
supported by the dependency modeling approach presented in this paper.

The remainder of this paper is organized as follows: Section 2 builds a no-
tion of dependency. An example use case is described in Section 3. Section 4
introduces a Domain-Specific Modeling Language (DSML) for capturing depen-
dencies, which is illustrated through the example use case in Section 5 and
Section 6. Section 7 presents the related work and is followed by a discussion in
Section 8. Section 9 presents conclusions and possible future work.

2 Notion of Dependency

Rational Design Theory (RDT) [2] establishes a theoretical foundation for Ar-
tifacts, Properties, Concept Selection and Concept Evaluation. Based on RDT
and on Hazelrigg’s decision-based design framework [3], we argue that two types
of properties are prevalent in design: one is used to describe constraints (speci-
fication), whereas the other is used to communicate the designer’s belief regard-
ing the value of the property (a prediction based on a given specification). We
call specification properties Synthesis Properties (SP) and prediction properties
Analysis Properties (AP).

To describe an artifact, there could potentially be an infinite number of
properties spread across multiple views. In this paper, the term dependency
refers to a type of model capturing the relationship between the values of input
and output properties (regardless of the view they belong to). This is somewhat
di↵erent to how dependencies are defined in UML [4], where they represent a
relation and express the need for a particular element to exist. For example,
if an element A depends on element B, and B no longer exists, A is no longer
specifiable. In our case, removing a dependency does not invalidate the inputs

Proceedings of MPM 2013 8

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

or the outputs - the dependency is just no longer captured. Causality naturally
arises from the fact that a dependency has well defined inputs and outputs.

A dependency is considered to be a model; it is possible that this model is
unknown at a given design stage; in this case a dependency can still be specified
(along with its input and output properties) in a dependency model. Once the
model that specifies a particular dependency is known, references can be cre-
ated between this model and the dependency model. A natural question to ask
is why not utilize currently available languages to model dependencies. In the
work reported in [5], di↵erent modeling languages were analyzed for dependency
modeling (e.g. OMG SysMLTM[6]). However none were found to be suitable for
capturing dependencies adequately without having to modify them (e.g., profile
extension of SysML). In addition, the size of meta-model extensions (when us-
ing a general purpose language for many di↵erent purposes) adds to the intrinsic
complexity of the underlying system [7] and introduces accidental complexity [8].

In contrast to a general purpose modeling language (such as SysML), a DSML
is restrictive and has a specific purpose, in particular as per the demands of a
specific viewpoint [7], and it captures the object of interest at the appropriate
level of abstraction and formalism to help minimize the complexity [9]. Based on
this motivation, we will - in the following section - introduce a DSML to model
dependencies called the Dependency Modeling Language (DML).

3 Example Use Case

In order to illustrate the proposals of this paper to the reader, an example use
case is considered: a simple two degree of freedom robot. The design problem is
formulated as follows: Design a pick and place robot with Work Space (WS) cov-
erage of 4m2, with Close loop Position Accuracy (CPA) of at least 5mm, and with
the End-to-End Response Time (EERT) of the robot should not be more than
0.5 seconds. Three viewpoints (one for each stakeholder) are considered for this
example: mechanical design, control design, and Hardware/Software (Hw/Sw)
design. The three stakeholders - based on the design specifications for each view-
point - develop disparate models focusing on di↵erent aspects of the robot by
utilizing di↵erent design and analysis tools, such as a CAD tool for mechanical
design, a control design tool and a software design tool. The semantic overlaps
between the views results in dependencies, which will be the focus of the illus-
tration in section 5. It is worthwhile to mention that gaining knowledge about
properties CPA and EERT requires the combined work of the three stakeholders,
making it essential to manage dependencies.

4 A Modeling Language for Capturing Dependencies

This section describes the DML which is currently supported in Eclipse Modeling
Framework (EMF) [10]. Figure 1 illustrates the abstract syntax of the DML using
a class diagram. Any model that conforms to this meta-model is referred to as

Proceedings of MPM 2013 9

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

a Dependency Model. In the following, the semantics of the language constructs
of the DML are discussed.

A Concept is a description of an artifact and can refer to the actual prod-
uct to be developed, or to any of its sub-components. We say that concepts are
formed by constraining some of the properties associated with it. With the pas-
sage of time, more constraints are put on properties, hence leading to further
refined concepts. For instance, by constraining the number of arms of a robot
to two, a two arm robot Concept is created. A concept Contains zero to many
subordinate concepts - by way of example, here are a few that can be considered
for the two arm robot: Arm1, Arm2, Controller, Motor1, Motor 2, Sensor1, and
Sensor2. All these Concepts are contained under the main concept two arm robot.
Concepts are related to each other through an isPartOf relationship, which cre-
ates the semantic context around each concept. Each Concept can be looked at
from many Viewpoints, and is characterized by a number of Properties, which
are captured in a Model.

Fig. 1. Abstract syntax (meta-model) of the DML.

A Viewpoint refers to the guidelines and conventions used to establish a
View, where a View corresponds to aModel or a composition of disparate models:
for example, mechanical design viewpoint encompassing a Solid Edge model or
the dynamic analysis viewpoint encompassing a Modelica model.

A Model is an abstraction of a real-world artifact (described by a Con-
cept). Multiple Viewpoints may be required to address the stakeholder concerns
with respect to an artifact (Concept), which can be supported through multiple
modeling Views. A Model contains many Properties with multiple Dependencies
between them.

A Property is any descriptor of an artifact. Its value could be numerical,
logical, stochastic or an enumeration. In design, two types of properties are used:

Proceedings of MPM 2013 10

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

properties which are selected or chosen by the designer (Synthesis Properties
(SP)) and ones which are predicted through an analysis model or an equation
(Analysis Properties (AP)). In order for a property to have an unambiguous
meaning, the semantic context around each property should be specified, which
is done through isPropertyOf relationships to a Concept. For example, EERT
isPropertyOf a Concept ControlSystem (see Figure 2), which, in turn, isPartOf
a Robot. A Property can influence other properties via a Dependency, which is
captured through the relatedDependency relationship: e.g., SD4, SD5 and SD13

are related dependencies for the property EERT (see Figure 2).

A Synthesis Property (SP) describes the value that a designer has se-
lected for a particular property. SPs are usually defined through a range of
values (RangeValue); but they can also be defined through a FixedValue or a
BooleanValue. For example, a load profile could be used as an SP to select the
corresponding actuator power.

An Analysis Property (AP) describes the value predicted as a result of
performing an analysis captured in a model, e.g. solving an equation or a con-
straint. APs are predictions and hence uncertain by definition. Therefore, APs
should be specified using a Probability value (ProbabilityDensityFunctionValue).

A Dependency describes the nature of the relationship between two or
more properties. The relationship is assumed to be causal, thereby assuming that
some properties are inputs while others are outputs. The nature of a particular
dependency could be known or unknown at a given design stage, and its specifics
are described in a number of ways. As per [5], dependencies can be expressed in
two forms - a heuristic between two or more properties (Synthesis Dependency
(SD)), or a constraint, an equation or an analysis model (Analysis Dependency
(AD)). One particular case is that of an equality binding between two or more
properties (e.g., same properties belonging to multiple views). There could be
many dependencies within a Model, hence a particular Dependency can be a part
of (i.e. contained within) a particular Model (i.e., a model within a model, such
as a constraint within a CAD model), or, in other cases, represents a distinct
Model (e.g., a Simulink model). Bindings between properties are captured in the
Dependency Model.

A Synthesis Dependency (SD) refers to the heuristics used in selection
of a SP. It is also possible that a modeler uses their experience in making this
selection, and overrides the heuristic completely. An SD could have one or more
SPs as its output, e.g. SD4 in Figure 2.

AnAnalysis Dependency (AD) refers to the analysis (present in a model),
an equation, or a constraint used to predict the value of an AP. An AD could
have one or more APs as its output.

While the dependency models are causal in nature, in many practical sce-
narios, cycles will be present. For example, an algebraic loop could exist, where
a property is both chosen and predicted. From the perspective of structural se-
mantics, cyclic models are valid. However, from the perspective of operational
semantics (which are outside the scope of this paper), such loops must be broken
during execution - for example, by using the well known tearing algorithm.

Proceedings of MPM 2013 11

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

5 Illustration: Dependency modeling through the DML

EMF was used to support the DML which we used to construct the dependency
model for the example use case. In the following, we will illustrate the equality
binding between properties that are part of di↵erent views of the robot. Other
possible illustrations include (but are not limited to): top-level view of the robot
showing the involved Viewpoints and Concepts, and binding of a Property to
multiple dependencies. The reader should note that the illustrations we provide
are models generated based on the abstract syntax and no concrete syntax was
developed at this stage, although graph-based visualizations of the dependency
models were built (see Section 6).

Consider the Synthesis Dependency SD4 in the CAD View. Figure 2 shows
the dependency SD4 where Motor A Torque (M

A

) is determined based on the
information about Inertia of Arm-A (I

A

), the requirement for End-to-End Re-
sponse Time (EERT), and the control system structure (CS).

Fig. 2. Contents of the dependency SD4 (within the CAD View) showing equality
binding to the property EERT, which is a property of the Simulink View.

It can be seen that property EERT isPropertyOf ControlSystem Concept
and is partOfModel Simulink, which is a supporting View in the ControlDesign
Viewpoint. The resulting property binding relationship is contained under the
property EERT, and maintained inside the dependency model. The meta-models
of Matlab/Simulink, and MagicDraw SysML (as UML2.1) are available in our
Eclipse implementation (Cameo Workbench [11]), and we added the Solid Edge
(CAD tool) meta-model to it, hence the models created in these tools can be
read as Ecore models and transformations between them can be built.

Proceedings of MPM 2013 12

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

6 Visualizing dependencies as graphs

The information captured in the dependency model can be visualized by a depen-
dency graph. As opposed to a tree-based representation, a graph-based represen-
tation is better suited for discussions between di↵erent stakeholders (see Figure 2
and Figure 3). We used the tool Graphviz [12], which supports the DOT lan-
guage [13], to build graphs. Figure 3 shows a directed dependency graph between
the three views of the robot. As an example, consider SD9 which refers to the
dependency between inertia of first and second arm of the robot (I

A

and I

B

in
mechanical design view) and the transfer function (G(s)) attributes (in the con-
trol design view). The figure illustrates that even for a fairly simple robot design
example, there are many dependencies between the considered viewpoints, and
manual management of such dependencies is either very challenging or often not
possible due to a lack of information.

Fig. 3. Dependency graph between three robot views. SPs are shown in Blue, APs in
Green, SDs in Orange and ADs in Yellow.

7 Related Work

One popular method of modeling dependencies is the Design Structure Ma-
trix (DSM) [14], which allows relations among properties to be represented in
a matrix. DSMs are used in a variety of disciplines - for example, in software
engineering [15]. Compared to the DML, DSMs are limited in terms of their

Proceedings of MPM 2013 13

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

expressiveness. For one, it is not possible to di↵erentiate between synthesis and
analysis properties, nor between synthesis and analysis dependencies. As dis-
cussed in [5], this di↵erentiation is important to keep analysis results separate
from selections made by the designer. In addition, this di↵erentiation adds to the
semantic richness of a dependency model thereby supporting the change man-
agement and inconsistency management scenarios. Furthermore, the semantic
context around a property can be shown in a DSM only to a limited degree.

In terms of tools, Product Data Management (PDM) systems are probably
among the most widely used systems to manage product-related data. One of
the core capabilities of modern PDM systems is allowing users to establish rela-
tions between elements that are stored in the repository: for instance, reference
and correspondence relationships can be created. Such relationships can typi-
cally only be created among files. However, some contemporary PDM systems
integrate tool adapters, allowing for certain properties of supported models to
be exposed (for example: the part hierarchy in CAD models). While PDM sys-
tems implement some of the desired functionality, they are still limited in terms
of their capabilities of capturing dependencies. In particular, PDM systems re-
quire dependent models to already exist, therefore not enabling one to create a
dependency model independently from the corresponding design artifacts.

Modeling dependencies is also supported (at least to some extent) in the Pro-
cess Integration Design Optimization (PIDO) approach, which is implemented
in tools such as ModelCenter [16]. The underlying principle is the integration of
disparate models. ModelCenter, for instance, provides several tool connectors,
which enable data exchange among disparate models and allow for properties of
compatible models to be exposed. As a result, dependencies between properties
can be modeled. However, current PIDO tools only provide a black box view for
each model and hide most of the semantic context of properties. Furthermore,
not all possible properties can be exposed.

To the best of knowledge of the authors, modeling languages intended specif-
ically for the purpose of modeling dependencies have, to the date of writing this
paper, not been publicized. While there are some promising methods and tools
available, none implement all of the envisioned capabilities. For one, none allow
for the definition of a dependency model independent of other domain specific
models. Furthermore, of the approaches surveyed, none provided the desired
level of depth and access to properties in models.

8 Discussion

The order in which the di↵erent views are developed in relation to the depen-
dency model is an important consideration. There are two possibilities here: a
bottom-up scenario where the initial design and analysis of design concepts is al-
ready captured in multiple views (e.g. a CAD model and a Simulink model), and
then the dependency model is built. In this case, the knowledge already present
in disparate views can be used to automatically build parts of the dependency
model. The other possibility is a top-down scenario where the dependency model

Proceedings of MPM 2013 14

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

is manually created after the requirements and the system architecture are iden-
tified, and based on the dependencies captured in the dependency model, other
views such as CAD and Simulink models are developed. For the example de-
scribed in Section 5, we have followed the former approach, where the views
supporting mechanical, control and Hw/Sw design of the robot already existed.

Dependency models can be used for more than just one purpose. Given the
causal nature, a dependency model can be used for change propagation and
consistency management. For example, in Figure 3, a change to the predicted
value of T

Response

triggers the necessity for AD4 to be refreshed automatically.
It can also support traceability in that it is possible to reason about both the
existence and nature of certain relationships among models. For example, one
useful application is requirements traceability. Dependency models are also useful
for the purpose of managing workflow. Given a (causal) network of dependencies,
tasks can be parallelized and merge points identified. A dependency model can
also be used for the purpose of avoiding certain inconsistencies. Not only can
changes be propagated through such a model, but a single source of truth for
properties is established. Such is the case because properties in the dependency
model are unique, even though these may refer to elements in disparate models.

Modeling dependencies requires additional e↵ort and, hence, additional re-
sources to be allocated. However, any commitment of resources needs to be
justified. It is entirely conceivable that in some cases (e.g. very simple or well
understood systems) the risk associated with not explicitly capturing dependen-
cies is negligibly low. Similar arguments can be made about the completeness of
the dependency model: to what level of detail should dependencies be modeled?
As per [5], dependencies can be defined at six levels of detail starting with the
level-0 where the dependencies are completely unknown to level-5 where both
the dependencies and the transformation models that lead to them are explic-
itly known. Behind building such transformation models are dependency patterns
which gather and illustrate known dependencies between specific types of prop-
erties under a design context. The use of such patterns would decrease the cost
associated with modeling dependencies. Patterns are currently not supported by
the introduced DML and their discussion is beyond the scope of this paper.

9 Conclusions

This paper presents a DSML for modeling dependencies between properties.
Properties are typically referenced in multiple views on a system. A dependency
modeling language allows for the dependencies between these properties to be
captured in a single model, as illustrated for a robot example in Section 5.

Future work should includes the provision of additional features, such as
supporting modeling at multiple levels of detail and allowing for a variety of
stakeholder-specific views to be generated automatically. Furthermore, the op-
erational semantics of the DML should be defined formally. This is particularly
important for the purpose of supporting the accompanying dependency manage-
ment process. For example, an essential task is analyzing how changes propagate.

Proceedings of MPM 2013 15

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

Since most analysis activities involve some sort of token flow, we suggest to in-
vestigate the mapping to the semantic domain of petri-nets as future work.

Acknowledgments. This work was supported in-part by Boeing Research &
Technology. The authors would like to thank Michael Christian (Boeing) and
Axel Reichwein (Koneksys LLC) for the many valuable discussions.

References

1. Herzig, S.J.I., Qamar, A., Reichwein, A., Paredis, C.J.J.: A Conceptual Framework
for Consistency Management in Model-Based Systems Engineering. In: ASME
2011 Design Engineering Technical Conferences & Computers and Information in
Engineering Conference IDETC/CIE 2011, Washington, DC, USA, ASME (2011)
1329–1339

2. Thompson, S.C.: Rational Design Theory: A Decision-Based Foundation for Study-
ing Design Methods. Phd. thesis, Georgia Institute of Technology, Atlanta, Geor-
gia, USA. (2011)

3. Hazelrigg, G.A.: A Framework for Decision Based Engineering Design. Journal of
Mechanical Design 120(4) (1998) 653–658

4. Object Management Group: OMG Unified Modeling Language (UML) Specifica-
tion V2.4.1 (2011)

5. Qamar, A., Paredis, C.J., Wikander, J., During, C.: Dependency Modeling and
Model Management in Mechatronic Design. Journal of Computing and Information
Science in Engineering 12(4) (December 2012) 041009

6. Object Management Group: OMG Systems Modeling Language Specification V1.3
(2012)

7. Vallecillo, A.: On the Combination of Domain Specific Modeling Languages. In:
Modeling Foundations and Applications, Lecture Notes in Computer Science. Vol-
ume 6138. (2010) 305–320

8. Brooks, F.P.: No Silver Bullet Essence and Accident in Software Engineering.
IEEE Computer 20(4) (1987) 10–19

9. Mosterman, P.J., Vangheluwe, H.: Computer Automated Multi-Paradigm Model-
ing: An Introduction. Simulation: Transactions of The Society for Modeling and
Simulation International 80(9) (September 2004) 433–450

10. Eclipse Foundation: Eclipse Modeling Framework (EMF) (2009)
11. No Magic: Cameo Work Bench (2011)
12. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz

and Dynagraph - Static and Dynamic Graph Drawing Tools. In: Graph Drawing
Software, Springer-Verlag (2003) 127–148

13. Gansner, E.R., Koutsofios, E., North, S.: Drawing Graphs With Dot. Technical
report (2009)

14. Eppinger, S.D., Browning, T.R.: Design Structure Matrix Methods and Applica-
tions. Engineering Systems. MIT Press (2012)

15. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using Dependency Models to Man-
age Complex Software Architecture. In: Object Oriented Programming, Systems,
Languages & Applications (OOPSLA), San Diego, CA, USA, ACM Press (2005)
167–176

16. Phoenix Integration: ModelCenter (2012)

Proceedings of MPM 2013 16

A Domain-Specific Language for Dependency Management in Model-Based Systems Engineering

