
Towards Bidirectional Engineering of Satellite Control

Procedures Using Triple Graph Grammars

Susann Gottmann1, Frank Hermann1, Claudia Ermel2, Thomas Engel1, and Gianluigi
Morelli3

1 Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, Luxembourg
firstname.lastname@uni.lu

2 Technische Universität Berlin, Germany
firstname.lastname@tu-berlin.de

3 SES, Luxembourg
firstname.lastname@ses.com

Abstract. The development and maintenance of satellite control software are
very complex, mission-critical and cost-intensive tasks that require expertise from
di↵erent domains. In order to adequately address these challenges, we propose to
use visual views of the software to provide concise abstractions of the system
from di↵erent perspectives.
This paper introduces a visual language for process flow models of satellite con-
trol procedures that we developed in cooperation with the industrial partner SES
for the satellite control language SPELL. Furthermore, we present a general and
formal bidirectional engineering approach for automatically translating satellite
control procedures into corresponding process flow visualisations. The bidirec-
tional engineering framework is supported by a visual editor based on Eclipse
GMF, the transformation tool HenshinTGG, and additional extensions to meet
requirements set up by the specific application area of satellite control languages.

Keywords: model transformation, model synchronisation, triple graph gram-
mars, bidirectional engineering, Eclipse Modeling Framework (EMF)

1 Introduction

Development and maintenance of satellite control software are very complex, mission-
critical and cost-intensive tasks demanding expertise from di↵erent domains. We ad-
dress these challenges by a general approach we developed in a joint research project
with the industrial partner SES (Société Européenne des Satellites, http://www.
ses.com/). SES is a world-leading satellite operator currently operating a fleet of
53 satellites of di↵erent vendors. The satellite control programming language SPELL
(Satellite Procedure Execution Language & Library) [23] was initiated by SES to be-
come a new standard. It is an open-source package based on Python for the development
and operation of satellite control procedures.

The main goal of the research project is to develop the visual modelling language
SPELLFlow, which represents the control flow of SPELL procedures. Satellite engi-
neers and operators at SES are currently working with the SPELL source code. In the

Proceedings of MPM 2013 67

development of SPELL source code, engineers already work with a visual representa-
tion of the desired source code (as printout), but it is completely uncoupled from the
SPELL development and execution environment. In order to enhance the daily work
and reduce cost-intensive errors, a visualisation, related to the one used by satellite en-
gineers, is desired with further improvements: It abstracts from the source code and
highlights important commands for providing a more intuitive way of input. However,
it shall not lose detailed information, which will be hidden at the beginning and can be
shown, if the user desires. So, we developed a layered concept (c.f. Sec. 3). SPELLFlow
is adapted to the following domain specific requirements set up by SES: (1) Provide a
hierarchical visual model defining di↵erent layers of abstraction for highlighting more
important information, but without losing detailed information. (2) Emphasise certain
SPELL statements, e.g., commands for sending and receiving telemetry data. (3) The
bidirectional engineered model will be used as a concise visual view on the source code.
Hence, the engineering process between SPELL and SPELLFlow has to yield correct
visual models and has to retain functional behaviour, i.e., the translation terminates and
yields the same result for identical inputs.

For the translation we use triple graph grammars (TGGs) [21,22], a bidirectional
formal technique in the field of graph transformation. Several correctness properties are
ensured due to the usage of TGGs (syntactical correctness of translation results, func-
tional behaviour, completeness of translation, i.e., every input graph can be translated).

In the former successful joint research project PIL2SPELL [16] with SES, we de-
veloped an automated translation based on TGGs from satellite procedures written in
the proprietary satellite operation language PIL of the satellite manufacturer ASTRIUM
into SPELL. In the current project, we will reuse results, like the SPELL grammar for
the conversion from concrete syntax of SPELL into the abstract syntax graph. At a
later stage, we will provide an extension to a model synchronisation framework based
on [15], which will be integrated at SES into the daily work of satellite developers and
controllers. The bidirectional engineering framework is supported by the transformation
tool HenshinTGG [8,13]. A visual editor SPELLFlowEditor based on Eclipse GMF [2]
was generated and extended to the specific requirements of SES.

Sec. 2 introduces the running example. Sec. 3 presents the visual language
SPELLFlow and the approach for the translation. Sec. 4 summarises the applied for-
mal techniques. In Sec. 5 we discuss related work and conclude in Sec. 6.

2 Running Example

1 def fib(n):

2 a = 0

3 b = 1

4 for i in range(n):

5 sum = a + b

6 b = a

7 a = sum

8 #ENDFOR
9 Prompt(’Result: ’ + a, OK)

10 return
11 #ENDDEF
12
13 Step(’1’, ’User Input’)
14 nr = Prompt(’Number: ’, NUM)
15 fib(nr)

16 if(Prompt(’Restart?’,YES_NO) == YES):
17 Goto(’1’)
18 #ENDIF

Fig. 1. Example Procedure in SPELL syntax

Proceedings of MPM 2013 68

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Throughout the paper, we use the SPELL source code in Fig. 1 as running example.
It is not satellite-specific but well-known and complex enough to explain all details of
the approach. The program prints the Fibonacci number of a given user input. Lines
1 - 11 depict the subroutine fib(n), which determines the Fibonacci number for the
given parameter n and outputs the result. In line 13, the main program starts with the
SPELL-specific command Step. This command indicates a label (first parameter) used
for jumps and provides a description (second parameter). Line 14 asks for user input to
be given as parameter to the subroutine in line 15. Afterwards, the user is able to decide,
whether she wants to restart the procedure. If the user answers the prompt with YES,
then the application jumps back to line 13 using the Goto command.

3 Methodology

This section describes the general approach for the bidirectional engineering of satel-
lite control procedures written in SPELL into its flow visualisation and vice versa, We
introduce the desired visualisation, which is developed in cooperation with SES and
present the approach for implementing the bidirectional translation.

Desired Visualisation

In Sec. 1, we introduced requirements for the visualisation. To fulfil requirement 1 (hier-
archical visual model), we developed a layered model containing di↵erent abstractions.
In practice, it represents the call-hierarchy of a diagram out of another diagram, i.e., we
provide the possibility to go from one more abstract layer to an underlying one which
contains more fine-grained details. The first layer shows only relevant control structure
parts of the main procedure - with the industrial partner SES, we elaborated special
rules for defining the first layer out of the source code: the first branch of if, for,
while or try statements, function calls, Goto and Step commands shall be situated
on the first layer. The second layer will contain more detailed information, e.g., further
branches, body of functions called on the previous layer. In general, the richness of
detail is increasing with a growing layer depth. In the visual representation, shapes for
statements of the same type which directly follow each other, are merged (see Ex. 1).

Requirement 2 (focus on telemetry data) is realised by specific shapes for very im-
portant SPELL statements (e.g., send and receive telemetry commands, steps, prompts).

Example 1 (SPELLFlow - concrete syntax). Fig. 2 illustrates the visualisation of the
SPELL procedure (Fig. 1). Note, that we use the diagram number on the right top of
each box in the following description. The first layer (diagram 1) contains the main pro-
cedure according to the rules mentioned before. The box following Step 1 : User

Input belongs to the Step command and links to another diagram (number 2) on
second layer, which contains a statement (assignment) that is allocated to this step but
should not occur on first layer. If there are further statements, which should not occur
on the first layer, boxes with + icons are shown signalling links to further layers. The
Goto is visualised by a pentagon shape which links to the target statement - the step
statement. In diagram 1, the box Call fib(nr) indicates a function call. It links to

Proceedings of MPM 2013 69

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

First Layer (Main)

Call fib(nr)

if Prompt

false

1
true

1 Second Layer (Step 1) 2

nr = Prompt

Second Layer (fib(n)) 3

Third Layer (EXPR) 4

a = 0, b = 1

b = a, a = sum

 sum = EXPRfor i in range(n) do

return

end

Step 1 : User Input

a + bfst snd

...

Result a

Number

Restart?

Fig. 2. Desired visualisation for the example procedure in SPELL

diagram 3, which is situated on second layer. The content of the function is represented
by diagram 3. The shapes of statements of the same type are merged, e.g., in box b =

a, a = sum. The Prompt statement gets a special shape (rhomboid), and expres-
sions (hexagon), that are at least binary. Expressions are depicted explicitly in separate
diagrams on the next layer. Consequently, hexagon a + b links to diagram 4, which
shows the expression in full detail on third layer.

General Bidirectional Engineering Approach

SPELL
concrete syntax

SPELLFlow
concrete syntax

SPELLFlow
abstract syntax

graph (ASG)
TGG

Xt
ex

t

EM
F

SPELL
abstract syntax

graph (ASG)

SPELL GUI / SPELL development
environment (tool support)

ed
it

ap
pl

y

ed
it

ap
pl

y

Fig. 3. Bidirectional engineering from
SPELL to SPELLFlow and vice versa

The approach for bidirectional engineering of
SPELL (Fig. 3) from source code to its visualisa-
tion and vice versa will be integrated in two SES
applications: the SPELL execution environment
, which is used for operating satellites and the
SPELL development environment, in which the
SPELL programmer gets the possibility to imple-
ment SPELL procedures in the source code view
and also in using the visualisation of SPELLFlow
models for creating a skeleton as a way of code
generation. Both SPELL environments are repre-
sented by the rounded rectangle on top of Fig. 3.
Currently, SES uses SPELL source code - the con-
crete syntax of SPELL. For the bidirectional engi-
neering process from SPELL source code to visual SPELL models (SPELLFlow), we
use the Eclipse tool HenshinTGG, which is based on EMF [3]. The concrete syntax of
SPELL will be imported in HenshinTGG using Xtext [4] which results in an abstract
syntax graph (ASG) of the SPELL source code. We use HenshinTGG to define triple
rules and generate forward translation rules (for the translation from SPELL ASG to
SPELLFlow ASG) and generate backward translation rules (for the translation from
the SPELLFlow ASG to the SPELL ASG). Using EMF, the abstract syntax graph of
SPELLFlow is transferred to the concrete syntax, an XMI file, which can be imported
into the SPELLFlowEditor to visualise the flow diagram. The SPELLFlowEditor for

Proceedings of MPM 2013 70

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Fig. 4. Abstract syntax graph of the running example

the visualisation currently exists as a prototype and will be integrated into both SPELL
environments.

Example 2. In Fig. 4 the abstract syntax graph (ASG) of the running example is illus-
trated. Due to the complexity, we highlight a detail of the ASG which represents parts
of source code lines 13 and 14 (step and assignment statements, see Fig. 1). The ASG
is a graph typed over the source part of the type graph. The types are indicated by ”‘:”’,
e.g., stmt LST elem is the type of the second node from top.

4 Formal Framework and Application

In the following section, we briefly introduce the main concepts for model transforma-
tions based on TGGs [5] on the basis of the running example and the synchronisation
framework [15] that we use in the project.

A triple graph is an integrated model, i.e., a model which is composed of a source
model, a target model and correspondences between these models. It consists of three
graphs: the source, correspondence, and target graphs, and two graph morphisms (map-
pings) specifying the correspondences between elements of the source and target model.
In Fig. 7 an excerpt of the triple graph for our running example is given. A triple graph
morphism defines mappings between triple graphs which preserve the correspondences.

L
m ✏✏

� � tr // R
n✏✏(PO)

G �
�

t
// H

Fig. 5. Tripe rule

Triple graphs are typed over a type triple graph TG via a triple
graph morphism. Triple graph morphisms between triple graphs have
to preserve the typing. TG can be seen as the meta-model. Triple
graphs can have attributes and node type inheritance. For this, we
use the formal notation presented in [5,6].

A triple rule tr as shown on the first row of Fig. 5 is an inclusion
of triple graphs L ,! R, i.e., all elements in L are uniquely mapped

Proceedings of MPM 2013 71

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Fig. 6. Triple rule T Step assignment Expr-2-AssignmentActivity (left) and derived FT rule (right)

to elements in R. Consequently, triple rules are non-deleting. They specify, how a con-
sistent triple graph can be extended on all three parts simultaneously resulting again in
a consistent triple graph. The rule application is illustrated in Fig. 5. The triple rule tr
is applied to triple graph G via a graph morphism m called match. The result is triple
graph H, where L is replaced by R in G [6]. Triple rules can be extended by negative
application conditions (NACs) defining forbidden context in order to restrict the rule
application [5].

Example 3 (Triple Rule). In Fig. 6, a triple rule is illustrated. Elements marked with
<++> are created by this triple rule. Unmarked elements are called context elements.
This triple rule creates correspondences between an assignment expression following
a Step command in the SPELL ASG with an assignment activity in the SPELLFlow
ASG. The latter element is situated on a new layer in the target graph. The new layer
is indicated by containment edges, i.e., the assignment activity is contained by the step
activity.

A TGG is a tuple TGG = (TG, S ,TR) containing a type triple graph TG, a start
graph S , which is usually the empty triple graph, and a set of triple rules TR. A TGG
generates all consistent triple graphs. For TG = (TGS TGC ! TGT), we use LTG,
LS , LT to denote the language, i.e., the classes of all graphs typed over TG,TGS , or
TGT , respectively.

For the translation from the source into the target model, we use a set of operational
forward translation rules (FT rules) that are generated automatically out of the set of
triple rules [14]. Each FT rule trFT di↵ers only on the source part from the correspond-
ing triple rule tr: Each <++> is replaced by a Boolean valued marker <tr>. In order
to translate a source model to an integrated model, all elements in the source model
are initially marked with false. When applying an FT rule, the <tr>-marker is set to
true, so that the specific rule cannot be applied again on the same elements. So, the
source model will be translated stepwise into an integrated model, without modifying
the source model. Similar to the generation of FT rules, operational backward transla-
tion rules (BT rules) can be created in order to translate backward a target model into
the integrated model.

Proceedings of MPM 2013 72

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

Fig. 7. Excerpt from triple graph (integrated model)

Example 4 (FT/BT Rule and FT-Rule Application). We consider the triple rule in Fig. 6.
In the corresponding FT rule, each <++> marker is replaced by a <tr> in the source
part. In the corresponding BT rule, the marker is replaced in the target part.

In general, the translation from a source model into a target model needs the source
graph as a basis. In our example, the translation is performed from the SPELL ASG,
which is illustrated in Fig. 4. It will be translated stepwise into an integrated model
with the set of FT rules. In Fig. 7 we illustrate the application of the FT rule FT Step-
assignment Expr-2-AssignmentActivity generated out of the triple rule in Fig. 6. The
Step statement is already translated, so that the rule FT Step-assignment Expr-2-
AssignmentActivity can be applied. The elements marked with a fat border are required
context elements which are mapped by the FT rule. After applying the FT rule, the
elements marked with a dashed line are created by this FT rule.

8 G0S 2 LS :
GS
oo

r
//

a
✏✏

u:fPpg

GT

b
✏✏

G0S oo
r0
// G0T

8 G0T 2 LT :
GS
oo

r
//

a
✏✏

w:bPpg

GT

b
✏✏

G0S oo
r0
// G0T

Fig. 8. Synchronisation operations fPpg, bPpg

In future work, we will apply the
model synchronisation framework based
on TGGs [15]. The main idea is to prop-
agate changes from one domain to the
other by reusing the operational forward
and backward translation rules.

In Fig. 8, we illustrate the forward
propagation operation (fPpg) which ap-
plies the model update a performed in the source model to the integrated model. On the
left side of the figure, we illustrate the fPpg operation and on the right side, we illustrate
the symmetric backward propagation operation bPpg. The forward operation consists
of three steps: The forward alignment step constructs a new correspondence graph by
deleting all correspondence elements which became invalid by the source model update
a. The deletion operation creates a consistent integrated model in removing parts which
became inconsistent by update a. The forward addition operation executes the opera-
tional forward rules, until all untranslated elements are translated. Due to the definition

Proceedings of MPM 2013 73

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

SPELLFlow - concrete syntaxSPELL2SPELLFlow - triple graphSPELL - concrete syntax
First Level (Main) 1

Second Level (Step 1) 2

Step 1 : User Input

...

nr = PromptNumber

Fig. 9. Excerpt: Summary of bidirectional engineering process

of this operation, the resulting integrated model is consistent. The bPpg operation is
symmetric. In [15], we have shown for this model synchronisation framework that also
correctness and completeness properties hold.

However, translating all updates performed synchronously in the source and tar-
get model to the integrated model can cause conflicts. In [7], an appropriate conflict
resolution is discussed.

Due to the well-defined formal frameworks we use for defining the translation and
later synchronisation, requirement 3 (concise and correct visual models and functional
behaviour) is fulfilled. The model is concise, because we defined a hierarchical (multi-
layer) view on the SPELL source code, especially the main layer of SPELLFlow pro-
vides an abstract view on the SPELL source code. The correctness and completeness
w.r.t. correspondence patterns between SPELL and SPELLFlow is ensured by Theorem
8.2 in [15]. To show functional behaviour, we use the automatic critical pair analysis
provided by HenshinTGG [13,14].

In Fig. 9, we show an overview of the whole bidirectional engineering process for
an excerpt of our running example. The SPELL source code is parsed using Xtext
yielding the SPELL ASG (left). This ASG is translated into an integrated model (mid-
dle) represented by a triple graph in using the set of FT rules. The target part is the
SPELLFlow ASG, which is exported as an XMI file. This XMI file is imported into the
SPELLFlowEditor which displays the desired SPELLFlow digram (right) in concrete
syntax. To generate source code out of the visualisation, we will perform the same pro-
cess in the backward direction and apply the set of BT rules for the translation. At a
later stage, we will apply the presented synchronisation framework.

5 Related Work

TGGs were introduced in [21] and since then refined and extended by several
works [19,12,22]. Many works focus on defining and preserving correctness properties
and functional behaviour of TGGs [5,14]. Based on the delta-lenses framework [24],
TGGs were extended by bidirectional model synchronisation frameworks [10,15].
These results will be reused in the presented approach.

In [17,1], a new type of TGGs was introduced: view triple graph grammars
(VTGGs), in order to model domain-specific views of a source model. The authors
present di↵erent views, e.g., domain-specific views or views presenting di↵erent ab-
straction layers, and describe an appropriate model transformation technique satisfying

Proceedings of MPM 2013 74

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

every type of view. VTGGs are very promising for the approach presented in this paper,
though the definition of VTGGs as given in [1] is too restrictive for our approach and
needs to be relaxed.

The Atlas Transformation Language (ATL) [18] is a widely-used framework for
specifying model transformations in a declarative manner. However, the approach only
supports the specification of unidirectional transformations and requires to specify each
direction of bidirectional model transformations separately. Therefore, in contrast to
TGGs, the approach does not allow to generate operational translation rules for forward
and backward model transformations from one consistent specification.

Several works deal with model visualisation and visualisation languages. In [9],
a general approach for defining a visualisation language and its simulation is given
based on typed algebraic graph transformation. In [11], an overview of di↵erent soft-
ware visualisation approaches and important properties for an appropriate visualisation
are discussed. SPELLFlow matches most of these requirements. Koschke [20] presents
a tool suite for software visualisation in reverse engineering. There, di↵erent visualisa-
tions are provided as additional information. In contrast, it is planned that SPELLFlow
will replace the source code view completely. Both papers present surveys on software
visualisation where the majority of interviewees (more than 80% in each survey) agree
that software visualisation is at least important.

6 Conclusion

In this paper we introduced a new visual modelling language (SPELLFlow) for the vi-
sualisation of procedures written in the satellite control language SPELL. The require-
ments for the syntax and semantics of the visual language SPELLFlow were developed
in cooperation with the industrial partner SES. We presented an approach for the auto-
matic generation of SPELLFlow models from SPELL programs, and the generation of
SPELL source code from SPELLFlow models. This bidirectional engineering approach
is based on the formal framework of TGGs and supported by the tool HenshinTGG and
a visual editor based on Eclipse GMF which we developed for SPELLFlow.

According to the requirements set up by SES, we will apply the synchronisation
framework presented in [15] using HenshinTGG. Finally, we will evaluate our imple-
mentations regarding e�ciency and usability in order to integrate the implementations
in the daily work of satellite controllers and developers at SES.

Acknowledgements. Supported by the Fonds National de
la Recherche, Luxembourg (3968135).

References

1. Anjorin, A., Rose, S., Deckwerth, F., Schürr, A.: Asymmetric delta lenses with view triple
graph grammars (to appear). ECEASST pp. 1–15 (2013)

2. Eclipse Consortium: Eclipse Graphical Modeling Framework (GMF) (2013), http://
www.eclipse.org/modeling/gmp/

Proceedings of MPM 2013 75

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

3. Eclipse Consortium: Eclipse Modeling Framework (EMF), Version 2.8.3 (2013), http:
//www.eclipse.org/emf

4. The Eclipse Foundation: Xtext, Version 2.3.1 (2013), http://www.eclipse.org/
Xtext/

5. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construction, Correctness and
Completeness of Model Transformations based on Triple Graph Grammars. In: Proc. MOD-
ELS’09. LNCS, vol. 5795, pp. 241–255. Springer (2009)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theor. Comp. Science, Springer (2006)

7. Ehrig, H., Ermel, C., Taentzer, G.: A Formal Resolution Strategy for Operation-Based Con-
flicts in Model Versioning Using Graph Modifications. In: Proc. FASE’11. LNCS, vol. 6603,
pp. 202–216. Springer (2011)

8. Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual Modeling and Analysis of EMF Model
Transformations Based on Triple Graph Grammars. ECEASST 54, 1–14 (2012)

9. Ermel, C.: Simulation and animation of visual languages based on typed algebraic graph
transformation. Ph.D. thesis, Technische Universität Berlin (2006)

10. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. SoSyM 8, 21–43 (2009)

11. Gracanin, D., Matkovic, K., Eltoweissy, M.: Software visualization. ISSE 1(2), 221–230
(2005)

12. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies: imple-
menting Query/View/Transformation with Triple Graph Grammars. SoSyM 9, 21–46 (2010)

13. EMF Henshin, Version 0.9.6 (2013), http://www.eclipse.org/henshin/
14. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: E�cient Analysis and Execution of Correct

and Complete Model Transformations Based on Triple Graph Grammars. In: Proc. MDI’10.
pp. 22–31. MDI ’10, ACM (2010)

15. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann, S., Engel,
T.: Model synchronization based on triple graph grammars: correctness, completeness and
invertibility. SoSyM pp. 1–29 (2013)

16. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A., Engel, T.: On
an Automated Translation of Satellite Procedures Using Triple Graph Grammars. In: Proc.
ICMT’13, LNCS, vol. 7909, pp. 50–51. Springer (2013)

17. Jakob, J., Königs, A., Schürr, A.: Non-materialized Model View Specification with Triple
Graph Grammars. In: Graph Transformations, LNCS, vol. 4178, pp. 321–335. Springer
(2006)

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming 72, 31–39 (2008)

19. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Implementations,
and Application Scenarios. Tech. Rep. TR-ri-07-284, Department of Computer Science, Uni-
versity of Paderborn, Germany (2007)

20. Koschke, R.: Software Visualization for Reverse Engineering. In: Revised Lectures on Soft-
ware Visualization, International Seminar. pp. 138–150. Springer (2002)

21. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Tinhofer, G.
(ed.) Proc. WG’94. LNCS, vol. 903, pp. 151–163. Springer (1994)

22. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Proc. ICGT’08. pp. 411–425. No.
5214 in LNCS, Springer (2008)

23. SES Engineering: SPELL - Satellite Procedure Execution Language & Library, Version
2.3.13 (2013), http://code.google.com/p/spell-sat/

24. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with Bidirectional
Model Transformations. In: Proc. ICMT’09. pp. 213–228. Springer (2009)

Proceedings of MPM 2013 76

Towards Bidirectional Engineering of Satellite Control Procedures Using Triple Graph Grammars

