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Abstract. In Philosophy, the term awareness is often associated to the-
ories of consciousness and self-referential behavior. In computer science,
the awareness is a topic of increasing relevance in both Software Engi-
neering and Artificial Intelligence, being closely related to autonomy and
proactiveness.
We can distinguish two orders of awareness: the first order is the aware-
ness of the environment also known as context-awareness; conversely,
self-awareness is a higher order awareness (knowledge about one’s own
mental states).
Nowadays, many agent oriented languages offer native instruments to
implement context-awareness. However, self-awareness is not adequately
supported and it requires further considerations. This paper focuses
on implementation techniques, based on JASON, for creating software
agents able to dynamically reason about their knowledge of the envi-
ronment, as well as on their missions, capabilities and current execution
state.
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1 Introduction

Runtime adaptation is, today, an important aspect of complex systems such
as distributed systems, defense software, and pervasive computing systems [6].
The most successful examples of self-adaptation in computer science have been
designed ad hoc for the specific problem. As a consequence, the experience con-
cerning such systems is hard to generalize, thus making self-adaptation difficult
to (a) transfer or reuse in other applications, (b) reason about or analyze to
ascertain whether the adaptations will result in proper-running systems, and (c)
change.

Recently, the research community in the area of distributed-systems is focus-
ing on the general area of self-* [2, 16]. For instance, self-healing systems attempt
to “heal” themselves in the sense of recovering from faults and regaining norma-
tive performance levels independently in a way similar to how biological system
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heals a wound [8]. The lesson learned is that implementing self-adaptation of-
ten implies 1) the ability of self-tuning own behavior for reacting to external
changes ans 2) the ability of reflecting upon how to behave, own capabilities and
resources, for adapting to changes.

Several scientists agree [6] that self-adaptation (for humans as well as for
software components) is closely related to the ability of reasoning about its own
outer and inner world, or in other worlds, being self-aware. So far, there is still
the need for methods that allow to implement these two features by using results
from the theoretical approach to the implementation one.

The complexity of current and emerging computing systems has lead to take
inspiration from several areas (for instance complex systems, control theory, ar-
tificial intelligence, sociology, philosophy, biology, . . . ). In Philosophy, the term
awareness is often associated with theories of consciousness and of self-referential
behavior [14, 17]. “Thinking that One Thinks” resumes a very high level of aware-
ness that is common in human consciousness.

Examining the literature we discovered several approaches to self-adaption.
Holland and Goodman [11] built an internal model of the environment and gen-
erated suitable predictions, Haikonen [9] used the feedback received by a loop in
which the model of the environment is implicitly learned in terms of weights of
an associative neural network. First Order Logic has been used by Weyhrauch
that proposed a system able to make inferences and reflect on them; he estab-
lished a seminal theory to provide artificial reasoning systems with self reflection
capability [18]. The work in [1] deals with the relationship between higher order
access and phenomenology through the use of a kernel architecture based on the
five axioms of consciousness. Manzotti [12] introduced the externalist point of
view, self-conscious ability is reached by continuously comparing the subjective
with the objective experience, by reflecting about itself and the world around.
So from the theoretical point of view, higher order perception sees an entity able
to reflect about itself hence to make inferences about how to act in the world.

This work focuses on creating tools for implementing agents that reason on
their own goals, capabilities and knowledge of the environment. Above all, we
experienced the use of JASON where an agent is able to reason in order to act
in the environment for pursuing its goals but it is not able to reflect on its plans
and to re-organize them for dealing with changing situations. Thus inspired by
the beliefs of beliefs mechanism we provide some implementation techniques for
enabling agents to dynamically reason on their knowledge about the environment
as well as on the knowledge of themselves: their goals, their capabilities and their
current execution states.

We aim at reducing the gap between self-awareness theory and implementa-
tion in the context of multi-agent systems, since self awareness is not native in
the most common and used agent oriented language.

The paper is organized as follows: Sections 2 provides an overview on the
JASON agent language, Section 3 shows how to implement self-awareness in
JASON, section 4 discusses the proposed work using an experiment and finally
Section 5 draws some conclusions.
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2 The JASON Architecture

The JASON [3] platform is based on the AgentSpeak language [13] and the BDI
theory [5]. The Belief Desire Intention (BDI) model was developed at the Stan-
ford Research Institute during the activities of the Rational Agency project. It is
derived from the theory of human practical reasoning formulated by the philoso-
pher Michael Bratman. In the BDI model we assume that computer programs
can have a mental state. Thus, when we refer to a Belief-Desire-Intention system,
we are considering computer programs having computational features that are
analogues of beliefs, desires and intentions [5].

Beliefs are information the agent owns about the environment where it runs
and, of course, it could also be out of date, inaccurate or false.

Desires correspond to the possible states of the world the agent might like to
achieve. A desire, however, does not imply that an agent acts for fulfilling it. A
desire is then only an option among all the future possible actions of the agent.
Instead, intentions are states of world that the agent has decided to achieve.
The BDI paradigm is based on a decision making model known as Practical
Reasoning (PR). PR consists in two steps. First, the PR process takes into
account all the Desires of an agent and selects the most suitable ones according
to the agent’s Beliefs. This deliberation step produces as results that an agent
adopts an intention to pursue the selected desire. Intentions play a much stronger
role in influencing the following action of the agent than desires do [4].

Intentions are characterized by an important property: they persist. When
an agent adopts an intention, then it attempts to achieve it. If it initially does
not success, then it would try again, and it will not easily give up. However, it
may happen that beliefs (or other changes in the world) make the intention not
useful or interesting anymore. In this case it will be dropped it. Thus the agent
reconsiders the new situation and selects another desire.

Moreover, once an agent adopted an intention, its future deliberative rea-
soning will consider or adopt options that are consistent with that intention.
Finally, intentions are closely related to beliefs about the future. In particular,
to pursue an intention for achieving a particular state implies that this state is in
principle possible. Under normal circumstances, the agent will then succeed with
its intention. However, it is possible that its intention might fail. The second step
PR is called mean-ends reasoning. It is the process of deciding how to achieve
an intention on the base of the actions the agent can perform in his environ-
ment. Means-ends reasoning is based on goals or intentions, beliefs and actions;
it should generate a plan, that is a sequence of actions. If the mean-ends rea-
soning works properly it would produce the sequence of action the agent should
execute for attaining its goal or intention.

However, it is a common practice in current application to develop collections
of partial plans at design time. The task of the agent is then to pursue these
plans for their execution at run time. This approach lacks of flexibility because
the ability of an agent to deal with changing circumstances is dependent on the
plans coded for it by the agent programmer. Nevertheless, this approach can
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work well in practice and AgentSpeak is based on that model.

AgentSpeak is a programming language based on events and actions [13].
The behavior of agents is ruled by programs written in the AgentSpeak lan-
guage. The state of an agent together with its environment and eventual other
agents represent its belief base. Desires are states which the agent wants to attain
based on its perceptions and beliefs. When an agent adopts a plan it transforms
a desire to an intention to be pursued. Hence, the program of an agent includes
a set of base beliefs and a set of plans. Plans are triggered by events and consist
of a sequence of actions to be performed. At run-time, an agent can be viewed
as consisting of several sets: beliefs, plans, intentions, events, actions and selec-
tion functions. Among these elements only beliefs are explicitly represented with
modal formulas. Goals or sub-goals are actually considered as the successful final
condition of plans.

In JASON, the agent’s knowledge is expressed by a symbolic representation
(based on implicit ontology) by using beliefs, that are simple predicates (such
as tall(john). or likes(john,music).) that state what the agent thinks to be true.
Sources of agent’s beliefs are: (i) perception (the agent acquires beliefs as a con-
sequence of sensing the environment), (ii) communication (information acquired
from other agents is annotated by beliefs) and (iii) mental activity of an agent,
that may generate new information (mental notes), deducted from current beliefs
and added to the belief base for convenience. The current state of the agent, its
environment, and other agents, can be viewed as its current belief state. States
which the agent wants to bring about can be viewed as desires, that are used for
activating plans. The context of a plan is used for checking the current situation
so as to determine which plan is more suitable to be executed. The context is
a logic formula that must be true in order the plan to be applicable. The three
parts of a plan are triggering event : context ← body. Trigger conditions tell
the agent what are the specific changes in the agent’s mental attitudes for which
the plan is to be used.

A JASON agent is continuously perceiving the environment and it is rea-
soning about how to act on it for achieving its goals. The reasoning part of
the agent’s cyclic behavior is done according to the plans the agent has in its
own plan library. In the current implementation, JASON agents are actually not
aware neither of their goals nor of their capabilities. The specification of a goal
is strictly connected to the plans to be executed for achieving it. In order to
implement adaptivity and self-awareness we have to separately define goals and
capabilities that is the sequence of actions or of sub-goals necessary for achieving
the goal. Such an issue will be discussed in the next sections.

3 Self-Aware Agents in Jason

We consider self-awareness as a sort of ability of introspection the agent can use
to adapt its behavior to its own internal state. As well as in BDI systems, when
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Listing 1: Beliefs about a goal

1 goa l ( g1 ) .
2 goa l owne r ( g1 , t h e s y s t em ) .
3 t r i g g e r i n g c o n d i t i o n ( g1 , g1 t c ) .
4 e v e n t d e f i n i t i o n ( g1 tc , and ( [ e1 , e2 ] ) ) .
5 s t a t e t r u e t r i g g e r s e v e n t ( e1 , s1 ) .
6 s t a t e t r u e t r i g g e r s e v e n t ( e2 , s2 ) .
7 p r o p e r t y d e f i n i t i o n ( s1 , p r o p e r t y ( u n c l a s s i f i e d , [ doc ] ) ) .
8 p r o p e r t y d e f i n i t i o n ( s2 , p r o p e r t y ( done ( r e c e i v e documen t ) ) ) .
9 f i n a l s t a t e ( g1 , g 1 f s ) .

10 s t a t e d e f i n i t i o n ( g1 f s , and ( [ s3 , s4 ] ) ) .
11 p r o p e r t y d e f i n i t i o n ( s3 , p r o p e r t y ( c l a s s i f i e d , [ doc ] ) ) .
12 p r o p e r t y d e f i n i t i o n ( s4 , p r o p e r t y ( done ( c l a s s i f y ) ) ) .

we mention the internal state of an agent, we refer to the agent’s knowledge of
its Goals, of its Capabilities and of the Environment.

We adopt the definition of system goal from GoalSPEC [15] in which a goal
is described as a tuple (Actor, TriggerCondition, FinalState). Where in JASON
a goal is a term !g(t1, . . . , tn) which addition/deletion represents a trigger for
activating plans, in GoalSPEC, a system goal describes the state of the world
the agent wants to achieve. We also refine the concept of Capability from the
BDI theory. A Capability is made of 1) the beliefs about what the agent is able
to do, and plans for actually addressing the declared result.

In the agent belief-base, a goal is represented as a set of beliefs. Listing 1 re-
ports an example of goal. The agent believes that: (at line 1) g1 is a goal; (at line
2) the system is responsible to address g1; (at lines 3-8) the triggering condition
of g1 is the AND-condition of two context-properties (property( unclassified,
[doc] ) and property( done, [received document] ) ); (at lines 9-12) the final
state of g1 is also given by two context-properties (property(classified, [doc])
and property(done, [classify]) ).

The first advantage of having goals in the agent belief base is that they can
dynamically change during the agent life. Indeed new goals can be added into
the belief-base, or existing goals can be ejected. Differently from JASON, a goal
that is injected into the system does not automatically becomes a trigger for a
plan. Indeed, when injected, a goal has a lifecycle; Figure 1(a) shows the possible
states of a goal. The initial state is Injected. When the agent decides to address
it, then the goal moves to a state of Ready. When the goal’s triggering condition
is true then the goal becomes Active. This state changes when the agent executes
its attempt to address it: if the goal’s final state is true then the goal is now
Addressed. Otherwise the goal stays Active unless a capability failure occurs.

Another advantage is that the agent may reason on goals in the belief base
in order to decide its behavior. This property pushes the agent autonomy and
proactivity: for instance the agent can decide to commit to a goal only if it finds
this action convenient for itself. In any case, the necessary condition since an
agent can commit to a goal is shown in Listing 2.
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Listing 2: Rule for goal belief-set. The agent is able to commit to a goal when it
is able to catch the triggering condition and to address the final state

1 ab l e t o c omm i t t o ( G, Context )
2 :− goa l (G)
3 & t r i g g e r i n g c o n d i t i o n (G, TC )
4 & f i n a l s t a t e (G, FS )
5 & ab l e t o c a t c h (TC, Context )
6 & ab l e t o a d d r e s s (FS , Context )
7 .

A Capability is composed of two components: a description and an implemen-
tation. The capability description contains indications about when the capability
can be used and it is represented as a set of beliefs. On the other hand, the im-
plementation is a set of Jason plans to be executed when the agent wants to
activate the capability. Listing 3 reports an example of capability. The agent be-
lieves that: (at line 1) classify document is a capability the agent owns; (at lines
2-3) classify document works on objects of type doc; when doc is in the initial
condition of available this capability promises to return a classified doc, if no
failures occur. The remaining part of the code concerns the capability implemen-
tation. It is composed of three plans: (at line 5) the prepare plan is executed
before of all the other capability plans; it may be used to prepare data to work
on, or to wait some internal condition to be true; (at lines 6-11) the action plan
contains the body of the capability that addresses the state transition, as a set of
traditional Jason instructions; (at line 12) the terminate plan is executed after
the action is finished and may be used to de-allocate all data that has been used.

All the three plans have the same arguments: the first is the name of the
capability and the second is the Context variable that will be explained later on
this section. This makes to invoke a capability affordable simply by knowing its
name. Listing 4 shows the Jason plan to invoke a capability and to retreat it.

GOAL LIFECYCLE

Injected

ActiveAddressed

Ready
commit

FS=true

FS=false

TC=true
capability 

failure

commitment failureeject

(a) The lifecycle of a goal

GOAL ACHIEVEMENT LIFECYCLE

Idle Commitment
decision

Perceiving 
TC

goal active
/plan

goal
ready

goal 
injected

Recovering
failure

capability failure

alternative 
solutions
/replan

goal 
disclaim

reconsider
commitment

goal 
addressed

goal addressing
Capability 
execution

Perceiving 
FS

(b) The lifecycle of a capability

Fig. 1: State charts for a goal and its achievement by an agent
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Listing 3: Beliefs about a capability

1 a g e n t c a p a b i l i t y ( c l a s s i f y d o c ) .
2 i n p u t s t a t e ( c l a s s i f y d o c , p r o p e r t y ( a v a i l a b l e , [ doc ] ) ) .
3 o u t p u t s t a t e ( c l a s s i f y d o c , p r o p e r t y ( c l a s s i f i e d , [ doc ] ) ) .
4
5 +! p r epa r e ( c l a s s i f y d o c , Context ) <− t r u e .
6 +! a c t i o n ( c l a s s i f y d o c , Context )
7 <−
8 ! g e t d a t a ( doc , Doc , Context ) ;
9 ! c l a s s i f y d o c (Doc ) ;

10 ! r e g i s t e r s t a t e ( p r o p e r t y ( c l a s s i f i e d , [ doc ] ) , Context ) ;
11 .
12 +! t e rm i n a t e ( c l a s s i f y d o c , Context ) <− t r u e .

Listing 4: How to invoke a capability

1 +! i n v o k e c a p a b i l i t y ( C a p a b i l i t y , Context )
2 :
3 a g e n t c a p a b i l i t y ( C a p a b i l i t y )
4 <−
5 ! p r e pa r e ( C ap a b i l i t y , Context ) ;
6 ! a c t i o n ( C ap a b i l i t y , Context ) ;
7 .
8 +! r e t r e a t p r o j e c t c a p a b i l i t y ( C a p a b i l i t y , Context )
9 :

10 a g e n t c a p a b i l i t y ( C a p a b i l i t y )
11 <−
12 ! t e rm i n a t e ( C ap a b i l i t y , Context ) ;
13 .

The advantage of this programming style, is to decouple goals from the plans
used to achieve them. However, the agent architecture must include a technique
for recreating the link among plans and goals at run-time (means-end reasoning).

Listing 5 is a trivial example of a plan that given a Goal, tries to find a
Capability among those the agent owns, that is suitable to address the goal’s
final state. The plan decomposes the FinalState into a set of properties that must
be true for considering the goal satisfied. Then the plan searches in the agent
belief base if at least one capability matches with this final state. Of course
this plan can be more sophisticated, for instance it could consider additional
parameters for selecting the best capability to pick according to non functional
requirements such as quality of service, cost, etc.

The variable Context, shown in Listings 3-Listing 4, is a reference for group-
ing all the beliefs about the environment. There are cases in which an agent
may work with different contexts at the same time. It is more common that an
unique context exists for each agent. The Context reference may be used to store
property of the environment that are believed true, or value of parameters. List-
ing 6 reports an example to store a property and one data-value into the context.
Of course these beliefs can be improved with other parameters on purpose, for
instance the trustability of the source, the timestamp of acquisition and so on.
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Listing 5: Plans for creating the bridge between a goal to address and the plan
to be executed

1 +! l i n k g o a l t o c a p a c i t y (G, C a p a b i l i t y )
2 :
3 f i n a l s t a t e (G, F i n a l S t a t e )
4 <−
5 ! decompose subs ta t e ( F i n a l S t a t e , S t a t e L i s t ) ;
6 ! p i c k c a p a b i l i t y f o r ( C a p a b i l i t y , S t a t e L i s t ) ;
7 .

Listing 6: Beliefs for representing properties and data of the context

1 env i ronment ( contex t , p r o p e r t y ( c l a s s i f i e d , [ doc ] ) .
2 env i ronment ( contex t , v a l u e ( doc , 12) ) .

As we already described, the goal trigger condition belief set declares the
requirement for addressing a goal, and the capability input state beliefs declare
the requirements for activating a capability. Therefore before invoking the capa-
bility, it is necessary to check if the current Context variable contains the proper
beliefs.

Figure 1(b) shows the lifecycle of an agent when tries to address a goal by
using its own capabilities. The agent is initially in an Idle state, until a goal is
injected. Then it decides if making a commitment to the goal. The trivial case for
that is to check if it is able to do it according to the rule reported in Listing 2. Of
course this decision may be more complex, for instance by involving additional
parameters, and/or by looking for collaborations with other agents in the society.
If the agent commits to the goal, then it activates its perception capabilities to
detect when the goal’s trigger condition is true. When this happens the agent
picks a capability according to the plan in Listing 5 and activates this capability
according to the plan in Listing 4. During the execution of the capability, the
agents also activates its perception capabilities again, in order to check if the final
state has been properly addressed, thus to come back to the Idle state. Otherwise
the agent declares a capability failure and it enters in a Recovering state. This
can be solved in two ways: by selecting another capability to execute, if available,
or by coming back to the Commitment state, for changing its intentions. In the
case of a collaborative solution, the agent may ask for help from other agents,
or it may conclude with the complete failure in addressing the goal.

4 Experiencing self-awareness in workflows

The Innovative Document Sharing (IDS) research project arose to deal with self-
adaption in workflow enactment. The mission of the project was to develop a
smart document management system to deploy in local small/medium enterprise.
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Fig. 2: Architecture of the workflow engine developed for the IDS project.

Currently, a beta version of the described framework is already redeployed for
beta testing at three project partners.

The grounding principle of our framework is to decouple what should be ad-
dressed from how this result can be achieved; this allows to make the system
and the goal-set evolve independently. Thus, being dynamic, system require-
ments may be considered as part of the execution context.

The result has been a workflow engine (see Figure 2) realized as a multi-agent
system that exploits its features (mainly autonomy and proactivity) in order to
monitor the execution state of the process and to discover a distributed solution
to unpredictable situations or to specifications’ evolution.

In such a system, each autonomous software agent must be self-aware as
described in Section 3. However, an agent is not generally able to execute the
whole workflow alone, so agents have to collaborate for building a distributed
plan.

All together, the agents have to self-organize in groups that proactively dis-
cover a distributed solution as the orchestration of many capabilities.

4.1 From BPMN to System Goals Achievement

The whole engine grounds on GoalSPEC [15], a language for representing busi-
ness and system goals. A goal has a responsible actor, and it describes a desired
state transition from a triggering condition to a final state. We use the following
notation for goal state transition: g : tc− > fs. In order to reduce any additional
burden for business analysts, we maintain the BPMN as the main interface to
model workflows. Hence, we developed BPMN2Goal, a component that is re-
sponsible to take a BPMN 2.0 XML file in input and to generate as output a set
of GoalSPEC goals. All the agents of the system are able to interpret GoalSPEC
and to convert goals into belief-sets (as well as in Listing 1).

A difference with the engine described in Section 3 is that goals coming
from the same workflow are correlated. They must be considered as a goal-pack
that is injected into the system as a whole. Agents collaborate to discover a
solution that is a set of potential commitment to a subset of the goal-pack. The
goals of a solution are closely related, since if the solution is actuated, then the
commitment must be done for all or none of them at the same time.
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Listing 7: Example of a perception capability

1 a g e n t c a p a b i l i t y ( m o n i t o r r e p o s i t o r y ) [ c a t e go r y ( p e r c e p t i o n ) ] .
2 o u t p u t s t a t e ( mon i t o r r e p o s i t o r y , p r o p e r t y ( a v a i l a b l e , [ doc ] ) ) .
3 ou t pu t v a l u e ( mon i t o r r e p o s i t o r y , v a l u e ( doc ) ) .
4
5 +! p r epa r e ( mon i t o r r e p o s i t o r y , Context ) <− t r u e .
6 +! pe r c ep t ( mon i t o r r e p o s i t o r y , Context )
7 <−
8 //MONITOR NEW DOCUMENTS
9 .

10 +! t e rm i na t e ( mon i t o r r e p o s i t o r y , Context ) <− t r u e .

4.2 The Agent Level

The workflow enactment is possible because every agent owns special capabilities
for addressing the activities specified in the business plan. Anyway agents are
not designed with a priori knowledge about which plan is good for a given BPMN
activity, nor which is the right order for executing plans.

It is up to the agents’ autonomy to generate, at run-time, the missing link
between a goal set address and the plans to execute. In line with Figure ??
and Listings 4-5, these are the main features of an agent: (i) agents are able
to interpret the injected goals and to reason on the trigger condition and the
desired final state; (ii) agents are aware of their own capabilities and can check
if they are able to commit to a system goal or a portion of it; and (iii) agents
monitor the current state of the context in order to identify when an expected
condition holds (trigger condition or final state) and to check if something wrong
happens.

Therefore, the architecture of Section 3 provides the engine for allowing an
agent to know its capabilities and for creating the bridge between capabilities
and goals (what an agent is able to do and what it is expected).

The context is the portion of the environment in which the workflow operates.
It may include both software abstractions (document repository, web-services,
software resources, database, etc) and physical resources (hardware devices/re-
sources, physical environment and also human participants). In particular we
decided to use a different Context variable for each workflow instance in order
to separately store the state of parallel processes. Moreover the Context is shared
among all the agents that are involved in the enactment of the workflow instance.
Finally, all the beliefs concerning the state of the process and the availability of
resources are persistent, thus to let the system to be restored after a restart.

For updating the Context, we implemented a proactive monitor loop based on
a set of Perceptions. Compatibly with the architecture of Section 3, agent percep-
tions are also capabilities, that are specialized in monitoring a portion of the en-
vironment. Listing 7 is an example of perception capability. The agent capability
belief uses the Jason Annotation syntax (e.g. [category(perception)]) to tag the
capability as a perception one. The invocation of perception capability is similar
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Listing 8: Example of a capability for interacting with human participants by
web pages

1 a g e n t c a p a b i l i t y ( d o c s u p e r v i s e ) [ c a t e go r y ( manual ) ] .
2 p a r t i c i p a n t ( d o c s u p e r v i s e , manager ) .
3 i n p u t s t a t e ( d o c s u p e r v i s e , p r o p e r t y ( r e f i n e d , [ doc ] ) ) .
4 o u t p u t s t a t e ( d o c s u p e r v i s e , p r o p e r t y ( approved , [ doc ] ) ) .
5 o u t p u t s t a t e ( d o c s u p e r v i s e , p r o p e r t y ( incomp le te , [ doc ] ) ) .
6 o u t p u t s t a t e ( d o c s u p e r v i s e , p r o p e r t y ( r e j e c t e d , [ doc ] ) ) .
7 h t t p u r l ( d o c s u p e r v i s e , ” s u p e r v i s e d o c ”) .
8
9

10 +! p r epa r e ( d o c s u p e r v i s e , Context ) <− t r u e .
11 +! s e r v e p a g e ( d o c s u p e r v i s e , Context , RelPath , ParamSet , ReplyHtml )
12 :
13 RelPath = ” s u p e r v i s e d o c ”
14 <−
15 //GENERATE THE HTML PAGE TO REPLY
16 .
17 +! t e rm i n a t e ( document supe r v i s e , Context ) <− t r u e .

to those shown in Listing 4, but it invokes the percept plan cyclically until the
Context variable does not contain the conditions declared in the output state.

Another new category of capability is used to interact with human partici-
pants of the workflow. In our framework interaction has been realized by dynamic
web pages. Any participant has a personal page that lists all the Tasks that are
assigned to him. Any item in this list is a web-link to a dynamic web-page that
is generated ad hoc by the agent of the system that is responsible of monitoring
the Task progress. In other words the agent acts as a web server, reacting to
URL request by building and then routing the proper HTML page. Listing 8 is
an example of capability for interacting with human participants. The annota-
tion ([category(manual)]) indicates the capability can be selected for handling
manual tasks. A new belief participant specifies the human role that is involved.
The beliefs input state and output state specify as usual the input and output
conditions for the capability execution. Finally a new belief http url specifies
routing information for the http protocol.

The capability invocation mechanism differs slightly from that of Listing 4.
The plan serve page substitutes the plan action that is invoked only when a
HTTP request incomes from the user. Listings 9 shows three new plans that sub-
stitute the plan invoke capability of Listing 4, and the plan link goal to capacity
of Listing 5. The event +request triggers when a new http request incomes from
the user. A http request is associated to a relative path and a set of parame-
ters (in the form www.mydomain.net/path?par1=val1&par2=val2). By
the http url belief it is possible to identify the capability that is responsible of
building the reply. The plan check capability is ready verifies the capability is
currently active (otherwise the agent will reply with an http error code). Finally
the plan serve request invokes the capability and then sends the web-page as
response to the user.
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Listing 9: How to invoke a capability for handling manual task implemented as
a web page

1 +requ e s t ( Path , ParamSet ) [ s ou r c e ( P roxySe r v e r ) ]
2 <−
3 ? h t t p u r l ( C a p a b i l i t y , Path ) ;
4 ! c h e c k c a p a b i l i t y i s r e a d y ( C ap a b i l i t y , Path , ParamSet , P roxySe r v e r ) ;
5 .
6 +! c h e c k c a p a b i l i t y i s r e a d y ( C ap a b i l i t y , Path , ParamSet , Proxy )
7 :
8 r e a d y f o r r e p l y ( C a p a b i l i t y , Context )
9 & ParamSet = paramset ( Context , User , Params )

10 <−
11 ! s e r v e r e q u e s t ( C a p a b i l i t y , Request , Context ) ;
12 .
13 +! s e r v e r e q u e s t ( C a p a b i l i t y , Request , Context )
14 :
15 Request = r e qu e s t ( Path , ParamSet , Proxy )
16 & ParamSet = paramset ( Se s s i on , User , Params )
17 <−
18 ! s e r v e p a g e ( C ap a b i l i t y , Context , Path , ParamSet , ReplyHtml ) ;
19 . send ( ProxySe rve r , t e l l , html ( Path , ParamSet , ReplyHtml ) ) ;
20 .

4.3 The System Level

We already mentioned goal commitment becomes a social activity. This requires
to add further Jason plans to the basic mechanism of goal commitment presented
in Section 3.

When a new goal-pack is injected, each agent may check if its own capabil-
ities allow to commit to some of these goals. Anyway, commitment is regulated
because: 1) goals in the same goal-pack are related one with the others, thus
the commitment must be for all or none of them at the same time; 2) more
agents could be able to commit the same goal, thus a synchronization technique
is required.

The collective commitment to a goal-set is possible thanks to the formation
of many Teams of agents, each of them proposing a possible Solution to the goal-
pack. A Solution is a set of related potential commitments to a subset of the goals
in the goal-pack that allows to address the whole workflow. Agents involved in a
solution form a Team. We omit to report the algorithm used for Team formation
and Solution discovery. Eventually, all the Solutions are compared on the base of
many possible parameters thus to select the winning one. The agent who formed
the winning Team is nominated leader and it is responsible to coordinate the
team for actuating the solution. Listing 10 reports the source code for handling
the social commitment. The Solution variable is a structure that contains the
name of the Leader agent and a list of Contracts. Every contract is a tuple
of: 1) the Agent who has engaged, 2) the Goal to which commit to, and 3)
the Cost requested by the agent for address the goal (this variable can in turn
be a structure formed by multiple parameters). By the .send instruction, all
the agents in the team receive the notification to commit to the proper goal.
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Listing 10: Plan for handling the commitment of a while goal-pack

1 +! soc i a l commi tment ( So l u t i on , Pack , Context )
2 :
3 So l u t i o n = s o l u t i o n ( Leader , c o n t r a c t s ( C o n t r a c t L i s t ) )
4 <−
5 Team = team ( Leader , Pack , Con t r a c t L i s t , Context ) ;
6 f o r ( . member ( c o n t r a c t ( Agent , Goal , Cost ) , C o n t r a c t L i s t ) ) {
7 . send ( Agent , t e l l , h i r e d ( Pack , Goal , Team) ) ;
8 }
9

10 ! ! m o n i t o r s o l u t i o n i s c omp l e t e ( Pack , Context ) ;
11 .

Therefore the leader has also the additional responsibility to monitor when the
whole state transition is completed (the workflow is completed).

5 Conclusions

The presented framework is based on decoupling the two concepts Goal and
Capability thus to make them evolve independently. To let agent a means-end
reasoning, we follow the approach of bridging at run-time what to do with how
to do. We have provided our agents the ability to explicitly reason on their goals,
capabilities and the knowledge of the environment.

Another possible approach for implementing a mechanism of self-awareness
in JASON is to use the flexible technique of subclassing. By customizing the
agent class and the architecture class it is also possible to extend the agent
reasoning cycle for implementing a more sophisticated technique for selecting
the plan to execute. However, making explicit the deliberation cycle without
modifying the agent architecture, (as in our approach) makes the concepts such
as Goal, Capability and Context first class citizens of the language together with
native concepts of rules, plans and beliefs. The result is a flexible and easy way
for customizing the agent architecture but maintaining the compatibility with
all the Jason extensions and plugins.

In addition the approach offers several extension points for programmer in
order to extend the basic functionalities. An example of this process has been
shown in Section 4 in which the Context variable is shared among many agents,
the commitment is a social activity, and more categories of capabilities have
been introduced over the existing architecture.

Concluding, our approach mainly exploits first-order logic programming that
is a common feature of other agent programming languages such as GOAL [10]
and 2APL [7]. As well as JASON, these languages share a declarative approach
for develop agents that is based on a knowledge base, logic rules and procedural
plans (or capabilities in 2APL). However, the deliberation cycle of both GOAL
and 2APL is embedded in the respective framework and is not accessible by
language interpreter. We suppose our work cold be useful also for these agent
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programming languages.
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