
OntoMaven API4KB - A Maven-based API for
Knowledge Repositories

Adrian Paschke

Corporate Semantic Web, Institute of Computer Science,
Koenigin-Luise-Str. 24, 14195 Berlin, Germany

paschke@inf.fu.berlin.de

http://www.corporate-semantic-web.de

Abstract. In this paper we introduce OntoMaven which adopts the
Maven-based development methodology and adapts its concepts to man-
age knowledge artifacts stored in distributed OntoMaven KB reposito-
ries. With OntoMaven we address OMG’s API for Knowledge Bases stan-
dardization (OMG API4KB) by supporting design time and life cycle
management KB functionalities.

Keywords: Semantic Web, Ontology Repositories, Ontology Develop-
ment, Ontology Engineering, Ontology Modularization, Ontology Man-
agement, Ontology Life Cycle Management, Corporate Semantic Web,
Agile Knowledge Engineering, OMG API4KB

1 Introduction

In the life science domain there is a growing number of semantic knowledge bases (KBs)
published on the Web, e.g. as linked data stores in the Linked Open Data (LOD) cloud
or as semantic Deep Web sources which can be accessed via (e.g. SPARQL) query and
service interfaces. While these services and knowledge bases support run-time interfaces
for accessing and querying their knowledge, there is only limited support for life cycle
management of the published knowledge artifacts (ontologies, rules possibly together
with their instance data, facts) and for sharing and reusing them in new ontology-
based engineering projects.

API4KB 1 is a standardization within OMG that aims at defining standardized
application programming interface for knowledge bases (KBs). Typical API function-
alities can be distinguished into design time, run time, and management functionalities.
While run time functionalities address, e.g., the parsing, access, retrieval, and reasoning
from KBs, with OntoMaven 2 we provide standardized interfaces implementing design
time and life cycle management functionalities for Maven-based KB repositories, such
as versioning and management of reusable KB artifacts in distributed remote and local
OntoMaven repositories, dependency management, documentation, testing, packaging
and deployment, etc. Although the OntoMaven approach is generic and suited for dif-
ferent types of knowledge bases (including e.g. rule-based KBs and their APIs), in this
paper we focus on ontological KBs (ontologies) which OntoMaven supports as follows:

1
www.omgwiki.org/API4KB/

2
http://www.corporate-semantic-web.de/ontomaven.html

2 OntoMaven API4KB

– OntoMaven remote repositories enable distributed publication of ontologies as on-
tology development artifacts, including their metadata information about life
cycle management, versioning, authorship, provenance, licensing, knowledge as-
pects, dependencies, etc.

– OntoMaven local repositories enable the reuse of existing ontology artifacts in the
users’ local ontology development projects.

– OntoMaven’s support for the different development phases from the design, devel-
opment to testing, deployment and maintenance provides a flexible life cycle man-
agement enabling iterative agile ontology development methods, such as COLM
[3], with support for collaborative development by, e.g., OntoMaven’s dependency
management, version management, documentation and testing functionalities, etc.

– OntoMave API plug-ins provide a flexible and light-weight way to extended the
OntoMaven tool with existing functionalities and tools to access and work with
knowledge bases and knowledge artifacts, such as semantic version management
(e.g., SVont - Subversion for Ontologies [2, 5]), semantic documentation (e.g., Spec-
Gen Concept Grouping [1]), dependency management of aspect-oriented ontology
artifacts (e.g. [6]), automated testing (e.g., with the W3C OWL test cases and
external reasoners such as Pellet), etc.

– Maven’s API allows easy integration of OntoMaven into other ontology engineering
tools and their integrated development environments (IDE).

In this paper we introduce the OntoMaven’s conceptual approach and describe its
implementation as Maven plug-ins.

2 OntoMaven’s Design and Concept

In the following subsections we adapt the main concepts of Maven, so that they can
be used in ontology development and ontology life cycle management. In particular,
we focus on the (distributed) management of knowledge artifacts and their versioning,
import and dependency management, documentation, testing, and deployment.

The main concepts of OntoMaven are:

– The Project Object Model (POM) is the main declarative XML description for
managing an ontology project and its ontology artifacts. Based on the instructions
in a POM file OntoMaven automates the different project goals in life cycle phases.

– Plug-ins implement the API functionalities which are interfaced by different On-
toMaven goals. The plug-ins are executed using the descriptions in the POM file.
There are three predefined life cycles, namely the Clean life cycle, which cleans the
project, the Default life cycle, which processes, builds, tests and installs locally or
deploys remotely, and the Site life cycle, which reports, documents and deploys
the created HTML documentation, e.g. on an KB server.

– OntoMaven’s local and remote repositories manage the used KB artifacts and plug-
ins which implement support for versioning and dependency management. The
distributed repository approach supports sharing and reuse of existing knowledge
artifacts. The information about the used artifacts and their remote addresses
(typically a URL) as well as dependency information are declaratively described
in the POM file of a project. The downloaded artifacts have their own POM files
in order to support, e.g., transitive dependencies.

Typical design time and management functionalities are, e.g.

OntoMaven API4KB 3

– Description, Management, and Versioning of Ontology Artifacts - OntoMaven
adopts Maven’s artifact concept. It describes and manages ontologies and ontology
modules as reusable ontology artifacts in a Maven Project Object Model (POM)
which includes metadata about their id, grouping, location in remote and local
repositories, versions, dependencies, etc.

– Import and Dependency Management of Ontology Artifacts - ontology artifacts
are imported to and from OntoMaven repositories and transitive dependencies to
existing ontology artifacts described in a POM are resolved during imports.

– Documentation of Ontology Artifacts - automated creation of user documentation
and technical documentation from the artifact’s metadata and analysis and inspec-
tion of the managed artifact’s ontology (module).

– Testing - automated testing allows detecting inconsistencies, anomalies, improper
design, as well as validation against, e.g., the intended results of domain experts’
competency questions which are represented as ontology test cases.

– Installation and Deployment of Ontology Artifacts - install an ontology artifact into
a (local) repository and deployment of artifacts and their documentations into an
application (site).

The functionalities are implemented in Maven plug-ins which provide interfaces via
so called goals. The execution order of goals can be organized into life cycle phases.

3 OntoMaven Plug-In Implementation

A Maven plug-in is a collection of one or more goals. The implementation of a Maven
plug-in is done in an Maven Plane Old Java Object (MOJO).In the OntoMaven ap-
proach, the phases and goals, which the plug-in implements, are defined by JavaDoc
annotations in the source code of the Mojo class. Parameters are used to configure
the plug-in execution. They can be declaratively configured in a POM.xml file or di-
rectly when calling a goal. An implemented plug-in can be installed using Maven mvn

install and the plug-in goals can be declaratively called in a POM.xml of an On-
toMaven project. Plug-ins provided by OntoMaven are, e.g.,

– the OntoMvnImport plug-in implements the imports of Ontologies into the Maven
repositories. It is also checks if the import statements in the ontology including
transitive imports can be resolved.

– the OntoMvnSvn plug-in provides ontology versioning support for OntoMaven.
The plug-in computes semantic differences for the versioning of ontologies.

– the OntoMvnReport plug-in is implemented as Maven report plug-in. The goal
site of this plug-in creates four different documentations about the ontology - a
general project documentation, an ontology report summary, a technical report, and
an ontology visualization.

– the OntoMvnTest plug-in implements functionalities for the test phase. The plug-
in executes the configured tests using the goal test which parameterized by test
suites such as the W3C OWL tests. It is also used internally in other phases such
as the package goal.

OntoMaven can use all Maven compliant repositories. It follows a standard folder
layout for its repositories; sources are in $basedir/src/main/java, resources in
$basedir/src/main/resource, tests in $basedir/src/test, classes in

4 OntoMaven API4KB

$basedir/target/classes, and packaged libraries in $basedir/target/. The goals
for the OntoMaven plug-ins act as interfaces to the repositories and the installed on-
tology artifacts. For the OntoMaven proof-of-concept implementation we adapted the
Apache Archiva Build Artifact Repository Manager as a managing tool providing a
user interface for OntoMaven.

4 Conclusion

OntoMaven provides declarative goal and life-cycle based interfaces to plug-able design
time functionalities and management functionalities for knowledge artifacts stored in
distributed repositories. In this paper we have summarized the main concepts and
plug-ins. For further details we refer to [4].

5 Acknowledgements

This work has been partially supported by the InnoProfile project ”Corporate Semantic
Web” funded by the German Federal Ministry of Education and Research (BMBF).

References

1. Gökhan Coskun, Mario Rothe, and Adrian Paschke. Ontology content “at a glance”.
In M Donnelly and G Guizzardi, editors, Proceedings of the 7th International Con-
ference on Formal Ontology in Information Systems, pages 147–159, Graz, Austria,
2012. IOS Press.

2. Markus Luczak-Rösch, Gökhan Coskun, Adrian Paschke, Mario Rothe, and Robert
Tolksdorf. Svont - version control of owl ontologies on the concept level. In Klaus-
Peter Fhnrich and Bogdan Franczyk, editors, GI Jahrestagung (2), volume 176 of
LNI, pages 79–84. GI, 2010.

3. Markus Luczak-Rösch and Ralf Heese. Managing ontology lifecycles in corporate
settings. In Tassilo Pellegrini, Sren Auer, Klaus Tochtermann, and Sebastian Schaf-
fert, editors, Networked Knowledge - Networked Media, volume 221 of Studies in
Computational Intelligence, pages 235–248. Springer Berlin Heidelberg, 2009.

4. Adrian Paschke. Ontomaven: Maven-based ontology development and management
of distributed ontology repositories. In 9th International Workshop on Semantic
Web Enabled Software Engineering (SWESE2013). CEUR workshop proceedings,
2013.

5. Adrian Paschke, Gökhan Coskun, Dennis Hartrampf, Ralf Heese, Markus Luczak-
Rösch, Mario Rothe, Radoslaw Oldakowski, Ralph Schäfermeier, and Olga Streibel.
Realizing the corporate semantic web: Prototypical implementations. TR-B-10-
05:1–49, 02/2010 2010.

6. Ralph Schäfermeier and Adrian Paschke. Towards a unified approach to modular
ontology development using the aspect-oriented paradigm. In 7th International
Workshop on Modular Ontologies (WoMO 2013), 2013.

