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Abstract. This paper gives a Concurrent Transaction Logic (CT R)-
based formal model for Weakly-structured Scientific Workflows (WsS-
WFs) and further implements it in an open source rule language Prova.
Compared with the related efforts, the formal model in this paper fo-
cuses on conversation-based reactive workflow logic representation and
event-driven computation of complex event patterns.
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1 Introduction

The current focus of existing solutions for scientific workflows is on the or-
chestrated and pre-structured execution of computational intensive and data-
oriented tasks, instead of the goal-oriented and decision-centric tasks that need
coordination of scientists or computer agents (aka. expert system agents) as
a team supported by semi-automated Weakly-structured scientific workflows
(WsSWFs).

Such WsSWFs contain tasks that are goal-oriented and that need to be ex-
ecuted on the basis of dynamic decisions which the agents can take in order to
adapt to unforeseen uncertainties in the execution and to dynamically changed
(scientific) knowledge about the scientific problems [10]. In our previous work [11,
12], we provided a declarative rule-based workflow language and implemented
a distributed execution middleware that employs inference agents as execution
environments. We proposed an event-driven framework, which considers data
passing between agents as “events” and executes scientific processes in terms
of event message-driven conversations between distributed agents [11]. Follow-
ing the spirit of Subject-oriented Business Process Management (S-BPM), we
proposed an agent-oriented approach to model the WsSWFs based on the event-
driven framework, where each agent has an internal behavior and coordinates
with other agents to complete certain goals [12].

For the purpose of reducing ambiguity and opening possibilities for verifica-
tion and analysis, this paper gives a Concurrent Transaction Logic (CT R)-based
formal declarative model for the WsSWFs. Workflow formal models provide a
theoretical foundation to workflow programming languages and can be used to
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support the design of workflow languages and of their interpreters, compilers
and optimizers as well as of debuggers, and to support the definition of verifi-
cation procedures, similar to those used for verifying the correctness of complex
business transactions [9].

The remainder of this paper is organized as follows: Section 2 presents a
WsSWF use case. Section 3 gives a brief overview of CT R. Section 4 explains
how CT R is used as an underlying formalism to represent the WsSWFs. Section
5 demonstrates how the CT R-based workflow logic can be translated into a Web
rule language Prova. Section 6 introduces the related efforts and the conclusion
is given in Section 7.

2 Use Case

Fig. 1. Process of ant identification and treatment

This section gives a WsSWF use case taken from the EDIT (European Dis-
tributed Institute of Taxonomy)1 to identify and treat newly discovered ants.
We adapt it from [11] and make it more sophisticated for the purpose of demon-
strating a logical WsSWF representation based on CT R. The whole process is
shown in Figure 1.

The process involves the collaboration of three participants: fieldworker, tax-
onomist and curator. A fieldworker who often works in the countryside firstly
triggers the identification process by describing a newly discovered ant, then
sends the description to a taxonomist, who has experience and expertise to per-
form the identification and know how to treat it. The fieldworker may consult
the requirements for ant description if necessary. The identification results are

1 http://www.e-taxonomy.eu/
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usually ant scientific names. After the identification, the taxonomist sends the
results to a curator who is in charge of managing the identification results. In
order to automate this process, we employ agents to simulate these participants
and their interaction. The intelligent agents act on their behalf by using a local
knowledge base of reaction and derivation rules.

Ants differ widely in their food requirements and behaviors, some pests even
can cause a serious impact on crops. In case of a pest, the corresponding treat-
ment schemes are also needed to provide to the fieldworker. The identification
task involves complicated decision logic to distinguish an ant from its homo-
geneous groups and is represented as a sub-process (with a “+” mark in the
notation). The details of the identification process are shown in Figure 2. Dur-
ing the identification, there are two steps to assign the identification task to an
agent that has the appropriate knowledge base: (1) narrowing down the scope of
agents that can perform the identification based on the location of ant discovery;
(2) finding an agent that has the best performance (e.g., success rate) in that
area. Afterwards, the ant scientific name is determined in terms of a knowledge
base consisting of domain rules and facts. Likewise, the tasks of identification
assignments and getting pest treatment are also encoded with domain rules
and facts. These knowledge-intensive decision-centric tasks are represented as
rounded rectangles with small table notations in them. Moreover, if a discovered
ant is extraordinary, it might involve domain experts to identify it manually.

Fig. 2. Sub-process of ant identification

3 Overview of Concurrent Transaction Logic

Transaction Logic (T R) is a general logic that accounts for state changes in
database, logic programs and arbitrary logical theories in a clean and declara-
tive way [2]. T R extends classic first-order formulas with a new connective of
sequential composition, denoted as: ⊗ (aka. serial conjunction). T R accounts
not only for the database update orders, but also for other important features
in several areas, such as transaction and subroutine definition, deterministic and
non-deterministic actions, static and dynamic constraints, hypothetical and ret-
rospective transactions, and a wide class of tests and conditions on actions [2].
The semantics of the sequential T R is based on paths, i.e., sequences of database
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states, rather than states themselves. To define truth on paths in a completely
general way, each path is associated with a first-order semantic structure, which
specifies those atomic formulas that are true on the path. Intuitively, all formu-
las, atomic or complex, that are true on a path represent actions that take place
along the path.

For the purpose of allowing concurrent update operations, CT R further ex-
tends T R with a new connective, | (aka. concurrent conjunction), and one modal
operator � [3]. In summary, the intended semantic of CT R connectives and
modal operators are as follows:

– φ ∧ ψ means both φ and ψ must be executed along the same path.
– φ ∨ ψ means execute φ or ψ non-deterministically.
– ¬ φ means execute in any way provided that this will not be a valid execution

of φ.
– φ⊗ ψ means first execute φ, then execute ψ.
– φ | ψ means that φ and ψ execute concurrently.
– � φ, means that the execution of φ should not be interleaved with other

transactions.

Concurrent processes in CT R execute in an interleaved fashion and can
communicate and synchronize themselves, thereby increasing flexibility, perfor-
mance, and power of the language. In contrast to other related research efforts,
CT R is the only deductive database language that integrates concurrency, com-
munication and database updates in a completely logical framework, including
a natural model theory and a sound-and-complete proof theory [3]. Note that
since CT R is built upon T R, the statements about T R in what follows also hold
for CT R, unless explicitly specified.

In CT R, the elementary database operations are encapsulated as a pair of
oracles. The oracles come with a set of database states, upon which they can
operate. Each database state could be seen as a set of data items, which are
accessed by data and transition oracles. The data oracle, Od(D), which maps
from database states to sets of first-order formulas, i.e., Od(D) presents queries
related to a particular state D. The transition oracle, Ot(D1, D2), which maps
pairs of states to set of ground atomic formulas, i.e., these transition oracles
represented by the ground atomic formulas cause database state changes. For
example, if a ∈ Ot(D1, D2), then a is an elementary update that changes the
state from D1 to D2. In other words, the oracles provide semantics for data
items: a static semantics querying a particular state and a dynamic semantics
changing states.

The semantics of CT R is based on multi-paths or m-paths, which are gen-
eralized from the notion of T R paths. Formally, an m-path is a finite sequence
of paths, where each path presents a period of continuous execution. For exam-
ple, if D1, D2, ..., D8 are database states, then 〈D1D2D3, D4D5, D6D7D8〉 is an
m-path. CT R formulas are interpreted by an m-path structure, which specifies
those atoms are true on the m-path. Intuitively, a transaction formula is true on
an m-path represents an action that takes place along the m-path.
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4 Process Representation Using CT R

4.1 Workflow Modeling

A workflow in this work generally defines a process as a set of flow elements that
comprise tasks and gateways. Each task has a specific objective that contributes
somehow to a workflow goal. The workflow describes how tasks can interact
at a message level, with a definition of the control and data flow. A gateway
controls the flow of a process and it implies a mechanism that either allows
or disallows passage through the gateway. In general, each gateway involves a
set of condition expressions associated with the gateway’s incoming or outgoing
sequence flows. The data flow captures data dependencies between tasks, and
some data may be shared within a task or across several different tasks. In this
work, we consider the data passing between tasks as event messaging, which not
only can act as “data carrier”, but also can be used a basis for representing
composite events, thereby implementing complex workflow patterns, especially
state-based workflow patterns.

Definition 1 (Scientific Workflow). A scientific workflow is a collection of
coordinated tasks composed to achieve complex goals. In CT R, it is represented
as a CT R Horn goal.

A CT R Horn goal is any formula with the form:

– any atomic formula is a CT R Horn goal;
– if ψ and φ are CT R Horn goals, then so are the expressions: ψ ⊗ φ, ψ | φ,
ψ ∨ φ;

– � ψ, where ψ is a CT R Horn goal.

In workflow management systems, the tasks can be classified into two groups:
primitive task and composite task. A primitive task is an atomic unit in work-
flows, and a composite task defines the execution order of a set of tasks.

Definition 2 (Primitive Task). The primitive task corresponds to an atomic
activity in a workflow and it is represented in CT R as a predicate.

A primitive task represented by the predicate has the following format:

p(arg1, ..., argn).

Here, the predicate p denotes the name of task and arg1, ..., argn (n>1) are
simple terms. Since this work focuses on representing complex workflows using
CT R, the details of task arguments are abbreviated as p(X), where X denotes
all the arguments that p takes.

The states in CT R-based workflow modeling are regarded as data sets. Each
state is a set of data items that represent current workflow status. More precisely,
the data oracle Od(D) which corresponds to the queries to a particular state.
The transition oracle is defined as a task that consumes data to achieve certain
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goals. Formally, for a task has both input(s) and output(s), task(̄i, ō) ∈ Ot(D1,
D2) iff D2 = D1 ∪ {ō} - {̄i}. Here, ī and ō represent the input(s) and output(s)
of a task, respectively. For a task has only input(s), task(̄i) ∈ Ot(D1, D2) iff D2

= D1 - {̄i}.
Similar to CT R that deals with state changes in deductive databases, a prim-

itive task can both change the workflow state and act as a query to return an
answer, which we refer to as update-tasks and query-tasks, respectively in this
paper. The update task predicates are the ones which cause state transitions from
one to another. The query task predicates are used to query the workflow state.
They are helpful during the data passing between tasks. For example, a task
needs to check if it can be started, such as its precedent tasks are completed or
required data for its execution are available. This paper considers data passing
as event messages, more details about event-based condition representation can
be found in Section 4.3.

isPest(Name)⊗ treatment(Name, Scheme)

The execution of primitive tasks may also be guarded by conditional state-
ments, i.e., preconditions and post-conditions in workflows. For example, the
above formula denotes that the treatment is only required if the ant is a pest.
The atom isPest(Name) must return true in order for the treatment to succeed.
Different with simple qualifying truth-valued conditions, this kind of condition
evaluation (e.g., the pest evaluation) usually involves complex decision logic de-
pending on the amount and quality of knowledge about a scientific domain.

Definition 3 (Composite Task). A composite task (aka. sub-workflow or sub-
process) is the composition of a set of tasks, which could be primitive or com-
posite. The composite task is defined as a CT R Horn rule with a form p ← φ,
where p is an atomic formula and φ is a CT R Horn goal.

Since they define the composition of a workflow, this work refers CT R Horn
rules to workflow formation rules. The head of the workflow formation rule is a
predicate, which corresponds to a composite task only. As the primitive task, the
name of the predicate denotes the name of a composite task. The body of the
workflow formation rules recursively gives the definition of the composite task.
For example, the process of ant identification is represented as: identProcess←
Assign1⊗Assign2⊗ (checkFood | checkNest | checkBody). The identification
starts with a two-step sequential task assignment. After that, there are three
parallel tasks that respectively validate ant food preference, nest structure and
body feature.

In this paper, the connectives: ⊗, |, and ∨ have the following semantics:

– φ⊗ψ: execute task ψ after task φ. Model-theoretically, φ⊗ψ is satisfied (or
is true) on an m-path τ if only if φ and ψ are true on some m-paths τ1, τ2
whose concatenation τ1 • τ2 reduces to τ , i.e., τ1 • τ2 = τ .

– φ | ψ: tasks ψ and φ are executed concurrently. Model-theoretically, φ | ψ
is true on an m-path τ if only if φ and ψ are true on some m-paths τ1, τ2
whose with an interleaving τ1 ‖ τ2 reduces to τ .
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– φ ∨ ψ: represents a nondeterministic task, which means “execute task φ or
execute task ψ”. Model-theoretically, φ ∨ ψ is true on an m-path if τ and
only if either φ or ψ is true over on τ .

Due to the space limitation, we do not explain operations on m-paths, such as
concatenation, interleaving, and reduction. For more details of these operations,
see [3]. Besides these binary connectives (i.e., ⊗, |, and ∨) that compose two
tasks into a composite one, ¬ is a unary connective and the satisfaction of ¬φ
is defined as: ¬φ is true on any m-path τ if only if task φ is not true on the
m-path τ . The �φ means the execution of task � must not interleave with other
concurrently running tasks. The satisfaction of �φ is true on any m-path τ if
and only if τ is a path. Although they do not compose tasks directly, they play
an important role to express constraints in scientific workflows.

It is worth noticing that, the body of CT R Horn rules and goals do not
include the classical connective ∧, which is usually expressed as a constraint [2].

Definition 4 (Optional Task). Optional tasks are the ones that may not be
directly needed for building workflows (since they do not affect the result of work-
flows), but allow for necessary variability and make workflows more sophisticated.
An optional task is presented as a composite nondeterministic task as: ψ ∨ state.

Here, the state is a special propositional constant, which is true on paths
of length 1, i.e., on database states. That means the above formula is always
evaluated to true, even if the task ψ is not executed. For example, the rule
fieldworkerProcess← (consulation∨state)⊗antDescription⊗rcvMsg defines
the process managed by the fieldworker. It is satisfied on a path τ as long as
antDescription and rcvMsg are true on the path τ , even if the task consultation
is not executed.

4.2 Reactive Logic Representation

To support the WsSWF execution, we provided a declarative rule-based work-
flow specification by messaging reaction rules [11]. The messaging reaction rules
concern the message-driven conversations between agents, i.e., sending and re-
ceiving event messages associated with a conversation identifiers.

Bonner et al. [4] generally show how active database systems can be repre-
sented as active rules in T R. The active rules are typically defined with a global
scope (global state) and react on internal events of a reactive system, such as
changes (updates) in the active database. Instead of active ECA rules, this work
employs messaging reaction rules to describe the composition of workflows. The
messaging reactive rules which build on (composite) events, are not only capable
of capturing global event occurrences that trigger immediate reactions as in the
active database trigger or ECA rules, but also can be used locally in a particular
context, e.g., within a particular conversation and coordination protocol (e.g., a
workflow), and are more suitable to specify workflow logic. The messaging reac-
tion rules involve both for receiving and sending messages between distributed
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agents. Messaging sending can be simply represented by a sending activity em-
bedded in the body of a CT R Horn rule. The sending activity can send message
to itself or other agents running locally in the same process but with different
threads. This section mainly introduces how to represent the reactive workflow
logic with reaction rules by CT R.

The reaction rules concern the actions in response to events and actionable
situations. They specify the conditions under which actions must be taken and
describe the effects of action executions. They are a collection of reactive rules,
which allow to specify and program such reactive systems in a declarative man-
ner. The most general form of a reaction rule consists of the following parts.

define reaction rule r rule
on [event]
if [condition]
then [conclusion]
do [action]
after [post− condition]
else [else conclusion]
elseDo [else/alternative action]
Depending on the parts of the general syntax, the reaction rules can be

specialized into different types: derivation rules (if-then, are often used for logical
event/action calculi), production rules (if-do), trigger rules (on-do), and ECA
rules (on-if-do). For example, as shown in Figure 2, after the ant identification
is done, a curational request is sent to a curator if the identification is successful.
The processes can be represented as ECA rules:

define reactive rule identDone
on identDone(AntDesc,Result)
if isIdentSuccess(AntDesc,Result)
do nothing.

define reactive rule identDone
on identDone(AntDesc,Result)
if isIdentFaild(AntDesc,Result)
do humanIdent(AntDesc).
CT R provides a complete formalization for the system behavior and these

ECA rules can be further represented by CT R as follows:

identification← (checkFood | checkNest | checkBody)⊗ identDone
identDone← isIdentSuccess(AntDesc,Result)⊗ state
identDone← isIdentFaild(AntDesc,Result)⊗ humanIdent(AntDesc)

4.3 Complex Event Processing

The reaction rules specify under which conditions a task can execute and these
conditions determine intelligent routings at runtime. As we consider the data
passing between tasks as event messaging, it is necessary to employ the CEP
technology to represent composite events, thereby implementing complex work-
flow patterns.
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A composite event is the combination of several base events. Each composite
event is usually described by an event pattern, which contains event templates,
relational operators and variables. However, the logic-based approaches are goal-
driven and the check of a given event pattern is always performed at the time
when the goal is set [1]. To overcome this limitation, Anicic et al. [1] propose
an event-driven complex event detection approach of detecting complex event
patterns based on CT R. This paper introduces a scientific workflow representa-
tion that imposes no constraints on the reaction time with regard to the event
processing, also known as a any-time reaction rule system. There is no need to
process these events in real-time or detect particular event patterns (e.g., se-
quence events, concurrent events [1]), and thus we only represent conjunction
and disconjuction of events based on T R, rather than give a comprehensive
complex event pattern representation involved in the real-time CEP.

Note that the states in T R-based CEP need to be seen from a different
perspective. They are defined as changes of base events during complex event
pattern detection and what stored in the databases are ground atomic event
formulas, D. More precisely, the data oracle Od(D) which corresponds to check
if the occurrence of a base event, which simply returns the event formulas. For-
mally, e ∈ Od(D) iff the event e is in the database. For each base event e in D,
the transition oracle defines two new predicates: ins(e) and del(e), representing
insertion of an event when it is detected and deletion of an event when corre-
sponding complex event pattern is detected. Formally, ins(e(t̄)) ∈ Ot(D1, D2)
iff D2 = D1 ∪ {e(t̄)}, and similarly del(e(t̄)) ∈ Ot(D1, D2) iff D2 = D1 - {e(t̄)}.

Conjunction of Events An event pattern based on the conjunction of
events requires all base events are detected. For example, e(T )← a(T 1)∧b(T 2)∧
c(T 3) defines a composite event e occurs when the base events a, b and c are
detected. Following the event-driven complex event detection approach [1], we
simplify the detection of a conjunction event pattern as follows:

a(T 1) : −ins.a(T 1)⊗ check
a(T 1) : −ins.a(T 1)⊗ not(check)⊗ state
b(T 2) : −ins.b(T 2)⊗ check
b(T 2) : −ins.b(T 2)⊗ not(check)⊗ state
c(T 3) : −ins.c(T 3)⊗ check
c(T 3) : −ins.c(T 3)⊗ not(check)⊗ state

check ← a(T 1)⊗ b(T 2)⊗ c(T 3)⊗
max(T 1, T 2, T 4)⊗max(T 3, T 4, T 5)⊗ e(T 5)⊗
del.a(T 1)⊗ del.b(T 2)⊗ del.c(T 3)

The first six rules represent that the base events a, b and c are firstly inserted
into the database when they are detected. The check rule checks if these base
events already exist in the database. The composite event e occurs if all base
events a, b and c are detected. As soon as the conjunction event pattern is
detected, the base events a, b and c are removed from the database. Note the
base events a, b, and c can always be successfully inserted into the database
even the check rule fails (represented by a Negation As Failure inference rule
not(check)). This is really important because that the occurred base events are
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always known during a complex event pattern detection. Suppose the base events
a and b are detected before c, the check rule fails but the base event a and b are
both successfully inserted into the database. When c is detected, the third rule
firstly inserts the event c into the database, then triggers the composite event e.

Disjunction of Events An event pattern based on the disjunction of events
is satisfied when any base event is detected. For example, e(T )← a(T 1)∨b(T 2)∨
c(T 3) defines the composite event e occurs when any one of the events a, b
and c is detected. In this work, the detection of a disjunction event pattern is
represented as follows:

a(T 1) : −ins.a(T 1)⊗ check
a(T 1) : −ins.a(T 1)⊗ not(check)⊗ state
b(T 2) : −ins.b(T 2)⊗ check
b(T 2) : −ins.b(T 2)⊗ not(check)⊗ state
c(T 3) : −ins.c(T 3)⊗ check
c(T 3) : −ins.c(T 3)⊗ not(check)⊗ state

check ← a(T 1)⊗ e(T 1)⊗ del.a(T 1)
check ← b(T 2)⊗ e(T 2)⊗ del.b(T 2)
check ← c(T 3)⊗ e(T 3)⊗ del.c(T 3)
Compared with the conjunction event pattern mentioned above, there are

three check rules that detect the disjunction of events. It means that either base
event a, b or c is detected, then one check rule is evaluated to true and the
composite event e occurs. Note that we assume that the events a, b and c are
mutually exclusive in this work to insure the composite event e that occurs only
once.

The conjunction and disjunction are standard operators to describe complex
event patterns. They are often used to represent the gateways acted as join
connectors in workflows. With the aforementioned approach, it is also possible
to represent more complex join connectors in workflows, such as a composite
event e is detected when any two of the events a, b and c occur. Moreover, since
we provide a declarative logic-based workflow representation, it is possible to
represent complex conditional logic in the process of complex event detection to
to make more sophisticated workflows. Due to the space limitation, they are not
shown in this paper.

5 Mapping CT R-based Workflow Representation to
Prova

In this section we introduce a Prova implementation of the CT R-based logic
WsSWF representation. Prova2 is both a Semantic Web rule language and a
high expressive distributed rule engine. Prova rule language combines different
rule types and provides a highly expressive, hybrid, declarative and compact rule
programming language, which combines the declarative programming paradigm

2 https://prova.ws/
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and object-oriented programming and the Semantic Web approach [5]. On the
other hand, Prova engine supports complex reaction rule-based workflows, rule-
based complex event processing, distributed inference services, rule interchange,
rule-based decision logic and dynamic access to external data sources, Web-based
services, and Java APIs [6].

The CT R-based workflow logic is set of CT R Horn rules that define the
composition of a workflow. Before the workflow execution, all these CT R Horn
rules need to be translated into Prova rules. As mentioned in Section 4, the body
of a CT R Horn rule represents a CT R Horn goal with forms of: ψ ⊗ φ, ψ | φ,
ψ ∨ φ; � ψ.

Because Prova is built upon Prolog, a serial Horn rule p(X)← ψ(Y )⊗ φ(Z)
can be directly translated into a Prova rule with a form p(X) : −ψ(Y ), φ(Z).
This is simply done by replacing serial connector ⊗ with a comma “,”.

Disjunction of tasks defines a nondeterministic composite task and they can
be simply implemented by a set of Prova rules imposed by different condi-
tions. For example, p(X) ← ψ(Y ) ∨ φ(Z) can be implemented by: (1) p(X) ←
cond1, ψ(Y ); (2) p(X) ← cond2, φ(Z). cond1 and cond2 denote the conditions
under which to select branches. Similarly, it is easy to translate optional tasks,
where the propositional constant state is translated to a condition without sub-
sequent goals, i.e., (1) p(X) ← cond1, ψ(Y ); (2) p(X) ← cond2. The imple-
mentation of concurrent tasks is based on reactive event messaging, and we will
introduce later in this section.

The reactive event messaging can be implemented by the following Prova
constructs to send and receive one or more context-dependent multiple outbound
or inbound event messages:

Listing 1.1. Prova constructs of messaging reaction rules

1 sendMsg(XID , Protocol , Agent , Performative , Payload|Context)
2 rcvMsg(XID , Protocol , From , Performative , Payload|Context)
3 rcvMult(XID , Protocol , From , Performative , Payload|Context)

Here, XID is the conversation identifier of a message. Protocol defines the
communication protocol. Agent and From denote the destination and the source
of the message, respectively. Performative describes the pragmatic context in
which the message is sent. A standard nomenclature of the performative is,
e.g., the FIPA Agents Communication Language (ACL)3. And Payload—Context
denotes the actual content of the message.

There are two types of Prova reaction rules: inline and global reaction rules.
The inline reaction rules are used to accept just one message, a specified number
of messages. They are usually in the body of a rule and act as sub-goals of the
rule. For example, the logic after the ant identification can be translated into:

Listing 1.2. Inline reaction rule example

1 identProcess(XID , AntDesc , Result) :-
2 ...,
3 rcvMsg(XID ,async ,Agent ,answer ,identDone(AntDesc , Result)),

3 http://www.fipa.org/repository/aclspecs.html
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4 isSuccess(Result), !.

6 identProcess(XID , AntDesc , Result) :-
7 rcvMsg(XID ,async ,Agent ,answer ,identDone(AntDesc , Result)),
8 not(isSuccess(Result)), !,
9 sendMsg(XID , async , humanAgent , ident(AntDesc)),

10 rcvMsg(XID , async , humanAgent , ident(Result)),
11 ....

The pattern specified by inline reaction rule rcvMsg (Line 3 and 7) indicates
an interest in an event message of pre-defined type answer on the async protocol.
This kind of inline reactions fire only once. The global reaction rules look exactly
like general Prova rules but their semantics are more aligned with reactive rules
rather than derivation rules. In contrast to the inline reaction rules, the global
reaction rule has a rule base lifetime scope, i.e., it is active while the rule base
runs on a Prova engine and it is ready to receive any number of messages as
they arrive to the agent. For example, the process of waiting form external
identification request can be implemented as follows:

Listing 1.3. Global reaction rule example

1 rcvMsg(XID ,esb ,Agent ,request , ident(AntDesc )) :-
2 identProcess(AntDesc),
3 ....

With the reactive messaging, it is possible to implement the concurrent tasks
in Prova. Prova has three internal protocols for reactive messaging: self, task,
async, and swing (not used in this paper). The inline reaction rule rcvMsg itself
is executed on the main thread, but it creates an inline reaction waiting for a
reply according to its protocol. The self protocol indicates that the thread wait-
ing for a reply is the main thread and this protocol can ensure fully sequential
processing of received messages. The task protocol means the thread waiting
for a reply is randomly taken from a task thread pool. This pool is used for
running tasks achieving maximum throughput. The async protocol makes good
use of the conversation identifier and the thread waiting for a reply is chosen in
terms of the conversation identifier. This means a conversation is always mapped
to one thread. In Prova, we can use both task and async protocol of the reac-
tive messaging to implement concurrent processes. For example, the following
Prova code snippet implements the ant identification that involves three tasks
in parallel.

Listing 1.4. Concurrent task example

1 identProcess(XID , AntDesc , Result) :-
2 ...,
3 init_ident (),
4 sendMsg(XID ,task ,0,inform , checkFood(AntDesc , Res1)),
5 sendMsg(XID ,task ,0,inform , checkNest(AntDesc , Res2)),
6 sendMsg(XID ,task ,0,inform , checkBody(AntDesc , Res3 )).

8 init_ident () :-
9 rcvMsg(XID ,task ,From ,inform , checkFood(AntDesc , Res1)),

10 checkFood(AntDesc , Res1),
11 sendMsg(XID , async , 0, inform , checkFood(AntDesc , Res1 )).

13 init_ident () :-
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14 rcvMsg(XID ,task ,From ,inform , checkNest(AntDesc , Res2)),
15 checkNest(AntDesc , Res2),
16 sendMsg(XID , async , 0, inform , checkNest(AntDesc , Res2 )).

18 init_ident () :-
19 rcvMsg(XID ,task ,From ,inform , checkBody(AntDesc , Res3)),
20 checkBody(AntDesc , Res3),
21 sendMsg(XID , async , 0, inform , checkBody(AntDesc , Res3 )).

The predicate init ident() (Line 3) creates three parallel processing streams
in one agent and each inline reaction rule randomly selects a thread from the
task pool in order to wait for the event to trigger the task in branch, thereby
executing them in parallel.

The logic-based CEP can also be implemented by the event-driven computa-
tion of event patterns. In Prolog, the updates are not undone during backtrack-
ing. For instance, the Prolog rule “p :- assert(event(a)), fail.” asserts event(a)
into the database even though the execution fails. Although it is a limitation to
implement some T R-based applications that require to undo the updates during
backtracking. But for the logic-based CEP, this is quite useful since the occurred
events need to be stored in the database even the complex event pattern is not
matched, i.e., the rule used to check the complex event pattern fails. Benefit
from this feature, two CT R rules used to detect base event (see Section 4.3) can
be reduced to one. Due to the space limitation, the following Prova code snippet
only implements the detection of a conjunction event pattern:

Listing 1.5. Complex event pattern computation example

1 detect(XID) :-
2 rcvMsg(XID ,async ,From ,inform , e(a)), assert(e(a)), check(e).
3 detect(XID) :-
4 rcvMsg(XID ,async ,From ,inform , e(b)), assert(e(b)), check(e).
5 detect(XID) :-
6 rcvMsg(XID ,async ,From ,inform , e(c)), assert(e(c)), check(e).

8 check(e) :-
9 e(a), e(b), e(c), sendMsg(XID , async , 0, inform , e),

10 retract(e(a)), retract(e(b)), retract(e(c)).

Suppose e(a) is detected first, it is immediately recorded as an event fact into
the database. Since the base events e(b), and e(c) have not been detected, the
rule check(e) (Line 8-10) is evaluated to false at the moment. The rule check(e)
reasoning is triggered again when another base event is detected. It can only be
evaluated to true when all base events are detected, then the composite event e
occurs and the base events are removed from the database. Note that the base
events a, b and c are simplified here for clarity. In concrete applications, they
can be associated with arguments to to detect different composite events.

To sum up, Table 1 shows the mappings from the CT R-based workflow rep-
resentation to Prova. For the purpose of connecting distributed Prova agents, a
tool for rule-based collaboration Rule Responder4 that is built upon Enterprise
Service Bus (ESB) Mule, is often used as a communication middleware.

4 http://responder.ruleml.org/
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Table 1. Mapping CT R-based Workflow Representation to Prova

Workflow Definition CT R-based Representation Prova

Workflow CT R Horn goal Prova goal
Sub-process CT R Horn rule Prova rule

Sequential task Serial conjunction (⊗) Comma separated
Nondeterministic task Classic disconjunction (∨) Prova rules with conditions

Concurrent task Concurrent conjunction (|) Concurrent reactive messaging
Task interaction Reactive messaging Messaging constructs
Gateway (Join) Logic-based CEP Event-driven computation of

event patterns

6 Related Work

Existing scientific workflow management systems (WFMSs) (such as Kepler,
Triana, Taverna, Pegasus) are mainly designed for structured compute intensive
or data intensive applications, and each system has its own application areas.
They have proprietary workflow languages and provide limited expressiveness
to describe decision logic and conditional reactive logic. The WsSWFs consid-
ered in this work not only involve complex task dependencies that cannot be
easily described by imperative procedural workflow languages, but also contain
knowledge-intensive decision centric steps, which need the coordination of scien-
tists or computer agents as a team. That is why logic-based CT R is employed as
a theoretical basis for the declarative description of the WsSWFs. Some efforts
are also trying to provide a logical framework for modeling flexible workflows:
Roman et al. [8] introduce an expressive logical model for process specification,
contracting for services, service enactment, and reasoning. Based on CT R, the
model can model many constraints used for specifying contracts. Compared with
our work, the model in [8] focuses on an expressive theoretical representation
on both process specification and service contracting. Our work, however, not
only explicitly considers the representation of WsSWFs, but also attempts to
implement it with a Web rule language Prova. DECLARE is a prototype of a
WFMS that uses a constraint-based process modeling language for the develop-
ment of declarative models describing loosely-structured processes [7]. Based on
Linear Temporal Logic (LTL), DECLARE provides several constraint templates
to model constraints, such as “init”, “1..*”, “response”, “responded existence”
and “responded absence”. Our CT R-based workflow modeling also can represent
many temporal constraints (e.g., “init”, “response”) with path-based constraints.
Moreover, in contrast to these efforts, the logic-based representation of the WsS-
WFs using CT R in this paper focuses on representing the reactive interactions
between tasks with a purpose of supporting the WsSWFs.

7 Conclusion

Currently there are many rule-based workflow languages, which support flexible
service composition and model weakly-structured process logic with declara-
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tive rule languages. However, many of them only provide a static syntactical
process description without a precise declarative formal semantics. This paper
provided a CT R-based formal model for the WsSWFs and especially consid-
ered conversation-based reactive workflow logic representation and event-driven
computation of complex event patterns.
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