Iterative Evaluation of Domain-Specific
Languages

Ankica Barisié

CITI, Departamento de Informética, Faculdade de Ciéncias e Tecnologia
Universidade Nova de Lisboa
Campus de Caparica, 2829-516 Caparica, Portugal
a.barisic@campus.fct.unl.pt

Abstract. As software moves to the daily routines and responsibilities
of people, there is a need for developing tools and languages rapidly.
Domain-Specific Languages (DSLs) are claimed to contribute to this
productivity increase, while reducing the required maintenance and pro-
gramming expertise. DSLs are designed to bridge the gap between the
problem domain (essential concepts, domain knowledge, techniques, and
paradigms) and the solution domain (technical space, middleware, plat-
forms and programming languages). The sooner we fill in this gap, the
sooner we shall increase users productivity. However intuitive this idea
may be, we need to have means to assert the quality and success of the
developed languages. The alternative is to accept the risk of deriving in-
appropriate products that bring more harm by decreasing productivity
or even increasing maintenance costs.

Keywords: Experimental Software Engineering, Domain-Specific Languages,
Software Language Engineering

1 Should language engineers evaluate their languages?

Domain-driven development is becoming increasingly popular, as it raise the
abstraction level. The language engineer need to deal with the accidental com-
plexity of the used computer technology e.g., the use of low level abstraction
programming languages, while integrating a wide plethora of different tools and
libraries. On other hand, the DSL development requires domain and language
development expertise, and few people have both. This lead language engineers
to cope with the growing of both essential and accidental complexity [8].

Software language engineering (SLE) is the application of a systematic, dis-
ciplined and quantifiable approach to the development, usage, and maintenance
of software languages. Although, the phases of DSL life cycle are systematically
defined [17], [22], it seam that process lack one crucial step [5], namely language
evaluation just before the deployment. This phase can be done with quality in
use concerns in an incremental and iterative user-centric approach, while cross-
cutting all of the involving phases as suggested in [1].

The software industry does not seem to report investment on the evaluation of
DSLs, as shown in a recent systematic literature review [11]. The lack of system-
atic approaches to evaluation, and the lack of guidelines and comprehensive set
of tools may explain this shortcoming in the current practice. This is supported
by the evidence of an interesting return of investment on usability evaluation for
other software products [20]. Moreover, the benefits of usability evaluation span
from a reduction of development and maintenance costs, to increased revenues
brought by an improved productivity of the end users [16].

It is arguable that the main reason for the perceived high costs of DSL evalu-
ation, is the lack of a consistent and computer-aided integration of two different
and demanding complementary processes: SLE process, and language evaluation
process. On the one hand, language engineers should become aware of quality
concerns during language development, and identify and apply best practices
into their development plan. On the other hand, evaluation experts should get
better understanding of all the models involved in the software language devel-
opment in order to be able to give appropriate and reliable suggestions towards
the improvement of the DSL under development. The focus of this research is
to propose systematic evaluation process for DSLs with usability concern [2].

2 A language is a means of communication

A programming language is a model that describes the allowed terms and how
to compose them into valid sentences. DSLs that are interest of this research are
generally conceived as communication interfaces between human and computers
[5]. User Interfaces (Uls) are also seen as a realization of language. Therefore,
from one perspective evaluating DSLs is not much different from evaluating
regular User Interfaces (Uls).

Empirical, or experimental, evaluation studies of UI with real users is a cru-
cial phase of its validation [10]. A relevant set of quantitative and qualitative
measurements must be inferred and combined together to lead to a useful as-
sessment of the several dimensions that define software Quality in Use (such as
Efficiency, Effectiveness and Satisfaction), often referred as Usability [12]. These
complex experimental evaluation studies are typically implemented by software
evaluation experts. Their expertise is essential to properly design the evaluation
sessions, gather, interpret, and synthesize significant results. However desirable
it can be to have such software evaluation experts in the teams, it is not always
possible to have them available due to, among several reasons, the cost and time
involved. This calls for the need of automatic tools that support these experts,
as well as language developers. One way to obtain qualitative measurements is
by means of observations and questionnaires to the end users [21].

There is an increasing awareness to the quality in use of languages, fostered
by the competition of language providers. Better usability is a competitive ad-
vantage, although evaluating it remains challenging. While evaluating competing
languages it is hard to interpret the existing metrics in a fair, unbiased way, pro-

vide reliable design changes and assure that scope of evaluation is preserved to
target user groups.

When we consider General Purpose Languages (GPLs), their users are part
of population that master well mathematical and technical concepts. In order to
develop programming solutions they need to master also domain concepts. On
other hand, as DSLs are meant to reduce use of computation domain concept
by putting focus on the domain concepts, they are expected to be used by the
much diverse target population.

The increased productivity achieved by using DSLs, when compared to using
GPLs, is one of the strongest claims by the DSL community. With anecdotal
boosted speed development reports of DSLs ([13], [18]) in industrial settings,
why bother with its validation? The problem, of course, is that those anecdotal
reports on improvements lack external validity.

3 Approach

As result of inspection of current methodologies and tools for evaluation of Uls
and GPLs we propose an iterative user-centered approach for evaluation of DSLs.
Goal of this approach is to establish formal correspondences between the DSL
development process and the experimental evaluation at all the stages [6].

Approach is described by set of patterns that are introduced in order to pro-
vide a complete solution to a complex problem of placing intended users as a
focal point of DSLs design and conception, and by that ensure that the language
satisfies the user requirements [4]. Using the goal of these interdependent pat-
terns is to disseminate the knowledge of best practices to end users. It provides
means of performing experimental validation in the most cost-effective manner
and is expected to give the rationale about correct and usable indicators that
can eventually be reused.

The patterns are divided in three spaces (see Fig.1), that represent different
level of abstraction. Agile Development Process gives set of patterns devoted to
project management and engineering of a DSL. This is the most important set
of patterns, as it is trough organization and planning of language development
and evaluation activities and goals we are controlling and tracking success of
produced language. After an iteration, goals are scoped and budget is fixed, we
are ready to proceed to design and implementation activities that are guided
by patterns given in lterative User-Centered Design pattern space. As the users
are the central part of a DSL evaluation, this patterns considers how to engage
the user in the development process and how to collect valuable information
about the DSL and its level of usability while it is being developed. Finally,
they are expected to result with concrete hypothesis, tests, metrics, samples
and statements that should be addressed and validated trough FEzperimental
FEvaluation Design.

Following these best practices, each development iteration is focusing on dif-
ferent increment or level of abstraction that will be evaluated or refined. By
planing carefully development process and organization of responsibilities and

AGILE DEVELOPMENT Fixed budget
PROCESS Usability
Evaluatwn EXPERIMENTAL
E‘::'c';::";' EVALUATION DESIGN
User & Context Modmes content
Model Design precedes i i
Extraction Plannmg Experimentation
Cuntext Context Design
d precedes Scope Model
prece == Tradmg
precedes
precedes
precedes ‘_// precedes
Iterative User- Instrument
Centered DSL Design Controlled by Iteration Design Model
Valldaunn
precedes
i
qched .
Aot 0m‘)\\s“ Sample Design
ov® \ Model
J
= ITERATIVE USER- Modify contert
i CENTERED DESIGN
Requirements Modify content
-—
Definition Modify content.
precedes precedes
Domain Concept Quality Design
Conceptual precedes— > Usability -7 Model
Medfy Distance _— Evaluation \ precedes
A
oMt pssessment K4 I\
S-S \ Problem Modify content
Experimental DSL | ¥ \ Statement
] A :
precedes Evaluation Design gE £ /) Design Hypothesis and
Usability L /" Model Variables Design
% des—>
) precedes.
Requirements Testing —__""¢c¢des ‘ 1/ licosl

Fig. 1. Patterns for evaluating Usability of DSLs (taken from [4])

costs, goal is to establish balanced menagment and engineering plan that will sat-
isfy both: business and user needs, by optimizing impact of evaluation feedback
on language development.

According to this proposal, language and evaluation goals should be identi-
fied during domain engineering phase of DSL’s construction i.e. while eliciting
minimum set of domain concepts. A first step would be to understand and spec-
ify the context of use of DSLs and which kind of user groups it should target
by constructing User and Context model. In order to achieve that, interviews
or questionnaires with the DSL’s intended end users should be designed in or-
der to capture information about their working environment and the baseline
approach to solve problems. In the language design phase, it is necessary to
identify which quality attributes are impacted by the implementation of which
domain concepts or layer of abstraction. During the implementation phase, the
language engineer can benefit from the collected information by means of tools
or instruments that implements chosen measures directly on the DSL prototype.
Finally, in the testing phase, the language engineer should conduct (at least) an
expert evaluation to validate that the known quality problems and functional
tests passed well. When seams that evaluation goals are met, we should conduct
a user-based evaluation, in a real context of use, to assess the DSL’s quality in
use. That is done by giving the users real problems to solve in order to cover the

most important tasks identified in the domain. Data about satisfaction and cog-
nitive workload should also be evaluated subjectively through questionnaires. It
is especially important in this phase to measure all the learnability issues, since
DSLs should be (in principle) easy to learn and remember.

4 Experimental validation

Under the perspective of SLE, in order to experimentally evaluate a DSL, we
need to know what is the criteria involved, understand notion of quality from
the relevant perspectives and understand the experimental process itself. This
complex challenge with respect to reuse was covered by general model for DSL
experimental evaluation presented in [3]. This experimental model served as a
set of proof of concept instantiations of the proposed experiment.

Experimental model outlines the activities needed to perform an experimen-
tal evaluation of a software engineering claim, following the scientific method.
In order to effectively reason about experimental process and eventually de-
tect flaws before it is applied and analysed we systematically compared four
language evaluation experiments ([7], [14], [15], [19]). These evaluations are cur-
rently exceptional in the realm of DSLs and are chosen precisely for that: they
are examples of best practices in languages evaluation with a concern on quality
in use, from which we can perform some meta-analysis, leading not only to a
collection of lessons learned from the trenches, but also to the identification of
opportunities to further improve existing validation efforts.

By allowing significant changes to correct deficiencies along the development
process instead of just evaluating at the end of it (when it might be too late),
presented user-centered design is ment to reduce development and support costs,
increase sales, and reduce staff cost for employers [9]. The proof of this claims
is expected to be justified by the set of experiments of DSL development in
academical and industrial cases.

Acknowledgments I gratefully thank to my supervisors Vasco Amaral and
Miguel Goulao . This work was partially supported by the CITI - PEst - OE
JEEI /UI0527 /2011, (CITI/FCT/UNL) - 2011-2012)

References

1. Colin Atkinson and Thomas Kiihne. Model-Driven Development: A Metamodeling
Foundation. IEEE Softw., 20:36—41, September 2003.

2. A. Barisi¢, V. Amaral, and M. Goulao. Usability evaluation of domain-specific lan-
guages. In Quality of Information and Communications Technology (QUATIC),
2012 Eighth International Conference on the Quality of Information and Commu-
nications Technology (QUATIC’2012), pages 342-347. IEEE, 2012.

3. A. Barisi¢, V. Amaral, M. Gouldo, and B. Barroca. Evaluating the usability of
domain-specific languages. In Marjan Mernik, editor, Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, pages 386—407. IGI Global,
2012.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Barisié¢, V. Amaral, M. Goulao, and M.P. Monteiro. Patterns for evaluating us-
ability of domain-specific languages. Proceedings of the 19th Conference on Pattern
Languages of Programs (PLoP), SPLASH 2012, September 2012.

A. Barisi¢, V. Amaral, M. Gouldo, and B. Barroca. How to reach a usable DSL?
moving toward a systematic evaluation. ECEASST, 50, 2011.

A. Barisi¢, V. Amaral, M. Gouldo, and B. Barroca. Quality in use of DSLs: Current
evaluation methods. Proceedings of the 3rd INForum - Simpdsio de Informadtica
(INForum2011), September 2011.

Ankica Barisi¢, Vasco Amaral, Miguel Gouldo, and Bruno Barroca. Quality in
use of domain-specific languages: a case study. In Proceedings of the 3rd ACM
SIGPLAN workshop on Evaluation and wusability of programming languages and
tools, PLATEAU 11, pages 65-72, New York, NY, USA, 2011. ACM.

Fred Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

T. Catarci. What happened when database researchers met usability. Information
Systems, 25(3):177-212, 2000.

Alan Dix. Human computer interaction. Pearson Education, 2004.

Pedro Gabriel, Miguel Gouldo, and Vasco Amaral. Do software languages engi-
neers evaluate their languages? In Xavier Franch, Itana Maria de Sousa Gimenes,
and Juan-Pablo Carvallo, editors, XIII Congreso Iberoamericano en ”Software
Engineering” (CIbSE’2010), ISBN: 978-9978-325-10-0, pages 149-162, Cuenca,
Ecuador, 2010. Universidad del Azuay.

International Standard Organization. Iso/iec fdis 25010:2011 systems and software
engineering — systems and software quality requirements and evaluation (square)
— system and software quality models, March 2011.

Steven Kelly and Juha-Pekka Tolvanen. Visual domain-specific modelling: benefits
and experiences of using metacase tools. In Jean Bézivin and J. Ernst, editors,
International Workshop on Model Engineering, at ECOOP’2000, 2000.

R.B. Kieburtz, L. McKinney, J.M. Bell, J. Hook, A. Kotov, J. Lewis, D.P. Oliva,
T. Sheard, I. Smith, and L. Walton. A software engineering experiment in soft-
ware component generation. Proceedings of the 18th international conference on
Software engineering, page 552, 1996.

Toma Kosar, Marjan Mernik, and Jeffrey Carver. Program comprehension of
domain-specific and general-purpose languages: comparison using a family of ex-
periments. Empirical Software Engineering, pages 1-29, 2011.

Aaron Marcus. The roi of usability. In Bias and Mayhew, editors, Cost-Justifying
Usability. North- Holland: Elsevier, 2004.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316-344, 2005.

MetaCase. Nokia case study, http://www.metacase.com/papers/metaedit_in_nokia.pdf.

Technical report, MetaCase, 2007.

N.S. Murray, N.W. Paton, C.A. Goble, and J. Bryce. Kaleidoquery—a flow-based
visual language and its evaluation. Journal of Visual Languages & Computing,
11(2):151-189, 2000.

Jakob Nielsen and S. Gilutz. Usability return on investment. Technical report,
Nielsen Norman Group, 2003.

J. Rubin and D. Chisnell. Handbook of Usability Testing: How to plan, design and
conduct effective tests. Wiley-India, 2008.

Eelco Visser. WebDSL: A case study in domain-specific language engineering.
In Generative and Transformational Techniques in Software Engineering II, Ralf
Lmmel, Joost Visser, and Joo Saraiva (Eds.). Lecture Notes In Computer Science,
5235, 2007.

