
Complexity- and Performance Analysis of Different

Controller Implementations on a Soft PLC

Robert Feldmann

Technion – Israel Institute of Technology | TUM – Technical University Munich

rfeld3@gmail.com

Abstract. Whenever code for a Programmable Logic Unit (PLC) is generated

using a model based approach there are multifarious possibilities for possible

code generators. In order that the generated code is changeable and maintaina-

ble the code should have a low complexity. A high complexity complicates by

hand changes that become necessary when the code generator is not available as

well as it is a reason for high maintainability costs in general [1].

My research is the first to present an approach to compare between PLC im-

plementations generated by different generators in terms of complexity using

the example of a paper machine controller. Additionally the performance of the

implementations is investigated and a preliminary evaluation of the generators

selected is given.

Keywords. Model-driven Engineering, IEC 61131-3, PLC.

1 Research Problem and Motivation

Model-driven engineering is becoming increasingly popular, especially in the auto-

motive domain, as it can shorten the development time by as much as 50% [2]. In

model-driven engineering a model is created based on requirements. These models

are created with the aid of mostly graphical, dataflow-oriented languages such as

Simulink. Other than in the classical software development process the code is auto-

matically generated from the model with the aid of code generators.

The concept of model-driven engineering is presently also used in the PLC do-

main. PLCs are appliances used for the automation of technical processes. Program-

ming PLCs is based on the IEC 61131-3 standard, which includes different languages.

Code generators for many PLC compatible languages have become available over the

last years; three of them can be found below:

 Code generator Implementation language Nature of language

1. PLC coder (Simulink) IEC 61131-3 /Structured

Text (ST)

Textual

2. Real-Time-Workshop

(RTW, Simulink)

C Textual

3. CFC Code Generator [3] CFC Graphical

mailto:rfeld3@gmail.com

C and CFC are both not included in the original IEC 61131-3 standard, but are

suited as well and can be regarded as quasi standards.

Programmers that have to implement a model-based PLC application and wish to

apply the concept of Model-driven engineering consequently have to choose between

3 distinct code generators that produce 3 implementations in different languages.

The aim of this research is to provide recommendations for which code generator

is best. In a showcase, controller implementations in the three languages listed above

are generated from a model of a paper machine controller. The implementations are

then investigated and compared with regard to complexity and performance on a soft

PLC. The conceptual approach is depicted in Fig. 1:

Fig. 1. Conceptual approach

2 Background and Related Work

This is the first work to compare among various PLC based implementations gen-

erated from the same model.

Prior work mainly deals with the quality assessment of standard computer soft-

ware, but does not explore characteristics of Model-driven engineering or the PLC

domain. [4–8] give an excellent overview about the fundamentals of software quality

assessment.

[9–11] adapt the concepts presented in the literature above to the specific needs of

Model Based Engineering. [12–14] include methods to assess the quality of software

in the PLC domain.

This research especially builds upon [10, 12, 8], since the findings of these publica-

tions enable comparison of implementations in different programming languages.

3 Approach and Uniqueness

The implementations were generated using a Simulink model of a paper machine

controller. The model itself has no subsystems and uses 6 different kinds of blocks:

Discrete PID controller, discrete transfer function, transport delay, sum, step and out-

port. There are two input signals and four output signals. Compressed in a subsystem

the model looks as follows:

Fig. 2. Subsystem including the model of the paper machine controller

Delivering this subsystem as an input to the three code generators returns three im-

plementations: The C-Code, ST-Code and the CFC block diagram are now subject to

the following evaluation.

Complexity analysis.

Measuring software quality in general implies using software metrics [15]. Metrics

are algorithms that map an attribute of a program, such as ‘complexity’, on a numeri-

cal scale. Several metrics to measure complexity have been published. The following

table shows 3 complexity metrics that are suited for the application on automatically

generated PLC-based implementations:

Complexity metric
Application in

the style of

Adaptability to tex-

tual languages

Adaptability to

graphical languages

Lines of Code [8]  

McCabe [10]  

Halstead [12]  

LOC measures the number of code lines. It can be applied on both the ST- and C-

Code, but naturally cannot be applied on the CFC block diagram. Like many com-

plexity metrics, the LOC metric is not clearly enough defined. Therefore the version

described in [8] is going to be applied, which also allows intercompability between

different programming languages.

The McCabe metric measures the cyclomatic complexity. It is based on the control

flow graph of a program and determines the linear independent paths through the

graph. In this research the cyclomatic complexity is calculated according to [10],

which builds upon the original definition of the McCabe metric [16], but extends it

such that it is applicable to graphical languages such as CFC.

The original Halstead metric [17] is based on the lexical structure of a program.

Starting from the partitioning of the lexical elements into different operands and oper-

ators, the program volume can be calculated as a measure for complexity. [12]

adapted this metric such that it can also be applied to graphical languages such as

CFC.

Performance.

To measure performance, the three controller implementations are integrated into

the programming environment TWINCAT 2.11, compiled into a Soft PLC and their

time response are simulated. It is desirable that the implementation time response is

close to the time response of the model, because the more alike the time responses

are, the better one can estimate the performance of software in advance. Therefore the

time response of the model is also measured and compared to the implementations.

As an input a unit jump was impressed on the entries and received the step function

response at the exits. The duration of record was 2000 data points or 2000 seconds at

a step time of 1 second.

4 Results and Contributions

Complexity.

Applying the presented metrics on the three implementations of the paper machine

model delivers the following results:

Metric LOC McCabe Halstead

ST-Code 238 10 2178

C-Code 295 10 2796

CFC  1 479

According to the LOC metric the ST code performs better than the implementation

in C because it requires fewer lines of code. The CFC block diagram has the lowest

value for cyclomatic complexity (McCabe) and program volume (Halstead). The im-

plementation in CFC should therefore be clearly preferred with regard to complexity.

Performance.

While the implementations in C and ST do not show significant differences be-

tween the model, the time response of the CFC block diagram clearly differs from that

of the model, which can be seen on the basis of the error depicted in Fig. 3:

Fig. 3. Performance of the implementation in CFC

To quantify this discrepancy the error in least squares sense was calculated:

implementation CFC ST C Model

 0.03775 8.0666E-15 0
0

(as ref.)

The implementations in C and ST clearly perform the best, as the error function

(nearly) equals zero. The performance of the CFC block diagram clearly is the worst

in this assessment. Different execution orders of the Simulink and the CFC blocks are

a likely reason for that.

5 Conclusion & Future Work

This research presented an approach for the quality assessment of three different

automatically generated controller implementations on a PLC. By Assessing com-

plexity and performance of the implementations of the paper machine controller my

work shows that Continuous Function Chart performs best in terms of complexity,

whereby the implementations in C and ST have the best time response. What was

showed exemplarily on a medium sized model with 60 blocks should also be done

with other kinds and sizes of models to help validate my findings and extend it to a

broader range of models.

Acknoledgements. I would like to thank Lindsay Bauer (Manhattan, New York City)

for her patience and gratitude to revise my paper and giving me excellent advice on

how to express my ideas.

References

1. Banker RD, Datar S, Kemerer C et al. (1993) Software Complexity and Mainte-

nance Cost. Communications of the ACM 36(11): 81–94

2. Pohlheim, H. Stürmer I. Salecker E. (2012) Ein Ansatz zur Qualitätsbewertung

von modellbasierten Entwicklungsprojekten eingebetteter Software. 8. Dagstuhl-

Workshop Model-Based Development of Embedded Systems (MBEES

2012): 11–20

3. Bayrak G, Renzhin D, Vogel-Heuser B (2011) Integration of control loops in an

UML based engineering environ-ment for PLC. Emerging Technologies and

Factory Automation (ETFA)

4. Fenton NE (1991) Software metrics: A rigorous approach. Chapman & Hall,

London [etc.]

5. Fenton NE, Pfleeger SL (1997) Software metrics: A rigorous and practical ap-

proach, 2nd edn. PWS Pub, Boston

6. Hoffmann DW (2008) Software-Qualität. Springer, Berlin and and Heidelberg

7. Oman PW, Pfleeger SL (1997) Applying software metrics. IEEE Computer So-

ciety Press, Los Alamitos and Calif

8. Thaller GE (2000) Software-Metriken: Einsetzen, bewerten, messen, 2nd edn.

Verl. Technik, Berlin

9. Thomsen T (2012) MISRA C und seine Anwendbarkeit auf

Seriencodegeneratoren.

http://www.dspace.de/ftp/papers/dspace_El25_0312_d_f28.pdf

10. Prabhu J (2010) Complexity Analysis of Simulink Models to improve the Quali-

ty of Outsourcing in an Automotive Company.

http://alexandria.tue.nl/extra1/afstversl/wsk-i/prabhu2010.pdf

11. Kabra A, Karmakar G, Joseph J (2012) ST to MISRA-C Translator and Proposed

Changes in IEC 61131-3 Standard. International Journal of Information and

Electronics Engineering

12. Stürmer I, Pohlheim H, Rogier T (2010) Berechnung und Visualisierung der

Modellkomplexität bei der modellbasierten Entwicklung sicherheits-relevanter

Software. Automotive - Safety & Security: S. 69-82

13. Christian Staron (2004) Entwicklung eines Analysewerkzeugs zur Ermitt- lung

von Metriken und Qualitätskriterien sicherheitsrelevanter Software im

Maschinenschutz, Fachhochschule Bonn-Rhein-Sieg

14. Krell M (2003) Bestimmung von Qualitätskriterien für sicherheitsrelevante

Software im Maschinenschutz auf Basis von zertifizierten

Industrieanwendungen, Fachhochschule Bonn-Rhein-Sieg

15. ISO 9126

16. McCabe T (1976) A complexity measure. IEEE Transactions on Software Engi-

neering SE-2(4): 308–320

17. Halstead MH (1977) Elements of software science. Operating and programming

systems series, vol 2. Elsevier, New York u.a

