
VehicleFORGE: A Cloud-Based Infrastructure

for Collaborative Model-Based Design

Laszlo Juracz, Zsolt Lattmann, Tihamer Levendovszky, Graham Hemingway,
Will Gaggioli, Tanner Netterville, Gabor Pap, Kevin Smyth, Larry Howard

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN

Abstract. Recent increases in industrial adoption of Model-Based Engi-

neering has created demand for more advanced tools, environments, and

infrastructures. As a response to the Defense Advanced Research Project

Agency’s (DARPA) initiative in the Adaptive Vehicle Make (AVM) pro-

gram, we have designed and built VechicleFORGE, a collaborative en-

vironment tightly integrated with the AVM design tools. This paper

describes VehicleFORGE concepts and services facilitated by the cloud

computing foundation of the infrastructure.

1 Introduction

The VehicleFORGE [5] platform is designed and maintained to host the DARPA
Fast, Adaptable, Next-Generation Ground Vehicle (FANG) series of prize-based
design competitions as part of the AVM [1] portfolio. In the first FANG chal-
lenge, the AVM program set out to apply crowdsourcing practices to involve
a larger group of individuals in the design work. After registration, competi-
tors can form teams and gain access to the modeling and analysis tools and
modeling components being developed by the program. Although subsequent
competitions may be less open in terms of public participation, operating the
competition requires a centralized platform where participants can collaborate
and which serves as a location for distributing tools, design requirements and
components, documentation, sharing results and accessing compute resources.

VehicleFORGE provides the virtual environment and cloud infrastructure
which enables the management of the competitions, competitors, and the collab-
oration of geographically distributed design teams, as well as various cloud-based
analysis services and tools for the design work.

We develop and operate VehicleFORGE and the underlying cloud infrastruc-
ture using open source technologies. Both the web application and the monitor-
ing tools are designed to enable streamlined deployability and scalability to meet
changing utilization profiles and to satisfy security requirements set by DARPA.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 25 -



2 The Forge Framework

In the past decade, the success of crowdsourcing and the model of distributed

problem-solving and software production has been enabled by widely popular

open source software forges such as SourceForge.net [4]. After investigating the

available technologies, we decided to use the Allura application developed by

SourceForge.net as a basis for the development of VehicleFORGE.

2.1 Concepts of the Platform

Although the architecture of the application has greatly evolved, the organization

of the fundamental forge concepts in VehicleFORGE is derived from the core

Allura application.

Projects embody the collaborative spaces where members of a team of users

manage design work, create and share design artifacts and analysis results. Reg-

istered users can form new Projects or acquire membership in an existing one.

Projects are created based on pre-configured templates but in general, each team

controls how it utilizes the Project for its work.

Neighborhoods are collections of projects, usually representing a higher-level

real-word organizational concept (eg. competition) with which the teams of the

member projects are affiliated. Neighborhoods also offer similar collaboration

functionalities to the project spaces: they can have members, customized roles

and selected tools installed for neighborhood-level collaborative work.

Tools are provisioned in the project space and house the data and interfaces

for engaging in collaborative design work. Privileged project administrators can

freely install and administer new tools. Objects created during the collaborative

and design work in a tool are referred to as artifacts.
Among the various out-of-the-box tools, VehicleFORGE offers Subversion [15]

(SVN) and Git [25] repositories for sharing files created in desktop-based design

tools. Through a set of post-commit hooks, the forge processes newly added con-

tent to update its understanding of a project’s designs. Project members can

access web-based previews of each other’s work, and files and design artifacts

recognized this way can be cross-referenced with artifacts created in other Ve-

hicleFORGE tools. Thus, repositories work as the bridge between design work

done on the desktop and the web-based collaboration environment.

A major extension that VehicleFORGE offers to the basic forge concepts

found in software forges is the Component Exchange. It offers a globally readable

shared space in which users can publish, categorize, share and discover formally

characterized reusable design components outside of the scope of an individual

project.

VehicleFORGE implements customizable role-based access control : each project

can create permissions and user groups to match its requirements. The combi-

nation of groups and permissions are used to determine the access to artifacts

contained in a tool.

Every project (and neighborhood) space has an Admin Tool where team-

leaders can provision new project tools and configure the permissions. Each

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 26 -



VehicleFORGE deployment has a dedicated ForgeAdmin project which contains

services related to the entire forge. There are various tool-specific aggregation

and statistical interfaces available to monitor collaboration and design activities

in the team and neighborhood scope.

2.2 Customizability

The basic forge concept developed by software forges was designed primarily for

supporting work with source-code, however, VehicleFORGE is easily customiz-

able for collaboration in arbitrary domains, from cyber-physical system design

[3] to policy authoring [29]. Beyond the flexible project configuration and access-

control administered through web interfaces, VehicleFORGE supports multiple

levels of extensibility.

Visualizers provide a means for third party developers to implement new

visualization of domain-specific repository content. Visualizers are executed in

the user’s browser and they are not part of the main application code base,

however, they can be deployed along with custom post-commit hooks to do

server-side preprocessing of the files containing the information to be displayed.

The forge application and the project tools are written in the Python-based

TurboGears framework. Experienced developers can make significant capability

extensions by developing new forge tools or modifying parts of the open source

forge framework.

3 Services in the cloud

The VehicleFORGE cloud infrastructure facilitates the creation and operation

of multiple forge deployments and provides the flexibility to scale deployments

to changing loads. Its extensible pool of resources is available for virtualizing

various operating environments to extend VehicleFORGE platform capabilities

and to offer compute and analysis as a service through the forge to the AVM

community.

3.1 Scalability of Forge Deployments

The deployment architecture is designed so that every significant, load-bearing

service on the Forge is horizontally scalable. Various strategies are employed

on a service-by-service basis to enable this. The web server is run on multiple

processes across multiples instances. All requests are initially routed to a server

running a fast, lightweight load balancer service that distributes the requests

intelligently to the available web servers. A similar strategy is used to scale the

compute and repository services. To scale the database, index, and cache services

we use replication support built in to the specific software implementations.

The service infrastructure is designed to minimize response time and opti-

mize cloud resource utilization. Figure 1 depicts the service architecture for a

VehicleFORGE deployment. Most requests begin and end through a web server

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 27 -



Fig. 1. VF Service Artchitecture.

gated by the load balancer. To minimize latency, the web servers delegate longer-

running, more resource-intensive jobs to Task Servers that execute the jobs asyn-
chronously. In a similar vein, web servers communicate with the META Compute
Service to conduct the Testbench analyses. The Compute Service nodes are sepa-

rated from the main VehicleFORGE deployment to ensure that they have access

to the necessary resources for their intensive analysis tasks.

3.2 Test Bench Execution

Test benches, design spaces, components Within the AVM program, a

design tool chain (META tools) [23,38] is being developed for exploring de-

sign alternatives and analyzing designs under certain conditions. The META

tools provide the integration framework for components, designs, design spaces,

requirements and test benches. Components are atomic building blocks that

describe the dynamics behavior and the structural aspect of physical objects.

Designs and design spaces are built up from components, where a design has a

fixed architecture (composition of components) and a design space can encode

different component alternatives as well as different design architectures.

After a design or design space is created, test cases are defined against the

given requirement set. The test cases, which we term test benches, are executable
versions of the system requirements. From the test bench models, the META

tools can compose analysis packages over a design space for different domains

such as simulation of DAEs (differential algebraic equations), formal verifica-

tion, static analysis, and structural analysis. Examples include vehicle model

simulation using different drive cycles such as highway speed profile or urban

speed profile, cost of the design by aggregating the cost of the components, and

structural stress analysis on the composed CAD (3D) model of the design.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 28 -



Resource considerations Executing the test benches may require different
platforms; the execution time varies based on model size and analysis type.

Furthermore, the number of test bench executions depends on the number of

test benches and the design space size (i.e. number of designs). During this

project we used approximately 30 test benches and 400 design variations, which

evaluates to about 12k test bench executions. Additionally, we had to take into

account the size of the generated analysis results and provide for their storage.

Implementation and cloud usage Initially, all test benches were executed

sequentially within the same process, while we had only just 1-2 test benches

and 1-5 designs. As we increased the number of test benches and the complexity

of the designs, we switched to another solution. We implemented a client side job

manager (called META Job Manager) for running the test benches on multiple

CPUs using a single machine and limited the number of maximum parallel jobs

to the number of CPUs. As the execution time for a single test bench started

increasing because the complexity of the design increased, the 1-3 hour simula-

tion times were an unacceptable encumbrance on the user’s machine. For this

reason, we extended the META Job Manager with a remote execution service

that authenticated with VehicleFORGE.

Fig. 2. META VF infrastucture.

Figure 2 depicts the communication path between the client side job manager

and the server side services. The META Job Manager can be configured to

execute the test benches locally (in parallel) or post them to VF to be executed

on compute nodes. If the job manager is configured for remote execution, the

user provides the login information and logs in through the VF authentication

service. Then, the job manager is ready to accept jobs and post them to VF.

When a job is posted to the job manager, it calls a VF service to register the job,

uploads the analysis package to a cloud storage server, then indicates the job is

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 29 -



ready to execute. The job gets posted to the META server side job dispatcher

and is added to the queue. If there is a free executor on a compute node that has

all the tools required to execute the job, the job gets shipped to the compute

node and the execution begins. A compute node for a job is chosen based on

the version of the desktop tools that the user employed to create his/her design.

For example, we had different version of the META tools deployed on the client

machines and some of our compute nodes supported one version of the tool

chain, while others supported another version of the tools. The compute node

downloads the analysis package from the cloud storage, executes the analysis,

uploads the results to the cloud storage, and indicates that the job is complete

(successfully or with failures). The META Job Manager monitors the pending

jobs regularly. When the analysis is done, it downloads the results to the client’s

machine.

Optimization and cloud benefits Since the component models and their

artifacts are stored on VF, which are accessible through the VF component

exchange, the data transfer between the server and clients was reduced by send-

ing only links to components rather than the actual content. This significantly

improved the turnaround time for the CAD jobs.

Users do not need to install the analysis tools, if they only use remote execu-

tion. The remote compute nodes have all the tools set up and configured correctly

to perform the test bench executions. As a result of having compute nodes, the

load on the users machine was decreased and it requires only communication

with the server to send and receive test bench bundles.

Within 3 months the remote compute nodes served 1000 users (200 teams)

and ran 50000+ analysis jobs with 92 percent success1.

3.3 Monitoring the infrastructure

Operating a complex distributed application demands constant monitoring and

maintenance. The dynamic nature and virtualized deployment of the Vehicle-

FORGE application further complicate the problem of providing a cohesive un-

derstanding of its status. We have deployed a number of monitoring and manage-

ment tools into both the VehicleFORGE application and its underlying cloud

infrastructure in order to automate and simplify the tasks of monitoring and

managing operations.

The foremost requirement for application monitoring is simply to under-

stand the current state of the application. This requirement spans from low-level

checks, such as disk and memory usage on the virtual machines, to higher-level

needs, such as checking database flush times. The VehicleFORGE team selected

Nagios3 [33] for status monitoring, though excellent alternatives, such as Munin

[32] and Ganglia [28], exist. We chose Nagios because it provides a very large

library of built-in checks, is easily extensible for custom checks, and is resource

1 The job execution largely did not fail on server side, but the analysis results may or
may not have passed the requirements.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 30 -



efficient enough to execute all of our checks in very short intervals (less than a

minute in our case). A key aspect of status monitoring is the ability to reflect the

process topology of the deployment, i.e. which process is running on which ma-

chine. As our entire deployment process is based on modeling and automation,

it was a natural extension for us to develop a mapping from the deployment

blueprint to the Nagios monitoring configuration. As alterations are made to

a given deployment a new monitoring configuration can be easily synthesized.

In the production deployment of VehicleFORGE, Nagios performs 374 indepen-

dent status checks every minute. If any of these checks fail, an administrator is

notified immediately and can begin to remediate the issue.

While status monitoring helps to ensure the uptime of the application, very

frequently administrators and support personnel need to understand the histor-

ical context of a specific application operation or event. For example, why was

a particular user’s registration request rejected, or how many users logged in on

a particular day. For these types of operational questions it is best-practice to

instrument the application so that it logs all relevant events with some pertinent

information. Typically these logs reside on the local filesystem of each machine.

Standard Linux processes make extensive use of logging, too. It can be a non-

trivial problem in distributed applications to collect all of the desired logging

information, centralize it, process and analyze it, and archive it. Similar to sta-

tus monitoring, several open source alternatives exist for log handling, notably

LogStash [37] and Scribe [19]. After evaluating the alternatives, we chose to use

LogStash in conjunction with ElasticSearch [22] for log indexing, and Kibana

[20] for analysis and visualization. This combination is very easy to deploy and

configure and require minimal resources during operation. Every event occurring

in both the VehicleFORGE application and the underlying virtual machine it

logged, collected, indexed and archived. This provides our operations team with

tremendously powerful tools to understand both what is happening at any given

moment, and past historical trends. The volume of data generated by our logging

approach is non-trivial though. In an average hour of operation, the production

VehicleFORGE deployment generates over 4.3 million log records which con-

sume almost 5MB of disk space. In one year of operation, that equates to nearly

38 billion records and 40GB of data. A dedicated cluster of virtual machines is

needed to index the data and execute searches across these records.

Finally, both developers and operators need to understand what is happen-

ing “inside” of the application. This understanding is at a deeper level than is

typically provided by tools such as Nagios, Munin or Ganglia. The need is also

more “real-time” than is provided by analysis of historical log information. A

typical use of such real-time statistics is a operations dashboard. On this dash-

board may be a number of statistics that allow an operator to assess the internal

state of the deployment in a glance, for example, a real-time plot of the number

of active users. An event such as a DNS failure that sends a large share of traffic

away from the site would not be detected by either the monitoring system or log

analysis. Another example would be a software update roll-out that causes users

to start receiving errors. In both of these cases it necessary to have a deeper and

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 31 -



more immediate view into the state of the application. StatsD [27,26] is just such

a tool. The code of an application must be modified in order to support StatsD

collection, but once done, as specific events occur within the application a UDP

packet is sent to a daemon that receives and aggregates it over time. Within 10

seconds of an event occurring, operators see it appear on a plot that provides

significant insight into the internal state of the application. The VehicleFORGE

infrastructure makes use of StatsD and in the near future its support will be

built into the VehicleFORGE application too.

3.4 Operator tools

The maintenance of a distributed application can be greatly simplified through

the development of autonomic tools for configuring and managing a cloud de-

ployment. The complex inter-dependencies between subcomponents of the Ve-

hicleFORGE application and the services required to provision the application,

as well as the complexities inherent to managing a distributed application of

this scale, guided our development of Da Capo, a cloud provisioning and orches-

tration framework that we develop and maintain internally. Da Capo provides

an extensible framework into which we have injected a VehicleFORGE-specific

component that delineates the particulars of orchestrating our application. We

use Da Capo extensively in the development of VehicleFORGE to create and

manage both publicly accessible production deployments and short-lived, pri-

vate sandbox deployments for development and testing.

Da Capo greatly facilitates the creation and configuration of distributed ap-

plications. Using its API through a web interface contained in the lightweight

VehicleFORGE tool ForgeCloud, we are able to configure new VehicleFORGE

deployments. Configuration is performed through the definition of app-specific

parameters and services, persistent/long-running background processes (e.g. the

database) upon which the application depends. Through the ForgeCloud config-

uration interface, we can specify the number of instances in the deployment, the

size of those instances, the service(s) contained on each instance, and various

configuration parameters that define how the application will function. Da Capo

is aware of which services are required, limits to the number of a particular ser-

vice type that can exist in a functional deployment, and any inter-dependencies

between services. In short, it will ensure that a deployment specification will

result in a valid deployment before it is initialized.

Once the deployment specification is submitted, Da Capo provisions the nec-

essary resources by communicating with the OpenStack API [31]. When the

instances are ready, it installs and configures the application, services, and their

dependencies on the designated instances. It handles any requisite deployment-

specific and user-specified configuration. Finally, Da Capo initializes the services

and the application. Any errors that occur during this process are logged and

reported.

Da Capo additionally offers tools for monitoring and managing a running

deployment. It can create and restore backups for a deployment by running

the appropriate commands on the appropriate services (in our case Solr [35],

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 32 -



MongoDB [13], Swift [6], Git, SVN and Redis [21]). It can execute an operator-

inputted command on all instances of a deployment, or only instances running

specific services. It can stop, start, and restart specified services, display logs,

check the status of all services, detect and run necessary application migration

scripts, and perform an operating system upgrade. Further, Da Capo’s command

infrastructure is easily extensible, ensuring that any future automation needs will

be met.

4 Related Work

VehicleFORGE adopts cutting edge FORGE components that have proven them-

selves in textual language-based projects. Wiki pages [24] offer a convenient way

of sharing hypertext-based information, which are aided by other established

tools, many based on those of the Allura Project [2], to provide a collaboration

hub for distributed design teams.

Although there are several model-based collaboration environments in the

field of CAD and general domain-specific languages,[8,34,17,16,18,7]– literature

overview with analysis can be found in [11] and [9]–, VehicleFORGE offers a

number of novel concepts, including the Component Exchange, among others.

The tight integration with the META toolchain and the efficient use of state of

the art cloud computing and collaboration technologies also make it a unique in-

frastructure. The vision of combining model-driven engineering and cloud com-

puting has been proposed in existing publications [10,12,14], but as of yet no

publication details the creation of a functioning deployment.

A distributed collaborative design evaluation platform called DiCoDEv [30]

uses virtual reality techniques to implement real-time manufacturing design. The

focus of VehicleFORGE is broader than manufacturing and it provides several

offline services. In [36], the authors describe a collaboration environment with

source control management, forum, mailing list web sites, news, and project

categorization. As opposed to VehicleFORGE, it is restricted to textual content

written in the language R.

5 Conclusions and plans

In this paper, we have introduced VehicleFORGE, a cloud-based application

for collaborative model-based development. VehicleFORGE utilizes cutting edge

cloud computing technologies in order to maintain scalability for resource-intensive

design work. Various domain-specific tools that benefit from high computational

power and centralized resources, such as design space explorers, can use the Ve-

hicleFORGE cloud to great advantage. VehicleFORGE has been used in United

States-wide competitions, which was made possible by the monitoring and op-

erator tools. Development and maintenance on VehicleFORGE deployments is

enabled by custom platform as a service software developed in house.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 33 -



Fig. 3. User and Team registrations throughout FANG-I

There were 1048 competitors and 241 design teams registered on the main

VehicleFORGE website which served as the home for the FANG-I Design Chal-

lenge (see Figure 3). Besides this deployment, the VehicleFORGE Production

Cloud hosted the testbench analysis services, a Beta website for staging and

testing FANG Challenge resources and an internally used platform for manag-

ing the development of the system itself. There will be further forge instances

deployed for the AVM program in the upcoming period to the FANG-II Design

Challenge.

The Development Cloud hosts the Alpha VehicleFORGE website which is

maintained for educational purposes and several, on-demand sandbox-deployments

created for development and testing purposes.

In the meantime, we are working on the first release of the refactored, new

forge framework, which is designed for utilization by a greater open source

community–outside of the immediate scope of the AVM program.

6 Acknowledgments

This work was sponsored by DARPA, under its Adaptive Vehicle Make Program.

The views and conclusions presented are those of the authors and should not

be interpreted as representing official policies or endorsements of DARPA or the

US government.

References

1. Adaptive Vehicle Make. http://www.darpa.mil/Our_Work/TTO/Programs/

Adaptive_Vehicle_Make__(AVM).aspx.
2. Allura. http://sourceforge.net/projects/allura/.
3. Cyber-physical system. http://en.wikipedia.org/wiki/Cyber-physical_

system.
4. SourceForge. http://sourceforge.net.
5. VehicleFORGE. http://www.vehicleforge.org.
6. J. Arnold. Software Defined Storage with OpenStack Swift. SwiftStack, Inc., April

2013.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 34 -

http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx
http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx
http://sourceforge.net/projects/allura/
http://en.wikipedia.org/wiki/Cyber-physical_system
http://en.wikipedia.org/wiki/Cyber-physical_system
http://sourceforge.net
http://www.vehicleforge.org


7. O. Berger, C. Bac, and B. Hame. Integration of libre software applications to
create a collaborative work platform for researchers at get. International Journal

of Information Technology and Web Engineering (IJITWE), 1(3):1–16, 2006.
8. R. Bidarra, E. Van Den Berg, and W. F. Bronsvoort. Collaborative modeling with

features. In Proceedings of DET, volume 1, page 2001, 2001.
9. G. Booch and A. W. Brown. Collaborative development environments. volume 59

of Advances in Computers, pages 1 – 27. Elsevier, 2003.
10. H. Bruneliere, J. Cabot, F. Jouault, et al. Combining model-driven engineering

and cloud computing. In Modeling, Design, and Analysis for the Service Cloud-

MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th European

Conference on Modelling Foundations and Applications-ECMFA 2010), 2010.
11. J. Cabot, G. Wilson, et al. Tools for teams: A survey of web-based software project

portals. Dr. Dobbs, pages 1–14, 2009.
12. J. Castrejón, G. Vargas-Solar, C. Collet, and R. Lozano. Model-driven cloud data

storage. Proceedings of CloudMe, 2012.
13. K. Chodorow. MongoDB: the definitive guide. O’Reilly, 2013.
14. C. Clasen, M. D. Del Fabro, M. Tisi, et al. Transforming very large models in

the cloud: a research roadmap. In First International Workshop on Model-Driven

Engineering on and for the Cloud, 2012.
15. B. Collins-Sussman, B. Fitzpatrick, and M. Pilato. Version control with subversion.

O’Reilly, 2004.
16. R. Frost. Jazz and the eclipse way of collaboration. Software, IEEE, 24(6):114–117,

2007.
17. J. Gallardo, C. Bravo, and M. A. Redondo. A model-driven development method

for collaborative modeling tools. Journal of Network and Computer Applications,
35(3):1086–1105, 2012.

18. C. Herrmann, T. Kurpick, and B. Rumpe. Sselab: A plug-in-based framework
for web-based project portals. In Developing Tools as Plug-ins (TOPI), 2012 2nd

Workshop on, pages 61–66, 2012.
19. R. Johnson. Facebook’s scribe technology. October 2008.
20. R. Khan. Kibana. http://kibana.org/.
21. J. A. Kreibich. Redis: The Definitive Guide: Data Modeling, caching, and messag-

ing. O’Reilly, 2013.
22. R. Kuc and M. Rogozinski. Elasticsearch Server. Packt Publishing, 2013.
23. Z. Lattmann, A. Nagel, J. Scott, K. Smyth, J. Ceisel, C. vanBuskirk, J. Porter,

T. Bapty, S. Neema, D. Mavris, and J. Sztipanovits. Towards automated evaluation
of vehicle dynamics in System-Level designs. In CIE, 2012.

24. B. Leuf and W. Cunningham. The wiki way: quick collaboration on the web. 2001.
25. J. Loeliger and M. McCullough. Version Control with Git: Powerful tools and

techniques for collaborative software development. O’Reilly Media, Inc., 2012.
26. I. Malpass. Measure anything, measure everything.

http://codeascraft.com/2011/02/15/measure-anything-measure-everything/,
February 2011.

27. I. Malpass. Statsd. StatsD Repository, July 2013.
28. M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring

system: design, implementation, and experience. Parallel Computing, 30(7):817–
840, 2004.

29. A. Nadas, L. Juracz, J. Sztipanovits, M. E. Frisse, and A. J. Olsen. Policyforge: A
collaborative environment for formalizing privacy policies in health care.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 35 -

http://kibana.org/


30. M. Pappas, V. Karabatsou, D. Mavrikios, and G. Chryssolouris. Development of
a web-based collaboration platform for manufacturing product and process design
evaluation using virtual reality techniques. International Journal of Computer

Integrated Manufacturing, 19(8):805–814, 2006.
31. K. Pepple. Deploying OpenStack. O’Reilly, 2011.
32. G. Pohl and M. Renner. Munin - Graphisches Netzwerk- und System-Monitoring.

Open Source Press, April 2008.
33. M. Schubert, D. Bennett, J. Gines, A. Hay, and J. Strand. Nagios 3 enterprise

network monitoring: including plug-ins and hardware devices. Syngress, 2008.
34. N. Shyamsundar and R. Gadh. Internet-based collaborative product design with

assembly features and virtual design spaces. Computer-aided design, 33(9):637–
651, 2001.

35. D. Smiley. Solr 1.4 Enterprise Search Server. Packt Publishing, 2009.
36. S. Theußl and A. Zeileis. Collaborative software development using r-forge. 2008.
37. J. Turnbull. The LogStash Book. Amazon, 2013.
38. R. Wrenn, A. Nagel, R. Owens, H. Neema, F. Shi, K. Smyth, D. Yao, J. Ceisel,

J. Porter, C. vanBuskirk, S. Neema, T. Bapty, D. Mavris, and J. Sztipanovits.
Towards automated exploration and assembly of vehicle design models. In CIE,
2012.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 36 -


