
Model-Driven T ransformations for Mapping Parallel
A lgorithms on Parallel Computing Platforms

Ethem Arkin1, Bedir Tekinerdogan2

1Aselsan MGEO, Ankara, Turkey
!"#$%&'"(!)("&*+,-*.#/

2Bilkent University, Dept. of Computer Engineering, Ankara, Turkey
0!1%#'+(*0%)$!&.*!12*.#/

Abstract.One of the important problems in parallel computing is the mapping of the par-
allel algorithm to the parallel computing platform. Hereby, for each parallel node the cor-
responding code for the parallel nodes must be implemented. For platforms with a lim-
ited number of processing nodes this can be done manually. However, in case the parallel
computing platform consists of hundreds of thousands of processing nodes then the man-
ual coding of the parallel algorithms becomes intractable and error-prone. Moreover, a
change of the parallel computing platform requires considerable effort and time of cod-
ing. In this paper we present a model-driven approach for generating the code of selected
parallel algorithms to be mapped on parallel computing platforms. We describe the re-
quired platform independent metamodel, and the model-to-model and the model-to-text
transformation patterns. We illustrate our approach for the parallel matrix multiplication
algorithm.

K eywords: Model Driven Software Development, Parallel Computing, High Perfor-
mance Computing, Domain Specific Language, Tool Support.

1 Introduction
The famous Mo u-

bles every eighteen months is coming to an end due to the physical limitations of a single
processor [11]. To keep increasing the performance of the processing power the current trend
is towards applying parallel computing on multiple nodes. Unlike serial computing in which
instructions are executed serially, multiple processing elements are used to execute the pro-
gram instructions in parallel. An important challenge in parallel computing is the mapping of
the parallel algorithm to the parallel computing platform. The mapping of the algorithm re-
quires the analysis of the algorithm, writing the code for the algorithm and deploying it on the
nodes of the parallel computing parallel computing platform. This mapping can be done man-
ually in case we are dealing with a limited number of processing nodes. However, the current
trend shows the dramatic increase of the number of processing nodes for parallel computing
platforms with now about hundreds of thousands of nodes providing petascale to exascale
level processing power [8]. As a consequence mapping the parallel algorithm to computing
platforms has become intractable for the human parallel computing engineer.

Once the mapping has been realized in due time the parallel computing platform might
need to evolve or change completely. In that case the overall mapping process must be redone
from the beginning requiring lots of time and effort.

In this paper we provide a model-driven approach for both the mapping of parallel algo-
rithms to parallel computing platform, and the evolution of the parallel computing platform. In

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 63 -

mailto:earkin@aselsan.com.tr

essence our approach is based on the model-driven architecture design paradigm that makes a
distinction between platform independent models and platforms specific models or code. We
provide a platform independent metamodel for parallel computing platform and define the
model-to-model transformation patterns for realizing the platform specific parallel computing
platforms. Further we provide the model-to-text transformation patterns for realizing the code
from the platform specific models.

The remainder of the paper is organized as follows. In section 2, we describe the problem
statement. Section 3 presents the implementation approach for mapping the parallel algorithm
to parallel computing platform by the help of model transformations. Section 4 presents the
related work and finally we conclude the paper in section 5.

2 Problem Statement
To define a feasible mapping the parallel algorithm needs to be analyzed and a proper config-
uration of the given parallel computing platform is required to meet the corresponding quality
requirements for power consumption, efficiency and memory usage. To illustrate the problem
we will use the parallel matrix multiplication algorithm [10]. The pseudo code of the algo-
rithm is shown inFig.1a. The matrix multiplication algorithm recursively decomposes the
matrix into subdivisions and multiplies the smaller matrices to be summed up to find the re-
sulting matrix. The algorithm is actually composed of three different sections. The first serial
section is the multiplication of subdivision matrix elements (line 3), which is followed by a
recursive multiplication call for each subdivision (line 5-15). The final part of the algorithm
defines the summation of the multiplication results for each subdivision (line 13-16).

Given a physical parallel computing platform consisting of a set of nodes, we need to de-
fine the mapping of the different sections to the nodes. In this context, the logical configura-
tion is a view of the physical configuration that defines the logical communication structure
among the physical nodes. Typically, for the same physical configuration we can have many
different logical configurations [2]. An example of a logical configuration is shown inFig.1b.
In this paper we assume that a feasible logical configuration is selected and the mapping of the
code need to be realized.

!" #$%&'()$'*+,-$./0+)1-.213456*76*89:*
;" .<*8=!*->'?*
@" A*=*5*B*7*
C" '?(.<*
D" #E*=*+,-$./0+)1-.21345EE6*7EE6*80!9*
F" #!*=*+,-$./0+)1-.21345E!6*7!E6*80!9*
G" #;*=*+,-$./0+)1-.21345EE6*7E!6*80!9*
H" #@*=*+,-$./0+)1-.21345E!6*7!!6*80!9*
I" #C*=*+,-$./0+)1-.21345!E6*7!!6*80!9*
!E" #D*=*+,-$./0+)1-.21345!!6*7!E6*80!9*
!!" #F*=*+,-$./0+)1-.21345!E6*7E!6*80!9*
!;" #G*=*+,-$./0+)1-.21345!!6*7!!6*80!9*
!@" AEE*=*#E*J*#!*
!C" AE!*=*#;*J*#@*
!D" A!E*=*#C*J*#D*
!F" A!!*=*#F*J*#G*

a) b)
F ig.1.Matrix Multiplication Algorithm (a) to be mapped on (b) logical configuration platform

Fig.2 shows an example of a manually written C code for the matrix multiplication algorithm.
The code is implemented using the MPI [12], a widely used parallel programming library. For
simplicity, we assume that a 2x2 physical configuration is selected. Hence, the example code
is defined for a four node logical configuration. Before starting the code it is required to ini-
tialize the MPI configuration and related variables (line 3). For succinctness we have omitted
the code in the figure. The algorithm will run in parallel on four nodes. To distinguish among
the nodes the variable rank defines four different ids including 0, 1, 2, and 3. From line 4 to 8

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 64 -

the code for node 0 is defined which sends the sub matrices to the other nodes (1,2,3). Lines 9
to 14 define the code for receiving the matrices in node 1. A similar code is implemented for
the nodes 2 and 3 (not shown in the figure). Line 16 defines a so-called barrier to let the pro-
cess wait until all the sub-matrices have been distributed and received by all the nodes. After
the distribution of the sub-matrices to the nodes, each node runs the code as defined in line 17-
18 and, as such, multiplies, the received sub-matrices. Once the multiplication is finalized the
results are submitted to node 0, which is shown in line 19-22 for node 1 (code for node 2 and
3 is not shown). Line 23 to 25 defines again the collection of the results in node 0. Line 27
defines again a barrier to complete this process. Finally in line 28 to 33 the results are summed
in node 0 to compute the resulting matrix C.

!" #$%&'()*+,-.$"/,+
0" $%1+-2$%+
3" 455678+$%$1$2'$921$:%;+
<" $=>?2%@+AA+BC+4+
D" 678E8;*%)>FEBEBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
T" 678E8;*%)>KEBEBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
U" 678E8;*%)>FEBE!G+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
V" 678E8;*%)>KE!EBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CSW+
X" $=>?2%@+AA+!C+4+
!B" 678E8?*&Y>FEBG+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!!" 678E8?*&Y>KEBG+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!0" 678E8?*&Y>FE!G+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!3" 678E8?*&Y>KE!G+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CSW+
!<" """+
!D" 678EK2??$*?>678ENI66EOIPLHCS+
!T" 55^MP8FL+^MN\8IZ+7FP\+>PJZ+IZ+FLL+ZIHM^C+
!U" NEB+A+FEB+_+KEBS+
!V" NE!+A+FE!+_+KE!S+
!X" $=>?2%@+AA+!C+4+
0B" 678E8;*%)>NEBG+<G+678EHIJKLMG+BG+0G+678ENI66EOIPLHG+Q?*R(*;1CS+
0!" 678E8;*%)>NE!G+<G+678EHIJKLMG+BG+0G+678ENI66EOIPLHG+Q?*R(*;1CS+
00" W+
03" $=>?2%@+AA+BC+4+
0<" 678E8?*&Y>7EBG+<G+678EHIJKLMG+0G+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
0D" 678E8?*&Y>7E!G+<G+678EHIJKLMG+0G+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CSW+
0T" """+
0U" 678EK2??$*?>678ENI66EOIPLHCS+
0V" 55+^MP8FL+^MN\8IZ+7FP\+>PJZ+IZ+`8P^\+ZIHMC+
0X" $=>?2%@+AA+BC+4+
3B" NBB+A+7EB+a+7E!+
3!" NB!+A+7E0+a+7E3+
30" N!B+A+7E<+a+7ED+
33" N!!+A+7ET+a+7EU+W+
3<" 678E`$%2'$9*>CSW+

F ig.2.Example parallel code of the matrix multiplication algorithm code

After the code implementation, we can allocate and deploy the developed code to the nodes
of the parallel computing platform. In our example we have assumed a simple configuration
consisting of four nodes. Here we could easily decide on the strategy for sending, receiving
and collecting the data over the nodes. However, one can imagine easily that the code for the
larger configurations such as in petascale and exascale becomes dramatically larger, the strat-
egy for the data distribution will be much more difficult [4] and likewise the effort to imple-
ment the code will be much higher. Because of the size and complexity implementing the
code is not trivial and can become easily error-prone. In case of platform evolution or change
the whole code needs to be substantially adapted or even rewritten from scratch.

3 Implementation Approach
To support the implementation and deployment of the code for the parallel computing algo-
rithm on the parallel computing platform we propose a model-driven development approach.
The approach integrates the conventional analysis of parallel computing algorithms with the

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 65 -

model-driven development approaches. The overall approach is shown inFig.3. In the first
step of the approach the parallel computing algorithm is analyzed to define and characterize
the sections that need to be allocated to the nodes of the parallel computing platform. In the
second step, the plan is defined for allocating the algorithm sections to the corresponding
nodes of the logical computing platform. In the third step the code for each serial section is
manually implemented. The fourth step includes the implementation or reuse of predefined
model transformations to generate the code for parallel sections. The final step includes the
deployment of the code on the physical configuration platform. The details of the steps are
described in the following sub-sections.

!"#$%&'()*#$'+,-./01

2"#3*4',(#/0*#5,6*#,%#/0*#70(8.9&'#
5,%:.+;-&/.,%#7'&/:,-1

<"#3*:.%*#/0*#7'&%#:,-#/0*#$'',9&/.,%#,:#
/0*#$'+,-./01#=*9/.,%8#

>"#?14'*1*%/@A*;8*#B,6*'#
C-&%8:,-1&/.,%8#/,#D*%*-&/*#5,6*

E"#?14'*1*%/#/0*#=*-.&'#5,6*#8*9/.,%8

F ig.3.Approach for Generating/Developing and Deployment of Parallel Algorithm Code

3.1 Analyze A lgorithm

The analysis of the parallel algorithm identifies the separate sections of the algorithm and
characterizes these as serial or parallel sections. Here, a section is defined as a coherent set of
instructions in the algorithm. A serial section defines the part of the algorithm that needs to
run serially on nodes without interacting with other nodes. A parallel section defines the part
of the algorithm that runs on each node and interacts with other nodes. For example the matrix
multiplication algorithm (Fig.1a) has four main sections as shown in Table 1.

Table 1.Analysis of algorithm sections
!"# $%&'()*+,#-./*)'0# -./*)'0#123.#
4# !"#$%"&'$()$*()#'&+,-$%".(#) /01)
5# 2)3)0)4)5) 671)
6# 2899(.$),-$%":),'9$";9<)%(#'9$#) /01)
=) 2>>)3)/>)?)/@)

2>@)3)/A)?)/B)
2@>)3)/=)?)/C)
2@@)3)/D)?)/E)

671)

The first section defines the distribution of the sub-matrices to the different nodes. This sec-
tion is characterized as a parallel section (PAR). The second section is characterized as serial
(SER) and defines the set of instructions for the multiplication of the sub-matrices. The third
section is a parallel section and defines the collection of the results of the matrix multiplica-
tions. Finally, the fourth section is characterized as serial and defines the summation of the
result to derive the final matrix.

3.2 Define the Plan for the A llocation of the A lgorithm Sections

The next step of the implementation approach is to define the plan for mapping the algorithm
sections to logical configurations. Usually many different logical configurations can be de-
rived for a given parallel algorithm and parallel computing platform. We refer to our earlier
paper [2] in which we define the overall approach for deriving feasible logical configuration
alternatives with respect to speed-up and efficiency metrics. In this paper we assume that a

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 66 -

feasible logical configuration has been selected and elaborate on the generation of the imple-
mentation of the algorithm sections.

Table 2.Plan for allocating sections to nodes
!"# $%&'()*+,#-./*)'0# -./*)'0#123.# 4%50#
!" #$%&'$()&*"&+*"%)(,-.&'$/*%" 012" [-1,0] [0,0]

[1,1][0,1]
"

3" 4"5"1"6"7" 892" 2):";:"*./+":;<*"
=" 4;>>*/&"-.&'$?"-)>&$@>A"

'*%)>&%"
012" [-1,0] [0,0]

[1,1][0,1]
"

B" 4CC"5"0C"D"0!"
4C!"5"03"D"0="
4!C"5"0B"D"0E"
4!!"5"0F"D"0G"

892" 2):";:"*./+":;<*"

The allocation of the sections to the nodes depends on the type of the sections. The plan for
the matrix multiplication algorithm is shown in the fourth column of Table 2. Here we assume
that each serial section runs on each node (section 2 and 4). The plan for allocating the parallel
sections is defined as a pattern of nodes. The rectangles represent the nodes; the arrows repre-
sent the interactions (distribution or collection) among the nodes. Further, each node is as-
signed an id defining the coordinate of the node in the logical configuration. For section 1 the
distribution of the data is represented as a pattern of four nodes in which the dominating node
is the node with coordinate (0, 0). The arrows in the pattern show the distribution of the sub-
matrices from the dominating node to the other nodes. For section 3 the pattern represents the
collection of the results of the multiplications to provide the final matrix.

In the given example we have assumed a logical configuration consisting of four nodes. Of
course for larger configurations defining the allocation plan becomes more difficult. Hereby,
the required plan is not drawn completely but defined as a set of patterns that can be used to
generate the actual logical configuration. For example, scaling the patterns of Table 2can be
used to generate the logical configuration ofFig.1b. For more details about the generation of
larger logical configurations from predefined patterns we refer to our earlier paper [2].

3.3 Implement the Serial Code Sections

Once the plan for allocating the algorithm sections to the logical configuration is defined we
can start the implementation of the algorithm sections. Hereby, the code for the serial sections
is implemented manually.

Table 3.Implementation of the serial sections
!"# $%&'()*+,#-./*)'0# 6,3%.,.0*5*)'0#
!" #$%&'$()&*"&+*"%)(,-.&'$/*%" H$>>"(*"I*:*'.&*<"
3" 4"5"1"6"7" 4C"5"1JC"6"7JC"

4!"5"1J!"6"7J!"
=" 4;>>*/&"-.&'$?"-)>&$@>A"'*%)>&%" H$>>"(*"I*:*'.&*<"
B" 4CC"5"0C"D"0!"

4C!"5"03"D"0="
4!C"5"0B"D"0E"
4!!"5"0F"D"0G"

4CC"5"0JC"D"0J!"
4C!"5"0J3"D"0J="
4!C"5"0JB"D"0JE"
4!!"5"0JF"D"0JG"

The code for the parallel sections are generated using the model-transformation patterns as
defined in the next sub-section. The third column of Table 3 shows the implementation of the
serial sections of the matrix multiplication algorithm. Note that the implementation is align-
ment with the complete implementation of the algorithm as shown in Fig.2.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 67 -

3.4 Model T ransformations

After analyzing the algorithm, implementing the code for serial algorithm sections and defin-
ing the plan for mapping these sections to the logical configuration, the code for the parallel
sections will be generated. To support platform independence this code generation process is
realized in two steps using model-to-model transformation and model-to-text transformation.
These transformation steps are described below.
Model-to-Model T ransformation.

For different parallel computing platforms, there are several parallel programming lan-
guages such as, MPI, OpenMP, MPL, CILK [15]. According to the characteristic of the paral-
lel computing platforms, different programming languages can be selected. Later on in case of
changing requirements a different platform might need to be selected. To cope with the plat-
form independence and the platform evolution problem we apply the concepts as defined in
the Model-Driven Architecture (MDA) paradigm [13]. Accordingly, we make a distinction
between platform independent models (PIM), platform specific models (PSM) and the source
code. The generic model-to-model transformation process is shown in Fig.4.

!"#"$$%$&'$()#*+,-&
."//*0(&.%+"-)1%$

!"#"$$%$&'$()#*+,-&
."//*0(&.)1%$

2)03)#-4&+)

!"#"$$%$&5)-/6+*0(&!$"+3)#-&
7/%2*3*2&.%+"-)1%$

!"#"$$%$&5)-/6+*0(&!$"+3)#-&
7/%2*3*2&.)1%$

2)03)#-4&+).8.
9#"043)#-"+*)0

F ig.4.Model-to-model transformation.

Here the transformation process takes as input a platform independent model called, paral-
lel algorithm mapping model. This model defines the mapping of the algorithm sections to the
logical configuration. The model conforms to the parallel algorithm mapping metamodel
which we will explain later in the section. The output of the transformation process is a plat-
form specific model, called parallel computing platform specific model. Similarly this model
conforms to its own metamodel, which typically represents the model of the language of the
platform (e.g. MPI metamodel). The platform specific model will be later used to generate the
code using model-to-text transformation patterns.

!"#$%&'()*+,-.'&'/,+.0)-+1+23+,4,56-7'&$.6819-7'&$.:;+,<,=+
9-7'&$.*,0>6'%07'+-.'&'/,+.0)-+1+23+,4,56-7'&$.6819-7'&$.:;+,<,=+
9-%&0"9-7'&$.*+
++,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D!"#$%&'E;F+,4,7$@-+1+9CG2HI+,<,=+
J0%0""-"9-7'&$.*+
++,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D!"#$%&'E;F+,4,'&"-6+81+J0''-%.:,<,=+
K$#&70"L$.M&#A%0'&$.*,-.'&'/,+.0)-+1+23+,4,5'&"-681C&"-:;,<,=+
C&"-*,0>6'%07'+-.'&'/,+.0)-+1+23+,4,,<,=+
L$%-*,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D(%)"E;F,4,&+1+2HCN+1+2HC+,<,=+
J0''-%.*,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D(%)"E;F+
,4,+'&"-6+81+C&"-:@$)&.0'&$.#6+81+C&"-7$))6+81+L$))A.&70'&$.:+
?6&O-+1+2HC/6&O-+1+2HC,<,=+
L$))A.&70'&$.*,-.'&'/,+.0)-+1+23+,4,+
++++M%$)+1+L$%-'$+1+L$%-"-#6&O-+1+2HCM%$)30'0+1+30'0'$30'0+1+30'0+,<,=+

F ig.5.Concrete Syntax of the Parallel Algorithm Mapping Metamodel (PAMM)

The grammar for the parallel algorithm mapping metamodel is defined in XText in the
Eclipse IDE and shown in Fig.5. Here, Algorithm consists of Sections, which can be either a
ParallelSection or SerialSection. Each section can itself have other sections. In the grammar
the serial sections are related to code implementations in the code block. The parallel sections
include the data about the mapping plan that is determined with the logical configuration.
Logical Configuration consists of Tile entity which can be either a single Core (processing

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 68 -

unit) or a Pattern with tiles and communications between these tiles. The assets related with
the logical configuration with cores and patterns compose the plan for mapping algorithm to
logical configuration.

Fig.6 shows, for example, the parallel algorithm mapping model for the matrix multiplica-
tion algorithm. In the figure two serial sections MultiplyBlock and SumBlock are defined. In
the MultiplyBlock section the matrices are divided into sub-matrices and scattered by using the
B2S pattern. The B2S pattern is a predefined pattern in the toolset indicating the pattern for
section 1 as defined in the fourth column of Table 2. This multiply block also contains a Mul-
tiply serial section which contains the serial implementation of the multiply operation. In the
SumBlock section, the resulting matrices are gathered by the pattern B2G which is predefined
for section 3 as shown in the fourth column of Table 2. The SumBlock serial section contains
the serial code for summation of the resulting sub-matrices.

F ig.6.Parallel Algorithm Mapping Model for the Matrix Multiplication Algorithm

Once the platform independent parallel algorithm mapping model is defined we can trans-
form it to the required platform specific model. We assume, for example, that the aim is to
generate a MPI model. Fig.7shows the grammar of the MPI metamodel that is again defined
using XText. In the metamodel each MPI model consists of a group of entities, which include
MPISection, Process, Node, and Communication. Each section consists of processes and
communication among these processes. Each Process allocates to a Node. Each communica-
tion defines the destination and target process.

!"#!$%&'()&*+#+,)-*./&-0-12-)3)456$7"890!"#:6$7";<)=)>-
!"#:6$7"()&*+#+,)-*./&-0-12-)3)48&?+#$*890!"#@&?+#$*;<4*$%&890A$%&<)=)>-
!"#@&?+#$*()&*+#+,)-*./&-0-12-)3)-
----48&?+#$*890!"#@&?+#$*;<4"6$?&88&890B6$?&88;<-
----4?$//7*#?.+#$*890C$//7*#?.+#$*;<?$%&-0-@DE1A:)=)>-
B6$?&88()&*+#+,)-*./&-0-12-)3)6.*F-0-1AD.''$?.+&80A$%&)=)>-
A$%&()&*+#+,)-*./&-0-12-)3))=)>-
C$//7*#?.+#$*()&*+#+,)-*./&-0-12-)3)G6$/-0-B6$?&88+$-0-B6$?&88-)=)>-

F ig.7.Grammar of the MPI Metamodel

The model-driven transformation rules refer to elements of both the PAMM and the paral-
lel computing platform specific metamodel, in this case the MPI Metamodel. The M2M trans-
formation rules are implemented using the ATL [1] transformation language. The transfor-
mation rules are shown in Fig.8. As shown in the figure we have implemented four different
rules which define the transformations of mapping patterns to MPI sections, cores to processes
and communications to MPI communications.

The rule Algorithm2MpiModel, is defined as the main rule of the transformation. The rule
Pattern2Section transforms the algorithm pattern sections to MpiSection within the MpiGroup.
The rule Core2Process transforms the cores as defined in the patterns to the processes in
MpiSection. Each process is transformed from the core with the data of rank calculated from

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 69 -

the index values of the core. Similarly, Comm2Comm transforms the communications that are
defined in the patterns, to the communications in MPISection.

!" !"#$#$%&'()*+,-./).'01%#2#
-" %%&!'(#3%&'()*+,4#53(3%%1%.'01%6$%&'()*+,)'#,/),'01%4#./).'01%6./).'01%#7#
8" 93,1:;3%&'()*+,"93,1<#&('=/>:;?(01(10@1*2,/)A('=/BC<#
D" ##,/)A('=/4#./).'01%6./)A('=/793,1:;3%&'()*+,"93,1<#
E" ###>1F*)'9>:;3%&'()*+,"&1*53**1(9>7CCB#
G" !"#$#53**1(9-@1F*)'9#2#
H" %%&!'(#/3**1(94#53(3%%1%.'01%653**1(9)'# >1F*)'94#./).'01%6./)@1F*)'9#7#
I" ####93,1:;/3**1(9"93,1</('F1>>1>#:;#/3**1(9"&1*J'(1>7C<#
K" ####F',,=9)F3*)'9>:;/3**1(9"&1*J',,=9)F3*)'9>7CCB#
!L" !"#$#J'(1-5('F1>>#2&!'(#F'(14#53(3%%1%.'01%6J'(1#)'#/('F1>>4#./).'01%65('F1>>#7#
!!" ####(39M:;F'(1")",'07F'(1"&1*A%'N3%@)O17CCPF'(1"&1*A%'N3%@)O17C#Q#
!-" ##########F'(1",'07F'(1"&1*A%'N3%@)O17CC<CB#
!8" !"#$#J',,-J',,#2&!'(%/RF',,=9)F3*)'9453(3%%1%.'01%6J',,=9)F3*)'9##
!D")'#F',,=9)F3*)'9#4#./).'01%6J',,=9)F3*)'9#7#
!E" ####S(',:;/RF',,=9)F3*)'9"S(',<#*':;/RF',,=9)F3*)'9"*'<CB#

F ig.8.Transformation rules from PAMM to MPI metamodel

The MPI model which is the result of the model-to-model transformation is shown in Fig.9.
The MPI model includes the MpiSection with processes that will run on each node, communi-
cations from a destination process to target process and the serial code section implementa-
tion. This MPI model is now ready for model-to-text transformation to generate the final MPI
source code.

F ig.9.Part of the MPI model generated by model-to-model transformation

Model-to-Text T ransformation
The generated PSM includes the mapping of the processes specific to the parallel computing
platform. Subsequently, this PSM is used to generate the source code. The model-to-text
transformation pattern for this is shown inFig.10.

!"#$!%&'()*%+

!"#$!)*%+

,)-.)/(0$
&)

!"#$
1)2/,%$3)*%

!45
5/'-0.)/('&6)-

F ig.10.Example model transformation chain of MPI model

Fig.11 shows the implementation of the model-to-text transformation for which we used the
XPand [18] transformation language. To map the sections to the parallel computing platform,
for each section the communication operations for the data is generated for target and destina-
tion process ranks (line 6 to 11). Subsequently, the serial code implementation is imported to
the source code in line 13. For each section, a barrier code is implemented to synchronize the
section processes (line 14). The resulting code of the transformation is the code as defined in
Fig.2.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 70 -

!" #!"#$%&'$%&'(
)" (
" #($%)+,(+,-.%/(*-(+,-.%'(
0" #($%)*+,'+,-.%"/123&-4/(*-(/123&-4'(
5" #($%)*+,'/123&-4"2-$$.4&263&-4/(*-'2-$$'(
7" &89,64:(;;(#2-$$"8,-$",64:'<(=(
>" ?@ABA/14C9#2-$$"8,-$D636"46$1'E#2-$$"8,-$D636"/&F1'E?@AB#2-$$"8,-$D636"3G%1'E(
H" ((((((((((#2-$$"3-",64:'E#2-$$"8,-$",64:'E?@ABIJ??BKJLMDEN,1O.1/3<PQ(
R" &89,64:(;;(#2-$$"3-",64:'<(=(
!S" ?@ABA,12T9#2-$$"3-D636"46$1'E#2-$$"8,-$D636"/&F1'E?@AB#2-$$"3-D636"3G%1'E((
!!" ((((((((((#2-$$"8,-$",64:'E?@ABUVWBXUYE?@ABIJ??BKJLMDEN,1O.1/3<PQ(
!)" #)./($%)*+,'(
!*" #/123&-4"2-C1'(
!0" ?@ABZ6,,&1,9?@ABIJ??BKJLMD<P(
!5" #)./($%)*+,'#)./($%)*+,'(
!7" (

F ig.11. Transformation template from MPI metamodel to MPI source code

3.5 Deploy Code on Physical Configuration

The resulting code of the previous steps needs to be deployed on the physical configuration.
The deployment can be done manually or using tool support in case of large configurations. In
the literature various tools can be found which concern the automatic deployment of the code
to the nodes of a parallel computing platform. We refer to, for example, [8][15][4] for further
details.

4 Related Work
Several papers have been published in the domain of model-transformations for parallel com-
puting. Palyart et. al. [14] propose an approach for using model-driven engineering in high
performance computing. They focus on automated support for the design of a high perfor-
mance computing application based on the distinction of different domain expertise like phys-
ical configuration, numerical computing, application architecture etc.

Bigot and Perez [3] adopt HLCM a hierarchical and generic component model with con-
nectors originally designed for high performance applications. The authors represent on their
experience with metamodeling and model transformation to implement HLCM.
[7] introduced the GASPARD design framework systems that use model transformations for
massively parallel embedded systems. They refined the MARTE models based on Model
Driven Engineering paradigm. They provide tool support to automatically generate code with
high-level specifications. Taillard et.al [16] implemented a graphical framework for integrat-
ing new metamodels to GASPARD framework. They used MDE paradigm to generate
OpenMP, Fortran or C code.

Similar to our approach the above studies generate source code for high performance com-
puting. The main difference of our approach is focus on the mapping of algorithm sections to
parallel computing platforms.

5 Conclusion
In this paper we have described the model transformations needed to implement the mapping
of a parallel algorithm to a parallel computing platform. In alignment with the MDA paradigm
the approach is based on separating the platform independent parallel computing model from
the platform specific parallel computing model and the source code. The model transfor-
mations do not only helps the parallel programming engineer to generate code but it also pro-
vides support for easier portability in case of platform evolution. We have illustrated the ap-
proach for the MPI platform but the approach is generic. In our future work we will elaborate
on the application of model-driven approaches to parallel computing platform and focus on
optimizing the values for metrics which are important for mapping parallel algorithms to par-
allel computing platforms.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 71 -

References
1. ATL: ATL Transformation Language. http://www.eclipse.org/atl/
2. Arkin, E., Tekinerdogan, B., Imre, K. Model-Driven Approach for Supporting the Mapping of Par-

allel Algorithms to Parallel Computing Platforms. Proc. of the ACM/IEEE 16th International Con-

ference on Model Driven Engineering Languages and Systems. (2013)
3. Bigot, J., Perez, C. On Model-Driven Engineering to implement a Component Assembly Compiler

(2011)

4. Cumberland, D., Herban, R., Irvine, R., Shuey, M., and Luisier, M. Rapid parallel systems deploy-
ment: techniques for overnight clustering. In Proceedings of the 22nd conference on Large installa-

tion system administration conference (LISA'08). USENIX Association, Berkeley, CA, USA, 49-
57. (2008)

5. Foster, I. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software En-
gineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. (1995)

6. Frank, M.P. The physical limits of computing. Computing in Science &Engineering , vol.4, no.3,
pp.16,26, May-June 2002. (2002)

7.
Model-Driven Design Framework for Massively Parallel Embedded Systems. ACM Trans. Embed.
Comput. Syst. 10, 4, Article 39. (2011)

8. Hoffmann, A., Neubauer, B. Deployment and configuration of distributed systems. In Proceedings

of the 4th international SDL and MSC conference on System Analysis and Modeling (SAM'04),
Daniel Amyot and Alan W. Williams (Eds.). Springer-Verlag, Berlin, Heidelberg, 1-16. (2004)

9. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon,
P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A.,
Scott, S., Snavely, A., Sterling, T., Williams, R.S., Yelick, K., Bergman, K., Borkar, S., Campbell,
D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hiller, J., Keckler, S., Klein, D.,
Williams, R.S., and Yelick, K., Exascale Computing Study: Technology Challenges in Achieving

Exascale Systems. DARPA. (2008)
10. Li, K.Scalable parallel matrix multiplication on distributed memory parallel computers. Parallel

and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International , vol.,
no., pp.307,314. (2000)

11. Moore, G.E.Cramming More Components Onto Integrated Circuits. Proceedings of the IEEE ,
vol.86, no.1, pp.82,85. (1998)

12. MPI: A Message-Passing Interface Standart, version 1.1. http://www.mpi-forum.org/docs/mpi-11-
html/mpi-report.html.

13. Object Management Group (OMG). Model Driven Architecture (MDA), ormsc/2001-07-01.
14. Palyart, M., Lugato, D., Ober, I., and Bruel, J. MDE4HPC: an approach for using model-driven en-

gineering in high-performance computing. In Proceedings of the 15th international conference on

Integrating System and Software Modeling (SDL'11), Iulian Ober and Ileana Ober (Eds.). Springer-
Verlag, Berlin, Heidelberg, 247-261. (2011)

15. Stawinska, M., Kurzyniec, D., Stawinski, J., Sunderam, V., Automated Deployment Support for
Parallel Distributed Computing, Parallel, Distributed and Network-Based Processing, 2007. PDP

'07. 15th EUROMICRO International Conference on , vol., no., pp.139,146. (2007)
16. Taillard, J., Guyomarc'h, F.,Dekeyser, J. A Graphical Framework for High Performance Computing

Using An MDE Approach. In Proc. of the 16th Euromicro Conference on Parallel, Distributed and

Network-Based Processing (PDP '08). IEEE Computer Society, Washington, DC, USA, 165-173.
(2008)

17. Talia, D. Models and Trends in Parallel Programming. Parallel Algorithms and Applications 16, no.
2: 145-180. (2001)

18. Xpand, Open Architectureware. http://wiki.eclipse.org/Xpand.
19. Zheng, G., Kakulapati, G., Kale, L.V. BigSim: a parallel simulator for performance prediction of

extremely large parallel machines. Parallel and Distributed Processing Symposium, 2004. Proc..
18th International , vol., no., pp.78,, 26-30. (2004)

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 72 -

