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Abstract.One of the important problems in parallel computing is the mapping of the par-
allel algorithm to the parallel computing platform. Hereby, for each parallel node the cor-
responding code for the parallel nodes must be implemented. For platforms with a lim-
ited number of processing nodes this can be done manually. However, in case the parallel 
computing platform consists of hundreds of thousands of processing nodes then the man-
ual coding of the parallel algorithms becomes intractable and error-prone. Moreover, a 
change of the parallel computing platform requires considerable effort and time of cod-
ing. In this paper we present a model-driven approach for generating the code of selected 
parallel algorithms to be mapped on parallel computing platforms. We describe the re-
quired platform independent metamodel, and the model-to-model and the model-to-text 
transformation patterns. We illustrate our approach for the parallel matrix multiplication 
algorithm. 

K eywords: Model Driven Software Development, Parallel Computing, High Perfor-
mance Computing, Domain Specific Language, Tool Support. 

1 Introduction 
The famous Mo u-

bles every eighteen months is coming to an end due to the physical limitations of a single 
processor [11]. To keep increasing the performance of the processing power the current trend 
is towards applying parallel computing on multiple nodes. Unlike serial computing in which 
instructions are executed serially, multiple processing elements are used to execute the pro-
gram instructions in parallel. An important challenge in parallel computing is the mapping of 
the parallel algorithm to the parallel computing platform. The mapping of the algorithm re-
quires the analysis of the algorithm, writing the code for the algorithm and deploying it on the 
nodes of the parallel computing parallel computing platform. This mapping can be done man-
ually in case we are dealing with a limited number of processing nodes. However, the current 
trend shows the dramatic increase of the number of processing nodes for parallel computing 
platforms with now about hundreds of thousands of nodes providing petascale to exascale 
level processing power [8]. As a consequence mapping the parallel algorithm to computing 
platforms has become intractable for the human parallel computing engineer. 

Once the mapping has been realized in due time the parallel computing platform might 
need to evolve or change completely. In that case the overall mapping process must be redone 
from the beginning requiring lots of time and effort. 

In this paper we provide a model-driven approach for both the mapping of parallel algo-
rithms to parallel computing platform, and the evolution of the parallel computing platform. In 
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essence our approach is based on the model-driven architecture design paradigm that makes a 
distinction between platform independent models and platforms specific models or code. We 
provide a platform independent metamodel for parallel computing platform and define the 
model-to-model transformation patterns for realizing the platform specific parallel computing 
platforms. Further we provide the model-to-text transformation patterns for realizing the code 
from the platform specific models.  

The remainder of the paper is organized as follows. In section 2, we describe the problem 
statement. Section 3 presents the implementation approach for mapping the parallel algorithm 
to parallel computing platform by the help of model transformations. Section 4 presents the 
related work and finally we conclude the paper in section 5. 

2 Problem Statement 
To define a feasible mapping the parallel algorithm needs to be analyzed and a proper config-
uration of the given parallel computing platform is required to meet the corresponding quality 
requirements for power consumption, efficiency and memory usage. To illustrate the problem 
we will use the parallel matrix multiplication algorithm [10]. The pseudo code of the algo-
rithm is shown inFig.1a. The matrix multiplication algorithm recursively decomposes the 
matrix into subdivisions and multiplies the smaller matrices to be summed up to find the re-
sulting matrix. The algorithm is actually composed of three different sections. The first serial 
section is the multiplication of subdivision matrix elements (line 3), which is followed by a 
recursive multiplication call for each subdivision (line 5-15). The final part of the algorithm 
defines the summation of the multiplication results for each subdivision (line 13-16). 

Given a physical parallel computing platform consisting of a set of nodes, we need to de-
fine the mapping of the different sections to the nodes. In this context, the logical configura-
tion is a view of the physical configuration that defines the logical communication structure 
among the physical nodes. Typically, for the same physical configuration we can have many 
different logical configurations [2]. An example of a logical configuration is shown inFig.1b. 
In this paper we assume that a feasible logical configuration is selected and the mapping of the 
code need to be realized. 

!" #$%&'()$'*+,-$./0+)1-.213456*76*89:*
;" .<*8=!*->'?*
@" A*=*5*B*7*
C" '?(.<*
D" #E*=*+,-$./0+)1-.21345EE6*7EE6*80!9*
F" #!*=*+,-$./0+)1-.21345E!6*7!E6*80!9*
G" #;*=*+,-$./0+)1-.21345EE6*7E!6*80!9*
H" #@*=*+,-$./0+)1-.21345E!6*7!!6*80!9*
I" #C*=*+,-$./0+)1-.21345!E6*7!!6*80!9*
!E" #D*=*+,-$./0+)1-.21345!!6*7!E6*80!9*
!!" #F*=*+,-$./0+)1-.21345!E6*7E!6*80!9*
!;" #G*=*+,-$./0+)1-.21345!!6*7!!6*80!9*
!@" AEE*=*#E*J*#!*
!C" AE!*=*#;*J*#@*
!D" A!E*=*#C*J*#D*
!F" A!!*=*#F*J*#G*

 

a)                  b) 
F ig.1.Matrix Multiplication Algorithm (a) to be mapped on (b) logical configuration platform 

Fig.2 shows an example of a manually written C code for the matrix multiplication algorithm. 
The code is implemented using the MPI [12], a widely used parallel programming library. For 
simplicity, we assume that a 2x2 physical configuration is selected. Hence, the example code 
is defined for a four node logical configuration. Before starting the code it is required to ini-
tialize the MPI configuration and related variables (line 3). For succinctness we have omitted 
the code in the figure. The algorithm will run in parallel on four nodes. To distinguish among 
the nodes the variable rank defines four different ids including 0, 1, 2, and 3. From line 4 to 8 
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the code for node 0 is defined which sends the sub matrices to the other nodes (1,2,3). Lines 9 
to 14 define the code for receiving the matrices in node 1. A similar code is implemented for 
the nodes 2 and 3 (not shown in the figure). Line 16 defines a so-called barrier to let the pro-
cess wait until all the sub-matrices have been distributed and received by all the nodes. After 
the distribution of the sub-matrices to the nodes, each node runs the code as defined in line 17-
18 and, as such, multiplies, the received sub-matrices. Once the multiplication is finalized the 
results are submitted to node 0, which is shown in line 19-22 for node 1 (code for node 2 and 
3 is not shown).  Line 23 to 25 defines again the collection of the results  in node 0. Line 27 
defines again a barrier to complete this process. Finally in line 28 to 33 the results are summed 
in node 0 to compute the resulting matrix C.  

!" #$%&'()*+,-.$"/,+
0" $%1+-2$%+
3" 455678+$%$1$2'$921$:%;+
<" $=>?2%@+AA+BC+4+
D" 678E8;*%)>FEBEBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
T" 678E8;*%)>KEBEBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
U" 678E8;*%)>FEBE!G+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
V" 678E8;*%)>KE!EBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CSW+
X" $=>?2%@+AA+!C+4+
!B" 678E8?*&Y>FEBG+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!!" 678E8?*&Y>KEBG+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!0" 678E8?*&Y>FE!G+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!3" 678E8?*&Y>KE!G+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CSW+
!<" """+
!D" 678EK2??$*?>678ENI66EOIPLHCS+
!T" 55^MP8FL+^MN\8IZ+7FP\+>PJZ+IZ+FLL+ZIHM^C+
!U" NEB+A+FEB+_+KEBS+
!V" NE!+A+FE!+_+KE!S+
!X" $=>?2%@+AA+!C+4+
0B" 678E8;*%)>NEBG+<G+678EHIJKLMG+BG+0G+678ENI66EOIPLHG+Q?*R(*;1CS+
0!" 678E8;*%)>NE!G+<G+678EHIJKLMG+BG+0G+678ENI66EOIPLHG+Q?*R(*;1CS+
00" W+
03" $=>?2%@+AA+BC+4+
0<" 678E8?*&Y>7EBG+<G+678EHIJKLMG+0G+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
0D" 678E8?*&Y>7E!G+<G+678EHIJKLMG+0G+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CSW+
0T" """+
0U" 678EK2??$*?>678ENI66EOIPLHCS+
0V" 55+^MP8FL+^MN\8IZ+7FP\+>PJZ+IZ+`8P^\+ZIHMC+
0X" $=>?2%@+AA+BC+4+
3B" NBB+A+7EB+a+7E!+
3!" NB!+A+7E0+a+7E3+
30" N!B+A+7E<+a+7ED+
33" N!!+A+7ET+a+7EU+W+
3<" 678E`$%2'$9*>CSW+

F ig.2.Example parallel code of the matrix multiplication algorithm code 

After the code implementation, we can allocate and deploy the developed code to the nodes 
of the parallel computing platform. In our example we have assumed a simple configuration 
consisting of four nodes. Here we could easily decide on the strategy for sending, receiving 
and collecting the data over the nodes. However, one can imagine easily that the code for the 
larger configurations such as in petascale and exascale becomes dramatically larger, the strat-
egy for the data distribution will be much more difficult [4] and likewise the effort to imple-
ment the code will be much higher. Because of the size and complexity implementing the 
code is not trivial and can become easily error-prone. In case of platform evolution or change 
the whole code needs to be substantially adapted or even rewritten from scratch.  

3 Implementation Approach 
To support the implementation and deployment of the code for the parallel computing algo-
rithm on the parallel computing platform we propose a model-driven development approach. 
The approach integrates the conventional analysis of parallel computing algorithms with the 
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model-driven development approaches. The overall approach is shown inFig.3. In the first 
step of the approach the parallel computing algorithm is analyzed to define and characterize 
the sections that need to be allocated to the nodes of the parallel computing platform. In the 
second step, the plan is defined for allocating the algorithm sections to the corresponding 
nodes of the logical computing platform. In the third step the code for each serial section is 
manually implemented. The fourth step includes the implementation or reuse of predefined 
model transformations to generate the code for parallel sections. The final step includes the 
deployment of the code on the physical configuration platform. The details of the steps are 
described in the following sub-sections. 

!"#$%&'()*#$'+,-./01

2"#3*4',(#/0*#5,6*#,%#/0*#70(8.9&'#
5,%:.+;-&/.,%#7'&/:,-1

<"#3*:.%*#/0*#7'&%#:,-#/0*#$'',9&/.,%#,:#
/0*#$'+,-./01#=*9/.,%8#

>"#?14'*1*%/@A*;8*#B,6*'#
C-&%8:,-1&/.,%8#/,#D*%*-&/*#5,6*

E"#?14'*1*%/#/0*#=*-.&'#5,6*#8*9/.,%8

 
F ig.3.Approach for Generating/Developing and Deployment of Parallel Algorithm Code 

3.1 Analyze A lgorithm 

The analysis of the parallel algorithm identifies the separate sections of the algorithm and 
characterizes these as serial or parallel sections. Here, a section is defined as a coherent set of 
instructions in the algorithm. A serial section defines the part of the algorithm that needs to 
run serially on nodes without interacting with other nodes. A parallel section defines the part 
of the algorithm that runs on each node and interacts with other nodes. For example the matrix 
multiplication algorithm (Fig.1a) has four main sections as shown in Table 1.  

Table 1.Analysis of algorithm sections 
!"# $%&'()*+,#-./*)'0# -./*)'0#123.#
4# !"#$%"&'$()$*()#'&+,-$%".(#) /01)
5# 2)3)0)4)5) 671)
6# 2899(.$),-$%":),'9$";9<)%(#'9$#) /01)
=) 2>>)3)/>)?)/@)

2>@)3)/A)?)/B)
2@>)3)/=)?)/C)
2@@)3)/D)?)/E)

671)

The first section defines the distribution of the sub-matrices to the different nodes. This sec-
tion is characterized as a parallel section (PAR). The second section is characterized as serial 
(SER) and defines the set of instructions for the multiplication of the sub-matrices. The third 
section is a parallel section and defines the collection of the results of the matrix multiplica-
tions. Finally, the fourth section is characterized as serial and defines the summation of the 
result to derive the final matrix.  

3.2 Define the Plan for the A llocation of the A lgorithm Sections 

The next step of the implementation approach is to define the plan for mapping the algorithm 
sections to logical configurations. Usually many different logical configurations can be de-
rived for a given parallel algorithm and parallel computing platform. We refer to our earlier 
paper [2] in which we define the overall approach for deriving feasible logical configuration 
alternatives with respect to speed-up and efficiency metrics. In this paper we assume that a 
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feasible logical configuration has been selected and elaborate on the generation of the imple-
mentation of the algorithm sections.  

Table 2.Plan for allocating sections to nodes  
!"# $%&'()*+,#-./*)'0# -./*)'0#123.# 4%50#
!" #$%&'$()&*"&+*"%)(,-.&'$/*%" 012" [-1,0] [0,0]

[1,1][0,1]
"

3" 4"5"1"6"7" 892" 2):";:"*./+":;<*"
=" 4;>>*/&"-.&'$?"-)>&$@>A"

'*%)>&%"
012" [-1,0] [0,0]

[1,1][0,1]
"

B" 4CC"5"0C"D"0!"
4C!"5"03"D"0="
4!C"5"0B"D"0E"
4!!"5"0F"D"0G"

892" 2):";:"*./+":;<*"

The allocation of the sections to the nodes depends on the type of the sections. The plan for 
the matrix multiplication algorithm is shown in the fourth column of Table 2. Here we assume 
that each serial section runs on each node (section 2 and 4). The plan for allocating the parallel 
sections is defined as a pattern of nodes. The rectangles represent the nodes; the arrows repre-
sent the interactions (distribution or collection) among the nodes. Further, each node is as-
signed an id defining the coordinate of the node in the logical configuration. For section 1 the 
distribution of the data is represented as a pattern of four nodes in which the dominating node 
is the node with coordinate (0, 0). The arrows in the pattern show the distribution of the sub-
matrices from the dominating node to the other nodes. For section 3 the pattern represents the 
collection of the results of the multiplications to provide the final matrix. 

In the given example we have assumed a logical configuration consisting of four nodes. Of 
course for larger configurations defining the allocation plan becomes more difficult. Hereby, 
the required plan is not drawn completely but defined as a set of patterns that can be used to 
generate the actual logical configuration. For example, scaling the patterns of Table 2can be 
used to generate the logical configuration ofFig.1b. For more details about the generation of 
larger logical configurations from predefined patterns we refer to our earlier paper [2]. 

3.3 Implement the Serial Code Sections 

Once the plan for allocating the algorithm sections to the logical configuration is defined we 
can start the implementation of the algorithm sections. Hereby, the code for the serial sections 
is implemented manually. 

Table 3.Implementation of the serial sections 
!"# $%&'()*+,#-./*)'0# 6,3%.,.0*5*)'0#
!" #$%&'$()&*"&+*"%)(,-.&'$/*%" H$>>"(*"I*:*'.&*<"
3" 4"5"1"6"7" 4C"5"1JC"6"7JC"

4!"5"1J!"6"7J!"
=" 4;>>*/&"-.&'$?"-)>&$@>A"'*%)>&%" H$>>"(*"I*:*'.&*<"
B" 4CC"5"0C"D"0!"

4C!"5"03"D"0="
4!C"5"0B"D"0E"
4!!"5"0F"D"0G"

4CC"5"0JC"D"0J!"
4C!"5"0J3"D"0J="
4!C"5"0JB"D"0JE"
4!!"5"0JF"D"0JG"

The code for the parallel sections are generated using the model-transformation patterns as 
defined in the next sub-section. The third column of Table 3 shows the implementation of the 
serial sections of the matrix multiplication algorithm. Note that the implementation is align-
ment with the complete implementation of the algorithm as shown in Fig.2. 
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3.4 Model T ransformations 

After analyzing the algorithm, implementing the code for serial algorithm sections and defin-
ing the plan for mapping these sections to the logical configuration, the code for the parallel 
sections will be generated. To support platform independence this code generation process is 
realized in two steps using model-to-model transformation and model-to-text transformation. 
These transformation steps are described below. 
Model-to-Model T ransformation. 

For different parallel computing platforms, there are several parallel programming lan-
guages such as, MPI, OpenMP, MPL, CILK [15]. According to the characteristic of the paral-
lel computing platforms, different programming languages can be selected. Later on in case of 
changing requirements a different platform might need to be selected. To cope with the plat-
form independence and the platform evolution problem we apply the concepts as defined in 
the Model-Driven Architecture (MDA) paradigm [13]. Accordingly, we make a distinction 
between platform independent models (PIM), platform specific models (PSM) and the source 
code. The generic model-to-model transformation process is shown in Fig.4.  

!"#"$$%$&'$()#*+,-&
."//*0(&.%+"-)1%$

!"#"$$%$&'$()#*+,-&
."//*0(&.)1%$

2)03)#-4&+)

!"#"$$%$&5)-/6+*0(&!$"+3)#-&
7/%2*3*2&.%+"-)1%$

!"#"$$%$&5)-/6+*0(&!$"+3)#-&
7/%2*3*2&.)1%$

2)03)#-4&+).8.
9#"043)#-"+*)0

 
F ig.4.Model-to-model transformation. 

Here the transformation process takes as input a platform independent model called, paral-
lel algorithm mapping model. This model defines the mapping of the algorithm sections to the 
logical configuration. The model conforms to the parallel algorithm mapping metamodel 
which we will explain later in the section. The output of the transformation process is a plat-
form specific model, called parallel computing platform specific model. Similarly this model 
conforms to its own metamodel, which typically represents the model of the language of the 
platform (e.g. MPI metamodel). The platform specific model will be later used to generate the 
code using model-to-text transformation patterns.  

!"#$%&'()*+,-.'&'/,+.0)-+1+23+,4,56-7'&$.6819-7'&$.:;+,<,=+
9-7'&$.*,0>6'%07'+-.'&'/,+.0)-+1+23+,4,56-7'&$.6819-7'&$.:;+,<,=+
9-%&0"9-7'&$.*+
++,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D!"#$%&'E;F+,4,7$@-+1+9CG2HI+,<,=+
J0%0""-"9-7'&$.*+
++,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D!"#$%&'E;F+,4,'&"-6+81+J0''-%.:,<,=+
K$#&70"L$.M&#A%0'&$.*,-.'&'/,+.0)-+1+23+,4,5'&"-681C&"-:;,<,=+
C&"-*,0>6'%07'+-.'&'/,+.0)-+1+23+,4,,<,=+
L$%-*,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D(%)"E;F,4,&+1+2HCN+1+2HC+,<,=+
J0''-%.*,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D(%)"E;F+
,4,+'&"-6+81+C&"-:@$)&.0'&$.#6+81+C&"-7$))6+81+L$))A.&70'&$.:+
?6&O-+1+2HC/6&O-+1+2HC,<,=+
L$))A.&70'&$.*,-.'&'/,+.0)-+1+23+,4,+
++++M%$)+1+L$%-'$+1+L$%-"-#6&O-+1+2HCM%$)30'0+1+30'0'$30'0+1+30'0+,<,=+

F ig.5.Concrete Syntax of the Parallel Algorithm Mapping Metamodel (PAMM) 

The grammar for the parallel algorithm mapping metamodel is defined in XText in the 
Eclipse IDE and shown in Fig.5. Here, Algorithm consists of Sections, which can be either a 
ParallelSection or SerialSection. Each section can itself have other sections. In the grammar 
the serial sections are related to code implementations in the code block. The parallel sections 
include the data about the mapping plan that is determined with the logical configuration. 
Logical Configuration consists of Tile entity which can be either a single Core (processing 
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unit) or a Pattern with tiles and communications between these tiles. The assets related with 
the logical configuration with cores and patterns compose the plan for mapping algorithm to 
logical configuration. 

Fig.6 shows, for example, the parallel algorithm mapping model for the matrix multiplica-
tion algorithm. In the figure two serial sections MultiplyBlock and SumBlock  are defined. In 
the MultiplyBlock section the matrices are divided into sub-matrices and scattered by using the 
B2S pattern. The B2S pattern is a predefined pattern in the toolset indicating the pattern for 
section 1 as defined in the fourth column of Table 2. This multiply block also contains a Mul-
tiply serial section which contains the serial implementation of the multiply operation. In the 
SumBlock  section, the resulting matrices are gathered by the pattern B2G which is predefined 
for section 3 as shown in the fourth column of Table 2. The SumBlock  serial section contains 
the serial code for summation of the resulting sub-matrices. 

 
F ig.6.Parallel Algorithm Mapping Model for the Matrix Multiplication Algorithm 

Once the platform independent parallel algorithm mapping model is defined we can trans-
form it to the required platform specific model. We assume, for example, that the aim is to 
generate a MPI model. Fig.7shows the grammar of the MPI metamodel that is again defined 
using XText. In the metamodel each MPI model consists of a group of entities, which include 
MPISection, Process, Node, and Communication. Each section consists of processes and 
communication among these processes. Each Process allocates to a Node. Each communica-
tion defines the destination and target process. 

!"#!$%&'()&*+#+,)-*./&-0-12-)3)456$7"890!"#:6$7";<)=)>-
!"#:6$7"()&*+#+,)-*./&-0-12-)3)48&?+#$*890!"#@&?+#$*;<4*$%&890A$%&<)=)>-
!"#@&?+#$*()&*+#+,)-*./&-0-12-)3)-
----48&?+#$*890!"#@&?+#$*;<4"6$?&88&890B6$?&88;<-
----4?$//7*#?.+#$*890C$//7*#?.+#$*;<?$%&-0-@DE1A:)=)>-
B6$?&88()&*+#+,)-*./&-0-12-)3)6.*F-0-1AD.''$?.+&80A$%&)=)>-
A$%&()&*+#+,)-*./&-0-12-)3))=)>-
C$//7*#?.+#$*()&*+#+,)-*./&-0-12-)3)G6$/-0-B6$?&88+$-0-B6$?&88-)=)>-

F ig.7.Grammar of the MPI Metamodel 

The model-driven transformation rules refer to elements of both the PAMM and the paral-
lel computing platform specific metamodel, in this case the MPI Metamodel. The M2M trans-
formation rules are implemented using the ATL [1] transformation language. The transfor-
mation rules are shown in Fig.8. As shown in the figure we have implemented four different 
rules which define the transformations of mapping patterns to MPI sections, cores to processes 
and communications to MPI communications. 

The rule Algorithm2MpiModel, is defined as the main rule of the transformation. The rule 
Pattern2Section transforms the algorithm pattern sections to MpiSection within the MpiGroup. 
The rule Core2Process transforms the cores as defined in the patterns to the processes in 
MpiSection. Each process is transformed from the core with the data of rank calculated from 
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the index values of the core. Similarly, Comm2Comm transforms the communications that are 
defined in the patterns, to the communications in MPISection. 

!" !"#$#$%&'()*+,-./).'01%#2#
-" %%&!'(#3%&'()*+,4#53(3%%1%.'01%6$%&'()*+,)'#,/),'01%4#./).'01%6./).'01%#7#
8" 93,1:;3%&'()*+,"93,1<#&('=/>:;?(01(10@1*2,/)A('=/BC<#
D" ##,/)A('=/4#./).'01%6./)A('=/793,1:;3%&'()*+,"93,1<#
E" ###>1F*)'9>:;3%&'()*+,"&1*53**1(9>7CCB#
G" !"#$#53**1(9-@1F*)'9#2#
H" %%&!'(#/3**1(94#53(3%%1%.'01%653**1(9)'# >1F*)'94#./).'01%6./)@1F*)'9#7#
I" ####93,1:;/3**1(9"93,1</('F1>>1>#:;#/3**1(9"&1*J'(1>7C<#
K" ####F',,=9)F3*)'9>:;/3**1(9"&1*J',,=9)F3*)'9>7CCB#
!L" !"#$#J'(1-5('F1>>#2&!'(#F'(14#53(3%%1%.'01%6J'(1#)'#/('F1>>4#./).'01%65('F1>>#7#
!!" ####(39M:;F'(1")",'07F'(1"&1*A%'N3%@)O17CCPF'(1"&1*A%'N3%@)O17C#Q#
!-" ##########F'(1",'07F'(1"&1*A%'N3%@)O17CC<CB#
!8" !"#$#J',,-J',,#2&!'(%/RF',,=9)F3*)'9453(3%%1%.'01%6J',,=9)F3*)'9##
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F ig.8.Transformation rules from PAMM to MPI metamodel 

The MPI model which is the result of the model-to-model transformation is shown in Fig.9. 
The MPI model includes the MpiSection with processes that will run on each node, communi-
cations from a destination process to target process and the serial code section implementa-
tion. This MPI model is now ready for model-to-text transformation to generate the final MPI 
source code. 

 
F ig.9.Part of the MPI model generated by model-to-model transformation 

Model-to-Text T ransformation 
The generated PSM includes the mapping of the processes specific to the parallel computing 
platform. Subsequently, this PSM is used to generate the source code. The model-to-text 
transformation pattern for this is shown inFig.10.  

!"#$!%&'()*%+

!"#$!)*%+

,)-.)/(0$
&)

!"#$
1)2/,%$3)*%

!45
5/'-0.)/('&6)-

 

F ig.10.Example model transformation chain of MPI model 

Fig.11 shows the implementation of the model-to-text transformation for which we used the 
XPand [18] transformation language. To map the sections to the parallel computing platform, 
for each section the communication operations for the data is generated for target and destina-
tion process ranks (line 6 to 11). Subsequently, the serial code implementation is imported to 
the source code in line 13. For each section, a barrier code is implemented to synchronize the 
section processes (line 14). The resulting code of the transformation is the code as defined in 
Fig.2. 
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F ig.11. Transformation template from MPI metamodel to MPI source code 

3.5 Deploy Code on Physical Configuration 

The resulting code of the previous steps needs to be deployed on the physical configuration. 
The deployment can be done manually or using tool support in case of large configurations. In 
the literature various tools can be found which concern the automatic deployment of the code 
to the nodes of a parallel computing platform. We refer to, for example, [8][15][4] for further 
details. 

4 Related Work 
Several papers have been published in the domain of model-transformations for parallel com-
puting. Palyart et. al. [14] propose an approach for using model-driven engineering in high 
performance computing. They focus on automated support for the design of a high perfor-
mance computing application based on the distinction of different domain expertise like phys-
ical configuration, numerical computing, application architecture etc. 

Bigot and Perez [3] adopt HLCM a hierarchical and generic component model with con-
nectors originally designed for high performance applications. The authors represent on their 
experience with metamodeling and model transformation to implement HLCM. 
[7] introduced the GASPARD design framework systems that use model transformations for 
massively parallel embedded systems. They refined the MARTE models based on Model 
Driven Engineering paradigm. They provide tool support to automatically generate code with 
high-level specifications. Taillard et.al [16] implemented a graphical framework for integrat-
ing new metamodels to GASPARD framework. They used MDE paradigm to generate 
OpenMP, Fortran or C code. 

Similar to our approach the above studies generate source code for high performance com-
puting. The main difference of our approach is focus on the mapping of algorithm sections to 
parallel computing platforms. 

5 Conclusion 
In this paper we have described the model transformations needed to implement the mapping 
of a parallel algorithm to a parallel computing platform. In alignment with the MDA paradigm 
the approach is based on separating the platform independent parallel computing model from 
the platform specific parallel computing model and the source code. The model transfor-
mations do not only helps the parallel programming engineer to generate code but it also pro-
vides support for easier portability in case of platform evolution. We have illustrated the ap-
proach for the MPI platform but the approach is generic. In our future work we will elaborate 
on the application of model-driven approaches to parallel computing platform and focus on 
optimizing the values for metrics which are important for mapping parallel algorithms to par-
allel computing platforms. 
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