
DataConf and its Linked Open Data ecosystem:

produce, link and consume scientific conference metadata

Lionel Médini
Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205
F-69622, France

+33 4 72 43 16 36

lionel.medini -at- liris.cnrs.fr

Fiona Le Peutrec

Université de Lyon
Université Lyon 1
F-69622, France

fiona.le-peutrec -at- etu.univ-lyon1.fr

Florian Bacle
Université de Lyon
Université Lyon 1
F-69622, France

florian.bacle -at- etu.univ-lyon1.fr

Benoît Durant de la Pastellière

Université de Lyon
Université Lyon 1
F-69622, France

benoit.durant-de-la-pastelliere -at- etu.univ-
lyon1.fr

ABSTRACT

DataConf is a mobile Web mashup application that allows brows-

ing conference metadata (publications, authors, authors’ organiza-

tions), as well as the conference schedule (tracks, sessions, talks).

It uses Linked Data and Web APIs to enrich the conference dataset

with resources (authors’ other publications, organizations homep-

ages) from different other endpoints. It also performs client-side

reasoning to retrieve and recommend publications. Unlike other

mashups, DataConf dynamically aggregates data on the client

side. Server-side calculations are devoted to the queried data

sources, not to the DataConf server itself. DataConf is easily con-

figurable and deployable for any conference with available

metadata on a SPARQL endpoint. Its component-based architec-

ture allows developing new extensions to query extra data

sources. We also propose several custom data sources, among

which SimpleSchedule that provides a convenient interface for

managing conference events and exposes them on a SPARQL

endpoint and DataPaper that allows conference participants to

enrich their own data.

Categories and Subject Descriptors

E.1.2 [DATA]: Data structures – Distributed data structures.

General Terms

Design, Standardization.

Keywords

mobile Web mashup, mashup architecture, mobile reasoning,

Linked Data, Linked Data sources.

1. INTRODUCTION
The WWW’2012 conference that was held in Lyon was an occa-

sion for the local Web community to initiate several innovating

projects around conference material and Web technologies. We

designed a mobile Web application that allowed the conference

attendees to navigate among publication metadata (title, authors,

abstract, keywords…), as well as authors and other publications

metadata, using their smartphones and tablets.

As it targeted a WWW series conference, technical choices were

oriented towards a full client-side mashup application applying

recent/emerging Web technologies and standards (in particular,

HTML5 APIs). It also takes advantage of Linked Data [1] by

dynamically enriching publication metadata from several sources.

We thus explored the feasibility, using currently available brows-

ers on mobile devices, of: (i) dynamically constructing complex

SPARQL queries and sending them to cross-domain endpoints,

(ii) representing and allowing browsing among these metadata

using a textual and a graphical interface, (iii) locally building,

classifying and querying an ontology and (iv) capturing and pro-

cessing images in JavaScript using the device built-in camera.

This app has been refactored to be more generic and several in-

stances have been created for different conferences. It is now

named DataConf [2] and provides a convenient means for confer-

ence attendees to access a conference program and schedule. Sev-

eral DataConf instances related to various conferences are availa-

ble at http://dataconf.liris.cnrs.fr/ and the sources are down-

loadable at https://github.com/ucbl/DataConf.

In this paper, we present a generic, configurable version of

DataConf that queries different publicly available datasources

from the LOD and Web API cloud. We enumerate the public

datasources it currently relies on and describe with more details

custom-made datasources that aim at managing several kinds of

data related to the scientific conference domain. We also describe

the underlying generic architecture that can be reused to create

new single-page, client-side mashup applications able to query

multiple datasources and to perform just-in-time processing of the

retrieved data, eventually including semantic reasoning.

This paper is organized as follows: it presents the main functions

of the DataConf webapp, the custom datasources we developed to

enrich and publicize the conference datasets and a generic view of

our client-side mashup architecture. We then conclude and pre-

sent the evolution perspectives of this work.

2. BROWSING PUBLICATION METADATA
DataConf aims at searching, browsing and enriching scientific

conference metadata. From the application homepage, users can

access publication views (concerning papers, posters, demos, etc.)

by author, keyword, title, session type (track, keynote…) or time

schedule, as shown in Figure 1. The following sub-section de-

scribes how external resources are used to provide the conference

metadata and enrich those data using external resources. The next

subsection focuses on how DataConf uses them for organizing the

data and presenting them to the user. Subsection 2.3 presents

other internal functions of the application.

Figure 1. Homepage of the ESWC’2013 DataConf instance.

2.1 External Datasources
The primary datasource is a SPARQL endpoint exposing the

conference metadata. Since 2006, conference publication datasets

are available on the Semantic Web Dog Food (SWDF) SPARQL

endpoint1 [3]. These datasets mainly rely on the SWC vocabulary

[4], thus integrating DC [5], FOAF [6], SWRC or ICal [7] ele-

ments. Such datasets contain information about the publications,

their authors, but also the events that take place during the confer-

ence (tracks, sessions…) and the conference schedule. The origi-

nal purpose of DataConf was to display information about publi-

cations (Figure 2a), authors (Figure 2b), organizations (Figure 2c)

and keywords (Figure 2d), and allow the users navigate among the

corresponding views. Originally, we expected the primary data-

sources to be available on the SWDF endpoint that contains

(among other conferences) the metadata about the WWW’2012

conference in the SWC format. As it experienced availability is-

sues while we were preparing the WWW’2012 and ESWC’2013

instances, we set up our own endpoint for accessing these two

conferences metadata. Therefore, it remains possible to change the

DataConf instances configuration to query another endpoint in-

stead of ours.

DataConf enriches these data by querying other available data-

sources:

1 http://data.semanticweb.org/

DBLP (DataBase systems and Logic Programming) [8] is a

wider dataset about computer science publications. It contains

specific metadata about the publications, such as title, DOI URI,

year, publication type and name of the conference / journal. It is

used to enrich the authors’ views with their other publications,

external to the targeted conference. The DBLP database is queried

in Linked Data through the L3S2 SPARQL endpoint. Neverthe-

less, DBLP has one drawback: it lacks publications keywords.

DuckDuckGo!3 is an online search engine. We use its Web API

for enriching organizations’ information, such as homepage URL

and logo. This engine is queried using the organization full name.

We rely on its “I’m feeling ducky!” feature to retrieve the most

probable query result. We noticed that DDG provides quite good

results for organizations, but less good results for people. Indeed,

we originally used DuckDuckGo! for retrieving authors’ homep-

ages, but switched to Google while finding too many inaccurate

results on this particular query type.

Google Web search API4 is used to enrich data by finding au-

thors’ homepages, as explained previously. Homepages are dis-

played in the “Personal Page” section of the authors’ views, see

Figure 2b.

Figure 2. Different views in different DataConf instances:

a) publication, b) author, c) organization, d) keyword.

At this point, the reader should note that DataConf did not yet

retrieve some elements of the above views, such as author’s pho-

to, contact information and keyword hierarchies. These data come

from the custom datasources and local reasoning described in the

next sections.

2 http://dblp.l3s.de/d2r/

3 http://duckduckgo.com/

4 https://developers.google.com/web-search/

2.2 Linked Data aggregation and browsing
DataConf thus constructs and sends queries to the available data-

sources, depending on the type of the RDF resource (publication,

author…) requested by the user. It may store, display the retrieved

data and even reuse it for sending further queries, as explained in

section 6. The pieces of data that are determined to be displayed –

according to a predefined template – compose the resource view.

As most of them denote other resources, they are represented as

navigable in the DataConf interface, in order to materialize the

navigation process among the available Linked Data.

For instance, an author’s view provides information such as name,

most probable homepage, affiliation organization, publications in

the desired conference and other publications from DBLP. Among

these data, the homepage, organization and publication items are

navigable. If the user clicks on the organization name, DataConf

queries the main, DDG and Google datasources to display the

logo, name and homepage of the organization, as well as other

authors referred in the main dataset for this organization. If he/she

clicks on another author’s name, DataConf build a view similar to

the preceding one, which describes this second author. Then, if

he/she clicks on one this author’s other publications, which data

come from the DBLP datasource, DataConf displays a new view

showing specific external publication metadata (see above),

among which this publication authors. Of course, these authors

are as well navigable.

Therefore, users can also use DataConf to browse the DBLP data-

source, instead of the main conference one. This is a typical

Linked Data usage example of the available data. Such a feature

seemed interesting for evaluating the interest conference attendees

would find in our interface for browsing large publications data-

bases.

2.3 Other internal features
Publication or author search: several views provide forms that

allow the user to type a publication title or author’s name (see

Figure 2b). In each form, automatic suggestions are provided by

sending asynchronous SPARQL requests to the metadata server.

View metadata as graphs: users can choose to view and navigate

in tree-based graphical representations of the publications, authors

or keywords. The graphical representation is built using the Ja-

vaScript arbor.js5 library.

Flashing a QR-code inside the Web application: in browsers

that support the getUserMedia method of the MediaStreams API,

users can take a picture of the QR representing a paper URI and

send it to the server. It is then decoded using the ZXing6 library

and the user is redirected to the paper homepage. Of course one

can also flash the QR codes using a native application to retrieve

the same publication homepage.

3. CUSTOM DATASOURCES
This section focuses on two particular datasources that we de-

signed and developed to be queried by the DataConf mashup.

5 http://arborjs.org/

6 http://code.google.com/p/zxing/

3.1 Schedule management
The WWW’2012 experience showed that a conference schedule is

a dynamic artifact: session rooms frequently change and paper

presentations even take place in different session that the ones

initially planned. Printing this schedule necessarily led to an obso-

lete version of this artifact. In order to provide an accurate version

of the time schedule, we designed a separate Web application to

facilitate conference schedule management, named SimpleSched-

ule. SimpleSchedule provides conference managers with a con-

venient means to keep this information up to date. It facilitates the

conference schedule management task by providing a calendar-

like tool that allows users to graphically handle their events hier-

archy. SimpleSchedule is provided as an independent backoffice

tool available at https://github.com/fio-ben-

TER2013/WWWConference. Its interface is designed as follows:

Figure 3. SimpleSchedule backoffice interface.

1. Central panel: This panel displays all the conference events

included in the chosen timeline. As the SWC ontology proposes a

hierarchy of event types (e.g. swc:TrackEvent, swc:TalkEvent,

swc:SessionEvent), SimpleSchedule provides a way to easily

imbricate events by dragging one event on another. Also, any

event can be deleted, replaced or modified directly by simple click

on the event box.

2. All-day event zone: Some events happen to last a whole day.

In this case they are displayed in this box without polluting the

central panel.

3. Dateless event zone: When building or importing a confer-

ence schedule, it happens that some events are uncertain, either

because they do not have a specified start date in the imported

dataset or simply because they have not yet been scheduled. To

facilitate the chair work, the dateless event zone act as an event

store where undecided events can be dragged or pulled anytime.

4. Details pop-over: In order to avoid central panel overloading,

a pop-over is displayed when flying over an event. This pop-over

indicates the categories, the acronym, the location, the topics, the

presenters of the concerned event.

5. Filter zone: As hundreds of events can be contained in the

dataset, it is mandatory for the user to have the possibility to apply

some filters. The filter zone provides three independent filters:

topic, location and category.

On its front end, SimpleSchedule provides a Web service that

exposes the conference events in the ICal vocabulary [6], as de-

fined in the Semantic Web Conference ontology format. DataConf

requests SimpleSchedule as a datasource, allowing attendees to

view the time and location of the different conference events

(tracks, sessions and paper presentations) during the conference.

The main schedule view provides a day-per-day overview of the

conference timeline, as shown in Figure 4a. From there, users can

browse the event tree, access event descriptions, as shown in Fig-

ure 4b, add ICS event descriptions to their own calendars and

access the publications related to an event.

Figure 4. Conference schedule views:

a) conference timeline, b) view of a particular session.

3.2 User-enriched data
DataPaper is a custom datasource that allows conference actors

(authors, chairs) to provide external information about their own

descriptions and publications. This information can be provided

using typed links towards external resources, in order to cope with

the Linked Data principle. This additional information is intended

to be queried by DataConf to enrich the corresponding persons

and publications views. As DataPaper can query several confer-

ence datasets, DataConf users can benefit of these enrichments

during future conferences.

For this, DataPaper stores the URIs, description texts and format

of these external resources. These data are stored in key-value

pairs, using for instance a publication URI in the conference da-

taset as a key, the desired property as a description and a String or

an URI enriching this publication as a value. The application re-

lies on two stable and widely used vocabularies: FOAF [6] for the

profile information and Dublin Core [5] for the publications. As

ontologies are evolving quickly and considering that many prop-

erties are only at a “Testing” status, these two ontologies are dy-

namically fetched using Linked Open Vocabulary API7.

Technically, DataPaper is built on a NoSQL CouchDB8 database,

since it is aimed at retrieving key-value pairs. The account and

content management system is powered by WordPress and the

business aspects of the application (managing the conference da-

tasets and handling links to external resources) are performed

using a non-official plugin (i.e. not released on the WordPress

platform). The interface and DataConf then queries the service

using the URI of an entity present in the conference dataset, in

order to retrieve all the external resources that DataPaper stores

about this entity.

For instance, when a user adds his/her photo and contact infor-

mation to his/her account, it will appear on his/her DataConf

homepage (cf. Figure 2b), regardless of the considered confer-

ence.

7 http://lov.okfn.org/dataset/lov/

8 http://docs.couchdb.org/en/latest/

DataPaper can be accessed through a publicly available Web in-

terface. So that conference chairs do not need to manipulate the

DataPaper interface for other reasons than to enrich the confer-

ence material, users can automatically create their accounts using

the same email they are referenced with in one of the known con-

ference datasets. Hence, conference chairs who have already pub-

lished their dataset and want their attendees to be able to enrich its

content only need to inform the DataPaper admins of the exist-

ence of this dataset.

Once logged in, a user is informed of the different resources

he/she is responsible, such as his/her profile and publications

eventually coming from datasets of different conferences. He/she

can enrich each of these resources by adding new links to any of

them. Figure 5 shows an example of enriching a publication using

the DataPaper interface.

Figure 5. DataPaper publication enrichment interface.

DataPaper allows adding links to resources in a quite generic way.

Therefore, its interface still needs to be improved. For enriching

one of his/her publications with another external resource, a user

specifies the type and URI of the target resource, as well as the

type of relation that links both resources together. For this, he/she

is assisted by a drop box containing the possible values in the

appropriate vocabularies (here, Dublin Core).

These URIs are stored in the database, with the URI of the publi-

cation as a key. Each link to an external resource is thus a light-

weight element in the database. DataConf can then query DataPa-

per using this key and decide, using the types of the relationship

and of the target resource, of the best means to render this link.

For instance, if the resource is an image, DataConf will try to

retrieve it from its location and display it to the user, whereas if it

is a contact information, it will create an appropriate link without

trying to retrieve the resource.

The DataPaper login interface is accessible at

http://dataconf.liris.cnrs.fr/datapaper/. Even if it is freely availa-

ble, we suggest keeping a single DataPaper instance for later con-

ferences, in order to keep the benefits of the contents added by

former conference actors about their profiles.

4. CLIENT-SIDE REASONING
Our application also allows browsing publications by keywords,

as shown in Figure 2d and getting publication recommendation

based on the keywords of the previously explored ones9. Both

9 As DBLP does not provide information about publications key-

words, browsing keywords and publication recommendation are

tasks rely on a keyword ontology that is locally handled inside the

mashup application. This requires to first build a keyword ontolo-

gy, then to load it a locally embedded reasoner and finally to que-

ry and exploit it like another datasource.

4.1 Building a conference keyword ontology
Each conference encompasses papers with specific keywords. In

order to be able to perform reasoning on the publication keywords

of a particular conference, we need to build a keyword ontology

specific to this conference. Building such ontologies cannot be

done using text-based ontology construction tools, since we only

dispose of the publications metadata and not of their full texts.

Therefore, we adopted the following methodology. We use the

2012 ACM Computing Classification System [9] (in SKOS

/XML)10 as a basis structure for this ontology. Each of its con-

cepts is extracted and stored in a map MACM. We gather all the

keywords of the dataset publications and store them in map Mkwd.

We then perform the following process:

Tokenization of the element values of both maps: this is done

using the most frequent word separators, such as space, hyphen,

parenthesis, etc. The keywords that contain stop words (e.g. “a”,

“the” or “to”) are modified to remove these stop words in Mkwd.

For instance, “web of data” will be replaced with “web data”.

Lemmatization of the map elements: this step consists in retriev-

ing the lemma (root) of each word, to get rid of its flexed form.

For this, we use a Java implementation of the Porter Algorithm

[10]. In the previous example, “linked open data” will be trans-

formed into “link open data”. All elements that belong to the same

lemma will be linked with an owl:sameAs relationship.

Structuration: this step aims at building small tree structures of a

subset of the keyword map. For each element of Mkwd, our algo-

rithm searches for all inclusions of an element in another one and

creates an owl:SubClassOf relationship with as domain the cur-

rent element and as range the included one. For instance, if “link

open data” and “link data” are present in Mkwd, “link open data”

will be considered a subclass of “linked data”.

Structure mapping: each element of Mkwd that appears as a root

element in one of the tree structures defined in the previous step,

as well as each element that is an actual keyword and does not

belong to one of those structures is re-processed using the same

algorithm against the elements of MACM, to be inserted as a sub-

class of one of its elements. At the end of this step, lots of the

keywords are “hooked” to the ACM taxonomy using parts of their

decompositions. The elements of Mkwd that were not able to be

linked to the MACM are kept in separate taxonomies. Therefore, we

will for the moment keep the structure in our example above that

starts with “link data”.

Cleaning: the MACM with the Mkwd keywords hooks is processed in

order to remove the branches that do not end with leaves that

represent actual keywords of the dataset.

4.2 Accessing the keyword ontology
DataConf uses a locally embedded reasoner that processes the on

purpose built keyword ontology described above. For this, it uses

only accessible for publications that have an entry in the confer-

ence dataset.

10 Available at http://www.acm.org/about/class/class/2012

a modified version of the OWLReasoner [11] JS inference engine.

We chose OWLReasoner as it proposes an OWL-EL reasoner and

a SPARQL engine and is the most recent freely available JS rea-

soner. However, it has some limitations: the engine does not rea-

son on individuals nor handle literals, and we had to fix a few

issues for being able to send queries using the owl:SubClassOf

predicate.

OWLReasoner is intended to be used in three steps: loading the

ontology into the engine (in OWL/XML format), launching the

classification step (where the engine builds the internal JS objects

containing the ontology data) and querying the ontology in

SPARQL (using query rewriting techniques to query these inter-

nal objects). As these internal JS object mostly consist in an em-

bedded database queriable in SQL, the third step is quite straight-

forward and could be kept “as is” in our version of the reasoner.

However, while performing our first tests, we experienced the

following issues during the two preceding steps: 1) we intended to

use the reasoner in a Web worker, so that it can be run in back-

ground and not block the browser interface. Unfortunately, to

preserve loose coupling with the page contents, the code executed

in a worker cannot access the DOM, and therefore the win-

dow.XMLParser object. It then cannot parse the XML ontology

file. 2) Even with a reasoner running in foreground, classifying

the WWW’2012 ontology (which contains tens of lines) on a

Motorola Dual Core 1Ghz cellphone in Firefox Nightly took more

than 1 hour ½.

We then pre-process the ontology on a more powerful machine

and export the minimal necessary resulting objects of the classifi-

cation process in JSON, so that they can be loaded by the reasoner

engine, inside the Web worker. The engine can then perform rea-

soning (since the ontology can still be enriched locally) and re-

spond to SPARQL queries in real time. As the ontology is loaded

in background and is cached after its reception, the ontology size

has mostly no effect on the application performances.

In order to allow the router to query the reasoner embedded inside

the browser, we defined a basic query-response protocol on top of

the message-oriented asynchronous communication scheme im-

posed by the Web worker specification. The router then sends

SPARQL queries to the reasoner and the reasoner answers in

JSON. Therefore, the exchanged messages are requests and re-

sponses, similar to those present in the HTTP transactions. Thus,

its data can be processed and integrated in the views in the same

manner as if it was a distant datasource.

4.3 Using the ontology
Dataconf thus embeds a custom “local datasource” that performs

mobile client-side reasoning on the conference publication key-

words. During user navigation, DataConf stores the keywords of

the publications viewed by the user. The reasoner allows retriev-

ing super and sub-keywords (and thus the publications they refer

to), and recommending to users publications they did not yet see

(e.g. referring to keywords close to those they have already ex-

plored). Figure 6 shows an example of recommendation interface

in the DataConf ESWC’2013 instance. The publications in grey

have already been viewed by the user and the ones in blue are

those recommended by the system.

Figure 6. Example of Dataconf recommendation results.

5. ARCHITECTURE
DataConf is a full client-side, single-page Web mashup applica-

tion. It is built on the widely used Backbone.js11 JavaScript

framework. Backbone provides a routing system that listens to the

URL (“hash”) change event and maps the current URL to a route

that will trigger a specific callback function12. DataConf also re-

lies on: 1) the RequireJS library that allows dependency manage-

ment and lazy loading of the application modules, 2) the jStor-

age.js library, that provides a cross-browser API for accessing the

LocalStorage object, 3) the jQuery Mobile UI toolkit that provides

a powerful cross-device widget management system, 4) the history

handler embedded in Backbone that provides a ready-to-go page

navigation support.

In order to cope with datasources heterogeneity problems,

DataConf relies on an internal representation format that can dif-

fer from the data format contained in the response. Using this

format, data coming from a given source are stored in the browser

local storage area before being displayed in the views. This pro-

cess aims at: 1) caching these data for performance concerns, 2)

waiting for data coming from several sources to be ready before

starting the data composition and rendering process 3) enabling

service composition by embedding previously retrieved data in

future queries.

On top of the Backbone.js framework, we designed the compo-

nent-based architecture that constitutes our mashup application.

The main components of this architecture are a workflow engine

that can send queries to and process responses from different

datasources and a specific template loading system. All these

components are configurable, so that the DataConf architecture

can be reused for creating another mashup in a different domain.

In this section, we first detail this architecture and explain how to

reuse it to create other mashups by adding datasources and create

the corresponding processing components.

5.1 Architecture components
The mashup architecture is depicted in Figure 7 and organized

around the following components.

11 http://backbonejs.org/

12 DataConf URL hashes start with a SWC resource type, followed

by several parameters, one of them being the encoded URI of

the desired instance.

Router: the core of the DataConf engine is an on purpose built

Backbone.js router that somehow plays the role of application

controller. At initialization time, it interprets the JSON configura-

tion file (see next section) and identifies the requested resource

types and related commands. When a new hash is selected, it dy-

namically creates the corresponding route by setting a list of

commands associated to datasources and triggers the AjaxLoader

for each of these commands. At response time, it triggers the

model and view callbacks.

Commands: Each command is a set of JS functions that define

how to send, process and render a particular request type to a

datasource. For instance, there is a command to retrieve the publi-

cations of an author from the DBLP SPARQL endpoint. Com-

mands contain the following fields: name (i.e. id), HTTP request

method and returned datatype (RDF / JSON), as well as three

methods:

1. getQuery: constructs a query object to be sent to the data-

source and containing either a SPARQL query (for SPARQL

endpoints) or a set of parameters (for Web APIs).

2. modelCallback: handles the response from the datasource,

performs calculations over the response data, transforms the re-

sults into the appropriate common representation (depending on

its nature: title, author name, homepage…) and stores them using

the LocalStorageManager component.

3. viewCallback: is triggered by the router to integrate these

formatted data into the views.

Figure 7. View of the DataConf layer on top of Backbone.js.

AjaxLoader: the AjaxLoader is the component that actually sends

the requests. For this, it uses information available in the data-

source (URI and cross-domain mode13) and in the command

(HTTP method, returned type, query along with its parameters

and the model callback function).

LocalStorageManager: It is a wrapper to jStorage.js. It handles

homogeneous data in the browser LocalStorage area.

13 A client-side mashup application violates by essence the AJAX

same-origin policy, since it needs to send cross-domain re-

quests. Two techniques allow sending such requests from a

browser: JSONP [12] and CORS [13].

ViewAdapter: This component is a wrapper to jQueryMobile.

During application loading, it is set up with the templates needed

to build a DataConf view, namely: footer, navbar, header and

draft view (i.e. empty content block to be filled with the data to be

fetched). At runtime, it performs the view rendering tasks, such as

page change management, widget generation and layout prepara-

tion.

Configuration: See section 5.3.

5.2 Route processing
Figure 7 enlightens the interactions between the application com-

ponents. After receiving a hashchange event, the application re-

acts as a succession of processes, all triggered from the router.

The datasource querying and integration process in DataConf is

sequenced as follows.

1. The user changes the current page to view a specific resource.

2. The router catches the hashChange event and reads the re-

quested URL. By comparing the resource type with the routes

declared in the configuration file, it retrieves the list of commands

to execute and the associated datasources.

3. The router triggers the rendering of the new page by calling

the ViewAdapter.14

4. The ViewAdapter triggers the page change event, prepares the

new layout and pushes the prepared layout to the page DOM.

5. For each command defining a request to a datasource, the

router checks if the result is available in the local storage area. If it

is, the router bypasses the datasource querying process and goes

directly to step 10.

6. For each command, the router prepares a request by calling

the getQuery() method. This method returns the final query string

(including the URI of the resource to view and its other parame-

ters), as well as the expected response MIME type.

7. The AjaxLoader sends the provided query to the datasource

related to the command, using the datasource configuration (end-

point URL, cross domain mode).

8. When receiving Ajax results, the router triggers the command

model callback. It eventually performs processing on the results

and transforms them into the internal format previously described,

before returning them.

9. The model callback pushes the results in the storage.

10. The router calls the view callback to render the results in the

prepared layout.

5.3 Configuring a DataConf instance
To be deployed for a particular conference, DataConf relies on a

JSON configuration file. For the instance to be relevant, it must at

least contain a datasource SPARQL endpoint hosting the confer-

ence SWC dataset within its declared datasources. The configura-

tion file encloses the following elements:

14 Steps 3 and 4 must be performed before sending the requests to

the datasources, so that the interface does not seem to freeze

while awaiting network communications.

Conference general information: name, acronym, homepage,

base URI and logo URI

Datasources: endpoint URI, supported cross-domain methods,

associated CommandStore (see below)

Routes: URL hash path, corresponding view template id, list of

associated command ids.

All the commands associated to a given datasource are stored in a

separate JS file called a CommandStore. A CommandStore con-

tains a JSON table, each element describing a command, using the

following elements: id, response dataType, HTTP method,

getQuery, modelCallback, viewCallback.

5.4 Developing a datasource component
Developers who wish to add a new datasource to their DataConf

instance are welcome to do so. For this, they need to build the

datasource CommandStore by describing all the commands asso-

ciated to requests that can be sent to this datasource. Once this

done, they need to declare this datasource, link it to their Com-

mandStore and associate the commands with the appropriate

routes in the configuration file.

6. DISCUSSION
As experience about building DataConf instances grows, we

found out that the major difficulty we faced while issuing

DataConf instances for a new conference venue was to gain access

to a complete and valid SWC ontology describing the targeted

conference metadata. Setting up such an ontology is definitely a

big challenge for conference organizers. The first reason is the

difficulty to gather all conference materials in a common format.

Indeed, the data are usually handled by different session chairs

who may use different tools and formats. It is not usually difficult

to retrieve information about the main research tracks, but it is

harder to dispose of a comprehensive dataset, including all other

sessions such as posters, demos and even workshops. Moreover,

designing an SWC ontology from the data expressed in another

format is a highly time-consuming task for semantic Web special-

ists and a barely unrealizable one for neophytes.

As DataConf takes its main asset from its live usage by conference

attendees, the second difficulty is to keep the data exposed by a

conference endpoint up-to-date, especially concerning the sched-

ule. Yet, conference schedule changes are not a rare thing. Propa-

gating each change by modifying an RDF file and uploading it on

a triple store is something that no conference organizer would be

willing to do. By developing the SimpleSchedule application, we

tried to minimize the impact of such problems.

However, even using a user-friendly tool such as the Sim-

pleSchedule interface can be considered a waste of time if it is not

integrated in the whole conference management process. Hence,

our next move will be to propose a comprehensive solution that

will take place after the reviewing process (when the accepted

papers lists are available) and assist conference organizers before

and during the conference. It will allow them to import/export the

conference metadata from/into different formats, store them in a

regular database and of course easily allow modifying the sched-

ule of the presentations and exposing them in a SPARQL end-

point in the SWC ontology format15. Moreover, as DataConf is

15 Using for instance a D2RQ [14] solution to map the field of the

relational database to the SWC individuals.

lightweight and easily configurable, it will also generate an in-

stance for a particular conference on the fly.

If it happens to be stable and last after the conference venue, this

tool will then enrich the LOD cloud and be usable by other se-

mantic mashup applications. We could for instance imagine that

DBLP uses a dump of a conference dataset available on this end-

point to add the publications to its database. Bibliographic tools

could also query conference endpoints to recommend publications

to their users.

Conference metadata represent a great educational value for stu-

dents, Phd students and researchers. Our point here is to say that

the SWC ontology seems far from reaching the success it de-

serves. We believe that the scientific community could be the first

one to benefit of the semantic Web advances and that there is a

number of use cases that can benefit of exchanging publication

metadata, before, during and after a conference.

Our last point is that issuing endpoints is not sufficient to have

them adopted and integrated in semantic tools. Another condition

to leverage the use of conference metadata is to link those data to

the LOD cloud. This is the purpose of the DataPaper application

that connects conference resources to external ones. We willingly

restricted the possible link types to two vocabularies (DC and

FOAF), in order to limit the variability of the targeted resource

types. Indeed, for each resource present in a DataPaper response,

DataConf has to decide on the fly how to handle it. This is cur-

rently done using a simple switch between the known MIME

types. In order not to limit the user's resource choice, we are cur-

rently working on using REST HATEOAS [15] and Linked Ser-

vices [16] techniques to carry, together with the DataPaper re-

sponse, the appropriate service endpoint to handle the resource.

7. CONCLUSION
In this paper, we have presented DataConf, a mobile Web applica-

tion that proposes various features among which accessing and

browsing conference publication metadata. It has been designed

w.r.t. recent Web standards and technologies and so that as much

computation as possible is done on client side. DataConf uses

cross-domain requests to access and enrich the metadata from

different SPARQL endpoints and Web APIs. We also presented

the DataConf ecosystem, consisting in several datasources, thanks

to which these data can be enriched both by the conference organ-

izers who wish to update the conference schedule, as well as by

the other attendees who want to link the conference material to

external resources. The application also locally manages a key-

word ontology and uses it for recommending publications to the

user. DataConf architecture is modular, extensible and can be

reused for other types of client-side mashups. Several DataConf

instances have been released since its first version for the

WWW’2012 conference, allowing us to provide a short feedback

about the place of such applications in the scientific conference

management process, as well as how to leverage Linked Open

Data techniques to help this process.

Based on these reflections, we currently intend to pursue our work

in two directions. An operational direction conducts us to develop

the SimpleSchedule datasource to a wider solution that helps

manage conference organization and exposes conference metadata

on a SPARQL endpoint. A more theoretical direction is to im-

prove our mashup architecture to take greater advantage of its

embedded inference engine and to enable linked services support.

8. REFERENCES
[1] Bizer, C., Heath, T., Berners-Lee, T. Linked data-the story so

far. International Journal on Semantic Web and Information

Systems (IJSWIS), 5(3), 1-22. (2009)

[2] Médini L., Bâcle F., Nguyen H.D.T.: DataConf: enriching

conference publications with a mobile mashup application.

In WWW (Companion Volume) 2013: 477-478

[3] Möller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes

for SemanticWeb dog food - The ESWC and ISWC metadata

projects. In: 6th International Semantic Web Conference and

the 2nd Asian Semantic Web Conference

(ISWC2007+ASWC2007), 11-15 Nov 2007, Busan, South

Korea (2007)

[4] Möller, K., Bechhofer, S., Heath, T.: Semantic Web Confer-

ence Ontology, http://data.semanticweb.org/ns/swc/ontology

(2009)

[5] Dublin Core Metadata Initiative. "Dublin core metadata ele-

ment set, version 1.1." (2008).

[6] Brickley, D., & Miller, L. FOAF vocabulary specification

0.98. Namespace document, 9. (2010).

[7] Internet Calendaring and Scheduling Core Object Specifica-

tion (iCalendar) - RFC 2445 - IETF. November 1998,

http://www.faqs.org/rfcs/rfc2445.html (1998)

[8] Ley M., The DBLP Computer Science Bibliography: Evolu-

tion, Research Issues, Perspectives. In Proceedings of SPIRE

2002, String Processing and Information Retrieval, 9th Inter-

national Symposium, Lisbon, Portugal, September 11-13,

2002. Springer, Lecture Notes in Computer Science, Alberto

H. F. Laender and Arlindo L. Oliveira Eds., Vol. 2476, pp.

1-10. ISBN: 3-540-44158-1 (2002).

[9] Lillian N. Cassel, Sudhamsha Palivela, Srikanth Marepalli,

AhiMahidhara Padyala, Rahul Deep, and Siddhartha Terala.

2013. The new ACM CCS and a computing ontology. In

Proceedings of the 13th ACM/IEEE-CS joint conference on

Digital libraries (JCDL '13). ACM, New York, NY, USA,

427-428. DOI=10.1145/2467696.2467780

http://doi.acm.org/10.1145/2467696.2467780

[10] Karen Sparck Jones and Peter Willet, 1997, Readings in

Information Retrieval, San Francisco: Morgan Kaufmann,

ISBN 1-55860-454-4.

[11] OWLReasoner JavaScript Inference engine. Available at:

http://code.google.com/p/owlreasoner/

[12] Ippolito, B., 2005. Remote JSON – JSONP. Available at:

http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/

[13] Cross-Origin Resource Sharing. W3C Candidate Recom-

mendation, 29 January 2013 : http://www.w3.org/TR/cors/

[14] Bizer, C., Seaborne, A., D2RQ-treating non-RDF databases

as virtual RDF graphs. In Proceedings of the 3rd Internation-

al Semantic Web Conference (ISWC2004), p. 26 (2004)

[15] Fielding, R. T. (2000). Architectural styles and the design of

network-based software architectures (Doctoral dissertation,

University of California).

[16] Pedrinaci, C., & Domingue, J. Toward the next wave of ser-

vices: linked services for the web of data. Journal of Univer-

sal Computer Science, 16(13), 1694-1719. (2010)

