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Abstract

Machine-to-machine (M2M) communication is of
increasing importance in industry due to novel ap-
plications, i.e., smart metering or tracking devices
in the logistics domain. These applications pro-
voke new requirements for mobile phone networks,
which have to be adapted in order to meet these fu-
ture requirements. Hence, reconfiguration of such
networks depending on M2M application scenarios
is highly required. In this paper, we discuss model-
ing for reconfiguration of mobile phone networks in
case of M2M applications and present the founda-
tions behind our tool including the used modeling
language and the reconfiguration algorithm.

1 Introduction
Because of the availability of communication networks al-
most everywhere new applications arise. Besides mobile
phones for accessing the internet or simple making phone
calls, machine-to machine (M2M) communication becomes a
still growing application domain for mobile phone networks.
Connecting home appliances like alarm systems or heating
installations remotely is one application area. Others are
tracking of goods in the logistics domain and smart metering.
The latter deals with metering of electrical power or water
consumption of homes on a fine granular basis of minutes or
hours instead of months or even years. In many countries the
administration enforces the use of smart metering in order to
rise the customer’s awareness of their current consumptions
in order to reduce the need for electricity, water or other re-
sources.

Besides this educational effect, there are other advantages
of smart metering systems. The overall costs for metering
might be reduced because the more labor intensive man-
ual metering is not longer necessary. The supplier of re-
sources gains more information regarding current consump-
tions, which likely improves prediction of consumptions and
further allows for improving the stability of the overall sup-
ply network. This is especially important for power networks
where electricity has to be generated when needed. Unfor-
tunately, power plants cannot be turned on or off without
a substantial delay. Another advantage is that the supplier

gains direct remote access to the interface between the net-
work and customer. This allows for instance turning off con-
sumer loads whenever needed in order to prevent for example
from a blackout.

M2M communication has been a growing market that
causes more and more communication over mobile phone
networks. Hence, mobile phone companies providing the in-
frastructure have to adapt their networks due to future needs.
Moreover, a M2M application provider has to be ensured
that the current mobile phone network is capable of provid-
ing enough resource in order to carry out communication re-
quirements. Within the Simulation and Configuration of Mo-
bile Networks with M2M Applications (SIMOA) project the
objective has been to develop a simulation and reconfigura-
tion environment for smart metering applications in order (1)
to ensure that current mobile phone networks are capable of
providing enough resources (through simulation), and (2) to
give advice for changing either the smart metering solution
or the communication network in cases of lack of resources
(through reconfiguration). Hence, we first simulate a net-
work configuration, in order to check whether this can sup-
port the set of user requirements, and, if the simulation fails
(the requirements can not be fulfilled by the mobile network),
a working reconfiguration of the given system has to be de-
livered.

In this paper, we focus on the SIMOA approach to recon-
figuration comprising the modeling language SIMOL, which
is an object-oriented language, and the reconfiguration engine
that makes use of constraint solving and ideas from diagno-
sis in order to compute system changes. The key concept
of SIMOL is the definition of basic and hierarchical compo-
nents, which are used to represent the desired system. The
behavior of a component has to be provided as set of equa-
tions. If a component is a subclass of another component, the
equations of the superclass are taken together with the equa-
tions of the component in order to specify the component’s
behavior. In SIMOL, it is also possible to assign equations
to specific behavior modes. Such a mode might represent a
potential configuration like stating a component to be active
or inactive in a certain configuration. Alternatively, a mode
might represent the range of values assigned to a certain pa-
rameter.

Another feature of SIMOL is its ability to model the sys-
tems behavior over time. In this case, SIMOL allows for spec-
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ifying state transfer functions. Such a function itself is a set
of equations, that connect values of variables between one
state and its successor state. SIMOL does not allow to deal
with continuous time. Only systems which can be modeled
using discrete time can be represented in SIMOL. The deci-
sion to restrict modeling to discrete time via states is due to
the requirements of the smart metering application domain,
where not the continuous evolution of parameters is impor-
tant, but the their discrete values. Besides the model of the
system, also the system’s requirements can be modeled us-
ing SIMOL. Hence, every information needed for stating a
reconfiguration problem can be formalized using SIMOL.

The reconfiguration algorithm is based on model-based di-
agnosis, where the idea is to select one mode for each com-
ponent such that all system’s requirements are fulfilled. This
problem can be easily stated as constraint satisfaction prob-
lem. Hence, we make use of an available constraint solver for
computing simulations and reconfigurations. In the follow-
ing, we discuss the whole SIMOA system architecture, the
SIMOL language, and the reconfiguration algorithm in more
detail. A discussion on related research and a summary of the
content conclude this paper.

2 The SIMOA architecture
In Figure 1, we depict the SIMOA system architecture. The
architecture comprises at the highest level two parts: a graph-
ical user interface (SIMOA M2M GUI) and the configuration
core (ConfigCore). The latter is general and can be used in
various applications, whereas the other is application specific
and has to be tailored accordingly to the requirements. The
configuration core itself comprises a compiler that translates
models written in SIMOL into MINION constraints [Jeffer-
son et al., 2012; Gent et al., 2006]. MINION is a constraint
solver coming with its own constraint language, which is not
easily accessible for non-experts in constraint solving. The
reasons for choosing MINION were the easy integration into
the program written in Java and the very good reasoning per-
formance (being able to solve 8,000 constraints in less than
2 seconds). The MINION program is used in the reconfigu-
ration engine ReConf together with the MINION constraint
solver to compute valid reconfigurations, which are given
back as Results.

The interface between the graphical user interface and the
configuration core is represented by the SIMOL program and
the results obtained from ReConf. The SIMOL program com-
prises the information necessary to specify the system to be
reconfigured and the given pre-specified requirements. The
reconfiguration result is basically nothing else than a set of
possible component modes, that are necessary to fulfill the
requirements, together with the computed values for the at-
tributes. The presentation of these results to the user has to be
implemented in the user interface and is application specific.
In Figure 2, the current user interface of the SIMOA M2M
application is given. This graphical user interface enables the
user to specify a smart metering application, by placing the
meters as well as the cells, which provide access to the mo-
bile phone network, among other components at the appro-
priate positions. Moreover, the user might specify additional

Figure 1: The SIMOA architecture

Figure 2: The M2M user interface for the smart metering ap-
plication

parameters for components. In case of a reconfiguration, the
GUI generates a SIMOL program that makes use of the com-
ponents, their behavior and additional parameters. It is also
worth noting that also the positions of the components in the
map are used. For example, when specifying a base load (that
represents all the non-smart-metering traffic) for the mobile
phone network, the concrete assignment to cells is done con-
sidering the distance between the base load and the cell. If
a base load is not within reach, there is no effect. If a base
load might influence two or more cells, the load is assigned
to each cell accordingly to their distance. For example, closer
cells will have a larger percentage of the communication base
load than cells that are more far away.

The ConfigCore of the SIMOA architecture is general and
can be used in various reconfiguration applications. In this
respect, we have conducted a series of experiments using,
for instance, combinational circuits from the well-known IS-
CAS85 benchmark suite. Due to limitations of the ReConf
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part, we do not handle generative constraints. Hence, build-
ing systems from scratch using the given constraints is not
possible in SIMOA. However, to some extent, configuration
of systems is possible by providing a model of a larger sys-
tem, where parts can be activated or inactivated. In our ap-
plication domain there is no impact due to restrictions, be-
cause the network, as well as the M2M application structure,
are already known and only small deviations are possible.
Therefore, providing information regarding structural system
changes and changes in parameter is sufficient. In the next
section, we discuss SIMOL in more detail. Moreover, we in-
troduce a basic algorithm for reconfiguration using SIMOL
programs. For more information regarding the application
domain we refer the interested reader to [Nica et al., 2012].

1. kbase GPRSCell;
2. component P2PMeter {
3. attribute int mdist,codeset,mRate;
4. constraints {
5. mdist = {1..3};
6. codeset = {1..4};
7. }
8. }
9. component FPC {
10. attribute int value;
11. constraints(default) {
12. value = 1;
13. }
14. constraints(x1) {
15. value = {2..4};
16. }
17. constraints(unknown) {
18.
19. }
20. }
21. component BTS {
22. attribute int fpc;
23. constraints {
24. FPC fpc1;
25. fpc = fpc1.value;
26. }
27. }
28. component Cell {
29. attribute int neededR, realR;
30. constraints {
31. BTS b1;
32. P2PMeter s[100];
33. realR=sum([s], mRate)/P2PNo;
34. realR>=neededR;
35. ..
36. }
37. transition {
38. forall ( P2PMeter ) {
39. if (mdist=1 and codeset=2 )
40. codeset.next = {2,3};
41. if (mdist=3 and codeset=2 )
42. codeset.next = {2,1};
43. }
44. }
45. } Figure 3: A (partial) SIMOL program

3 SIMOL syntax and semantics
As already said, SIMOL is an object-oriented programming
language. Most of the basic features have been already de-
scribed elsewhere [Nica and Wotawa, 2011; 2012b]. How-
ever, in order to be self-contained, we briefly introduce and
discuss SIMOL’s syntax and semantics. To be more acces-
sible for non-experts in configuration and constraint solving,

we decided to adopt the syntax of Java. The program de-
picted in Figure 3 is a partial model used in our M2M appli-
cation domain. The program comprises 4 components, which
model a Point-to-Point (P2P) individually addressable smart
meter, a base transceiver station (BTS), the number of serv-
ing frequencies (FPC) and a mobile cell. Every component
definition starts with declaring the name of the component.
Within a component, its attributes, constraints, and transitions
are defined. The latter is for defining the next state in order to
model discrete time and state machine models.

Syntax: Since SIMOL has a Java-like syntax, most of the
defined tokens are Java-like, i.e., identifiers for any type of
components and attributes, integers, and boolean literals, sep-
arators, arithmetic and relational operators (+,−, ∗, /,=, <
,>,<=, >=, ! =), comments and also reserved keywords. In
addition, it is also possible to use physical units like Watt (W),
or Ampere (A), etc., for a more realistic description. Another
feature of the language is that the domain of the variables val-
ues can be restricted. In Line 15 of the program depicted in
Figure 3 only the values 2, 3, and 4 are allowed for variable
value.

Every SIMOL program comprises 3 sections: (1) a knowl-
edge based declaration section (Line 1) for organizing the
files similarly to Java packages, (2) an import declaration sec-
tion where knowledge bases can be loaded, and (3) compo-
nent definitions (Line 2 to 45). The first 2 sections are op-
tional, whereas the component definition section is manda-
tory. Each component definition starts with the keyword com-
ponent followed by the name of the component and with an
optional extends followed by a comma-separated list of com-
ponent names. If extends is used, we know that the new
component has one or more super components from which
constraints are inherited.

In every component definition, we firstly define the com-
ponent’s attributes after the attribute keyword. For example,
in Line 3 the attributes midst, code set, and mRate are
defined. All these attributes are of type integer (int). Besides
attributes, constraints can be defined. There are two ways of
doing this. Either we use the keyword constraints directly
followed by a block in surrounding parentheses {}, or we use
the same keyword constraints followed by a mode name un-
der parentheses () and again a block statement. The first defi-
nition of constraints only allows for specifying a single com-
ponent behavior. The other definition makes use of modes
that are needed later on for configuration. For example, in
Line 11 to 19 three modes for the component FPC are defined.
The default mode sets the value of variable value to 1.
The x1 mode restricts the domain of value, where the con-
straint solver can select one value from the range {2..4}when
computing reconfigurations. The last mode (unknown) does
not specify any value.

In the constraint section of a component definition the fol-
lowing types of statements are allowed in SIMOL:

• an empty statement : ;,

• a component instance declaration, with the possibility of
initializing its attributes. See for example Line 24 of the
GPRSCell knowledge base, where a new component
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fpc1 is generated as an instance of component FPC.
Using this kind of statements, we define the subcompo-
nent hierarchy in our model, i.e., the partonomy rela-
tions. The cardinality of these relations (i.e., the number
of subcomponents which can be connected to a certain
component) is always finite.

• an arithmetic or/and boolean expression

• a conditional block starting with the keyword if and op-
tionally followed by an else.

• special functions like forall, exist, sum, product, min,
and max, that allow to state constraints over an array of
instances or values. For example, in Line 33 we sum the
mRate attribute of all P2PMeter stored in variable s.

In addition, models written in SIMOL might be described
over discrete time. For this purpose SIMOL makes use of
the transition section. Within the transition section the new
values of some, but not necessarily all variables, have to be
defined. In our running example Line 37 to 43 define the next
values of the codeset variables for all P2PMeters. In or-
der to distinguish the new value of a variable in the successor
state we make use of the keyword next. It is worth noting
that in the transition section we can use all statements from
the constraint section.

Semantics: The following informal definition of the se-
mantics of SIMOL relies on mathematical equations. In par-
ticular the idea behind the semantics is to map all constraints
that are assigned to one component to a set of equations. This
also requires the combination of equations in case of multi-
ple inheritance and component instances. In the first part of
the definition of the semantics we ignore discrete time. We
discuss this issue later in this section.

For each component C defined in SIMOL we assume a set
of equations constr0(C), representing the set of constraints
within the constraints(mode) { . . . } blocks. Then each con-
straint Cmode within a constraints(mode) { . . . } block con-
tributes to constr0(C), only if mode is active. Hence, we
can define this as a conditional mode constraint Ccondmode

:
if(mode is active) Cmode must be satisfied and therefore
constr0(C) becomes:

constr0(C) =
⋃

mode∈MODES(C)

constrmode(C)

where MODES(C) is the set of functional modes, de-
fined for component C, and constrmode(C) is the set of con-
ditional mode constraints.

Moreover, the component C also receives equations from
its super components and the instances used in the component
definition. Because of the possibility of having more than
one instance of a component, we have to rename the vari-
ables used in the constraints of an instance. For this purpose,
we assume a function replace that takes constraints M and a
name N and changes all variables x in M to N.x. Hence, the
set of equations that corresponds to a particular component C
is given by the following definition:

constr(C) = constr0(C) ∪ constrI(C) ∪ constrV (C)
where constrI are the constraints inherited from the super

components of C

constrI(C) =
⋃

C′∈super(C)

constr(C ′)

constrV are the constraints coming from the components
used in the definition of C (and requiring variable renaming
using the function replace that add a new pre-fix to the vari-
ables used in the components in order to make them unique)

constrV (C) =
⋃

(C′,N)∈vd inst(C)

replace(constr(C ′), N)

Each constraint within the constraints { . . . } block con-
tributes to constr0(C) as follows:

• Cattr val : attribute-equals-value/s constraints, formu-
lated with = operator and applied on component at-
tributes together with one single integer/boolean value
or with a set of values;

• Cattr attr : attribute-equals-attr constraints, formulated
with = operator and applied on component attributes;

• Cnum : numeric constraints, formulated with basic rela-
tional operators over numeric expressions;

• Ccond : conditional constraints,
if(Cx is satisfied) Cy must be satisfied else Cz

must be satisfied;

• Cexist : existence constraints,
exist(at least(NR) |at most(NR)|NR,C,ATTR =
V ALUE), with the meaning that at most, at least or
exactly NR components of a given type C have
ATTR = V ALUE.
Note that the forall, sum, . . . constraints are similarly
defined.

How to handle time? Within the transition section we have
constraints that define a relationship between the variables of
a state and its successor state. In order to represent states,
we introduce an index that is assigned to each variable used
in constr(C). Hence, what we do is to define constraints
that hold in each state i ∈ {0, . . . , s}, where s represents the
maximum number of considered states within a reconfigura-
tion model. These constraints are obtained from constr(C)
by adding an index i to the variables. We represent these
constraints using the function constri(C). For example, if
value = 1 is element of constr(C), then value 4 = 1
is element of constr4(C). Such constraints are valid within a
state and therefore called state constraints.

In addition to state constraints we require transition con-
straints. The transition constraints can be easily computed
from the transition section. In principle we make use of the
same translation as in the constraints block, but also take
care of the next attribute assigned to variables. If a variable
v has such an attribute and we consider state i we replace
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v.next with v i+ 1. Variables v without the next attribute
are changed to v i. Hence, we obtain all transition constraints
transi(C) for state i and component C.

In summary, the constraints for the whole SIMOL program
can now be obtained as follows:

constr =
⋃

i∈{0,...,s}

⋃

C

(constri(C) ∪ transi(C))

Hence, the set of the obtained equations represents the be-
havior of the SIMOL program. It is worth noting that we
took the semantic definition based on equations from the se-
mantics of Modelica [Fritzson and Bunus, 2002]. In contrast
to Modelica the handling of time is different as well as some
of the functions that can be used within SIMOL.

4 Reconfiguration in SIMOA
Before stating a configuration algorithm, which is based on
the diagnosis algorithm ConDiag [Nica and Wotawa, 2012a],
we introduce and discuss some basic definitions. We first
formalize the reconfiguration problem. The reconfiguration
problem requires information on the current system and the
new requirements. Note that the current system may fulfill
the given requirements. In this case no changes of the cur-
rent system are required. For the information needed of the
current system we follow a component-oriented engineering
approach and assume that the structure as well as the behav-
ior has to be represented. The behavior of course has to cap-
ture those aspects relevant for configuration. In particular the
functionality of the system has to be modeled.

In addition we assume that for each component of the sys-
tem we know how to reconfigure the component. Here we
borrow the idea coming from Model-Based Diagnosis (MBD)
[Reiter, 1987; de Kleer and Williams, 1987] and introduce
modes for components. Hence, every component has at least
one mode. We assume the default mode to be the stan-
dard mode of a component, and all other modes to be po-
tential reconfigurations of this component. For simplicity,
we introduce a function modes : COMP 7→ MODES
mapping components from COMP to their MODES. At
least default has to be element of modes(c) for all compo-
nents c ∈ COMP . The SIMOL language allows for spec-
ifying models of systems comprising components and their
modes. For example, in lines 2–27 of our running example
from Figure 3 the components P2PMeter, FPC and BTS
are defined. P2PMeter and BTS only have one mode (i.e.,
the default mode), whereas for FPC, 3 modes (default, x1,
and unknown) are defined.

Besides the structure and behavior of the system, we have
to define the new system requirements. System requirements
in our context are nothing else than constraints, which a sys-
tem has to fulfill. For example, we might say that the mobile
phone network has to be capable of servicing 100 smart me-
ters at once in a particular area, given the communication re-
quirements of the smart meters. In the context of SIMOA this
information again is specified using SIMOL. For example,
lines 28–45 of the program from Figure 3 are for specifying
exactly those requirements.

Definition 1 (Reconfiguration problem) A recon-
figuration problem can be defined as a tuple
(KB,COMP,MODES), where KB = SD ∪ REQ
is the knowledge base comprising the model of the system
SD and the requirements REQ, COMP is a set of system
components, and MODES is the set of functional modes for
the elements of COMP .

The reconfiguration problem consists in searching for an
assignment of modes to each component, such that the knowl-
edge base together with this assignments is satisfiable.

As already mentioned, all information regarding the recon-
figuration problem can be obtained from SIMOL programs.
The program from Figure 3 allows us to derive the knowledge
base KB, which is the set of equations constr representing
the semantics of the SIMOL program, the set of components
COMP = {P2PMeter,FPC,BTS,Cell}, and the set of
modes MODES = {default, x1, unknown}.
Definition 2 (Mode assignment) Given a set of components
COMP and a set of functional modes MODES. A mode
assignment M is a function M : COMP 7→ MODES
mapping each component to one of its modes, i.e., for all
c ∈ COMP :M(c) ∈ modes(c).

Having now all ingredients we are able to formally state a
reconfiguration as follows:

Definition 3 (Reconfiguration) Given a reconfiguration
problem (KB,COMP,MODES). A mode assignment M
is a valid reconfiguration iff KB ∪ {M(c)|c ∈ COMP} is
satisfiable.

In reconfiguration we are interested in finding mode as-
signments that do not imply too many changes. Hence, we
can use the number of required system changes to indicate
the optimality of a reconfiguration. The number of changes
necessary in a mode assignment is the number of used modes
that are not equivalent to the default mode.

Definition 4 (Number of changes) Given a reconfiguration
M for a reconfiguration problem (KB,COMP,MODES).
The number of changes (NOC) of M is equivalent to the
number of modes in M deviating from the default modes,
i.e., NOC(M) = |{M(c)|c ∈ COMP ∧M 6= default}|.

We say that a reconfiguration M is optimal with respect to
its NOC if it is minimal, i.e., there exists no other reconfigu-
ration M ′ with NOC(M ′) < NOC(M). This definition of
minimality corresponds to cardinality minimality in diagno-
sis, which is different from the usually used subset minimality
of diagnosis (see [Reiter, 1987]). However, for the purpose of
reconfiguration minimality based on cardinality seems to be
a better choice.

After stating the underlying definitions we introduce an al-
gorithm for reconfiguration that is based on ConDiag [Nica
and Wotawa, 2012a]. Computing reconfigurations in our con-
text is nothing else than searching for minimal mode assign-
ments, i.e., mode assignments that are as close to the original
assignments as possible. When assuming that small changes
lead to a satisfiable knowledge base, it would be good to
start search considering small deviations of mode assign-
ments from the default mode first. The number of changes
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can be increased if no solution is found. Therefore, an itera-
tive algorithm seems to be sufficient.

Algorithm 1 reconfig(KB,COMP,MODES, n)

Input: A reconfiguration problem
(KB,COMP,MODES) and the maximum NOC
n
Output: All minimal reconfigurations (up to the predefined
cardinality n)

1: for i = 0 to n do
2: CM = {|{M(c)|c ∈ COMP ∧M 6= default}| = i}∪

KB
3: S = P (CSolver(CM))
4: if S 6= ∅ then
5: return S
6: end if
7: end for
8: return ∅

Algorithm 1 reconfig takes a reconfiguration problem and
a maximum number of changes and computes all minimal
reconfigurations. Algorithm 1 is an iterative algorithm that
starts with no changes of modes and continues search if nec-
essary up to the predefined value n. The termination criteria
before reaching n is given in Line 4, where an non-empty
solution obtained from the satisfiability check is returned as
result. In case no solution is found the empty set is returned
(Line 8). The CSolver is a constraint solver taking a set of
constraints CM and is expected to return a set of mode as-
signments if a satisfiable solution can be found. Otherwise,
the empty set is returned indicating that no reconfiguration of
the given size is possible. The function P is assumed to map
the output of the solver to a set of solutions.

In the SIMOA prototype implementation we make use
of the MINION [Jefferson et al., 2012; Gent et al., 2006]
constraint solver for this purpose, but every other constraint
solver would also be sufficient providing that it is capable of
handling the constraints stored inCM . Line 2 of Algorithm 1
adds a new constraint to the model stating that we are inter-
ested in finding solutions that comprise exactly i modes that
are not equivalent to default.

Algorithm 1 obviously terminates assuming that CSolver
terminates. The complexity is ofO(n ·k) where k is the com-
plexity of CSolver. In the worst case searching for solutions
for a finite constraint satisfaction problem is exponential in
the size of the problem. Therefore, reconfig is also exponen-
tial in the worst case. However, in practice solutions can be
found in a much faster way. See for example the results re-
ported in [Nica and Wotawa, 2012a] and more recently [Nica
et al., 2013]. In these paper search for solutions up to a size of
3 is within seconds even for constraint satisfaction problems
comprising up to 3,800 constraints. Although these results
are for diagnosis, they also can be applied to configuration
because of the similarity of the algorithms.

5 Empirical results

In this section we report on first empirical results obtained
using a SIMOL model of our application domain, i.e., smart
metering. The SIMOL source code has 95 lines of code, de-
scribing a model with one, two, or three cells, where each cell
contains from 7 up to 100 P2PMeter components. When
compiling the SIMOL program to its MINION representa-
tion, considering at maximum 5 states, we obtain up to 2,387
variables and 7,320 constraints, depending on the the number
of smart meters considered. In principle, there are many pos-
sibilities of mapping SIMOL to MINION and also for com-
puting solutions for a given maximum number of changes
NOC. In the following, we discuss the encoding of SIMOL
modes within MINION and show that the choice of certain
MINION parameters influence the computation of reconfigu-
rations substantially.

The mode encoding in MINION is rather straightforward.
In principle, a mode of a component can be either active or
inactive. Therefore, we map each mode modex to a Boolean
variable in MINION, which is 1 (true) if the corresponding
component is in modemodex, or 0 (false) otherwise. In order
to compute a solution for a particular NOC we have some-
how to maximize the number of default modes in the solu-
tion. In the first version of our implementation we used the
MAXIMISING option of MINION for this purpose. In
addition, we decided to control the way the solver searches
for a solution also by directly specifying the instantiation or-
der for the MINION variables representing a mode. Hence,
we used the MINION variable ordering (V ARORDER) as
well as the corresponding value ordering (V ALORDER)
with the following settings: for all the default mode vari-
ables their values should be searched in descending order,
whereas for the other mode variables the searching should
be done in ascending order. The intuition behind is to prefer
solutions with more default modes to be true over the other
solutions.

For the experiments we made use of a notebook with In-
tel(R) Core(TM) i7 CPU 1.73 GHz and 4 GB of RAM run-
ning under Windows 7. We obtained the results presented in
the upper diagram of Figure 4 for models containing a rather
small number of P2PMeters ranging from 7 to 50. It is
worth noting that when using the MAXIMISING func-
tion the measured running times exceeded 300 seconds for
more than 100 meters (which is unacceptable in some situ-
ations). Hence, we decided to use only the V ARORDER
and V ALORDER and ignore the MAXIMISING func-
tion. From the results depicted in the bottom diagram of
Figure 4 we see a substantial improvement in the mea-
sured running time. Note that the obtained results without
MAXIMISING were always correct.

From the diagram at the bottom of Figure 4 we can extract
two observations. First, when checking only that a given sys-
tem fulfills the requirements, the running time even in case of
100 P2PMeters is within seconds. Second, even for a NOC
of size 6 the reconfiguration time never exceeds 25 seconds.
Since, for the application domain these running time results
are sufficient and the proposed approach is feasible.
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Figure 4: Comparing running times for reconfiguration, when
the Integer variable domain is fixed to [0..20,000] and the
number of solutions is limited to 1.

6 Related research
The idea of using constraint solvers for configuration is not
new. In [Haselböck and Stumptner, 1991] the authors formal-
ize the configuration and design problem as constraint satis-
faction problem. Similarly in [Stumptner and Wotawa, 1998]
the authors discuss the use of constraint solving for reconfig-
uration and in particular parameter reconfiguration in detail.
The latter also makes use of model-based diagnosis for ob-
taining reconfigurations. In contrast to these previous papers
our reconfiguration algorithm although relying on constraint
solving is different because we compute configurations di-
rectly without making use of hitting set computation [Reiter,
1987; Greiner et al., 1989] or other means for computing di-
agnoses [de Kleer and Williams, 1987].

The application of configuration for solving problems in
the engineering domain has a long tradition. In [Stumptner et
al., 1994; Fleischanderl et al., 1998] the authors describe the
use of generative constraints for configuring large technical
systems comprising thousands of components within a rea-
sonable amount of time. Other applications include the use of
configurations for web services [Felfernig et al., 2002], tech-
nical products [John and Geske, 1999; John, 2000], and even
telecom systems [Emde et al., 1996]. Haag [Haag, 2010] dis-
cussed experiences obtained from product configuration. Al-
though, configuration of technical products from various do-

mains is more or less a well developed and researched field,
the application to the M2M domain that requires models from
the application itself and the used communication infrastruc-
ture is to our knowledge new. Moreover, besides the logical
model also spatial information has to be integrated accord-
ingly in order to come up with a correct model. The SIMOA
approach provides a good bases because it allows to specify
constraints dealing with Boolean and Integer values as well
as discrete time. Moreover, also arrays can be used for mod-
eling. Extensions in the direction of handling floats or strings
can be implemented but require to change the underlying rea-
soning engine.

There are of course many languages for simulation like
Modelica [Fritzson and Bunus, 2002] or Simulink [Henson,
2005] used in industry. However, these languages are mainly
optimized towards simulation and therefore can be hardly
used for reconfiguration. In particular such languages do not
allow under-constrained models, which are necessary for our
purpose when searching for appropriate modes that do not
contradict the given requirements while ensuring that the re-
quirements can be fulfilled. There are some similarities be-
tween Modelica and SIMOL but also many differences in-
cluding the tight integration of component modes and the
handling of discrete time.

Our previous papers mainly deal with either the application
domain [Nica et al., 2012] or the SIMOL language [Nica and
Wotawa, 2011; 2012b]. In contrast to the latter paper, we ex-
tend the SIMOL language using the transition block in order
to handle discrete time in the underlying models. Moreover,
we discuss the algorithm for configuration in more detail in
this paper.

7 Conclusions
In this paper we discussed the underlying language, defini-
tions, and algorithms of the SIMOA approach to reconfig-
uration. Although, the approach has been applied to the
machine-to-machine communication domain, it is not re-
stricted to this domain. Any reconfiguration problem that
can be represented using the underlying modeling language
SIMOL can also be solved using the proposed SIMOA ap-
proach. SIMOL itself is an object-oriented programming
language where components can be defined. The syntax of
SIMOL is close to Java. The semantics has been mainly
taken from the modeling language Modelica. Within the de-
veloped SIMOA prototype SIMOL is converted in MINION
constraints. Hence, MINION is used as underlying constraint
solver. This again does not restrict the approach since chang-
ing constraint solvers is still possible. Only, the conversion of
SIMOL has to be adapted.

Besides SIMOL we also discuss the basic definitions of re-
configuration and state an algorithm that allows to find min-
imal reconfigurations up to a predefined size. Size in this
context is defined as number of necessary changes of the sys-
tem in order to fulfill all constraints. The reconfiguration al-
gorithm derives solutions directly from the constraints (i.e.,
equations coming from SIMOL). This distinguishes this ap-
proach from other similar approaches where search for valid
configurations is often based on conflicts and conflict resolu-
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tion. First empirical results indicate that computation is suffi-
ciently fast and that the results are within expectations. In the
future it is planned to further evaluate the approach.
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