
Towards Anomaly Explanation in Feature Models ∗

A. Felfernig1, D. Benavides2, J. Galindo2, and F. Reinfrank1

1Graz University of Technology, Graz, Austria
{alexander.felfernig, florian.reinfrank}@ist.tugraz.at

2University of Seville, Spain
{benavides,jagalindo}@us.es

Abstract
Feature models are a wide-spread approach to vari-
ability and commonality management in software
product lines. Due to the increasing size and com-
plexity of feature models, anomalies in terms of
inconsistencies and redundancies can occur which
lead to increased efforts related to feature model
development and maintenance. In this paper we in-
troduce knowledge representations which serve as
a basis for the explanation of anomalies in feature
models. On the basis of these representations we
show how explanation algorithms can be applied.
The results of a performance analysis show the ap-
plicability of these algorithms for anomaly detec-
tion in feature models. We conclude the paper with
a discussion of future research issues.

1 Introduction
Similar to component-oriented configuration models [Felfer-
nig et al., 2000; Felfernig, 2007], Feature Models (FM)
[Kang et al., 1990] are used to express variability properties
of highly-variant items [Mendonca and Cowan, 2010]. Ap-
plications based on feature models help users to decide about
relevant features and to learn about existing dependencies be-
tween features. Feature models can be distinguished with
regard to the expressiveness of constraints defining the re-
lationships between the different features contained in a fea-
ture model [Benavides et al., 2010]. So-called basic feature
models [Kang et al., 1990] will be used as a basis for the dis-
cussions in this paper. Such models allow the definition of
basic relationships between features, for example, a feature
f1 requires the inclusion of a feature f2. Cardinality-based
feature models [Czarnecki et al., 2005] extend basic ones by
also allowing cardinalities with an upper bound > 1. Finally,
extended feature models [Batory, 2005] allow the inclusion
of additional information about features in terms of feature
attributes. For presentation purposes we decided to use ba-
sic feature models (see Section 2). However, the presented

∗This work was supported, in part, by the Austrian Research Pro-
motion Agency under the project ICONE (827587), the European
Commission (FEDER), the Spanish Government under project SETI
(TIN2009-07366), and by the Andalusian Government under project
THEOS (TIC-5906).

concepts and algorithms can be applied to advanced feature
model representations as well.

Developing and maintaining large and potentially com-
plex feature models is an error-prone activity which can
be explained by the cognitive overload of software engi-
neers and domain experts [Trinidad et al., 2008; Benavides
et al., 2013]. In order to tackle this challenge, feature
model development and maintenance processes have to be
supported by intelligent techniques and tools which help to
identify anomalies which become manifest in different types
of inconsistencies and redundancies [Batory et al., 2006;
Benavides et al., 2010]. An approach to the identification
of dead features (features not part of any configuration) is
presented by Trinidad et al. [Trinidad et al., 2008]. The au-
thors also introduce concepts to solve the problem of void
feature models (no configuration exists that fulfills all the
constraints in the feature model). For the identification of
faulty relationships in the feature model (in these scenarios)
the authors define a corresponding diagnosis task which is
based on the concepts introduced by [Reiter, 1987]. As an
alternative to the approach of [Trinidad et al., 2008], White
et al. [White et al., 2010] show how to transform feature
models into a corresponding representation of a constraint
satisfaction problem (CSP) [Tsang, 1993]. On the basis of
this representation, diagnoses are directly determined by the
constraint solver without the support of an additional diag-
nostic engine. An overview of analysis operations (for the
identification of different inconsistencies and redundancies)
for feature models is provided in [Benavides et al., 2010;
von der Massen and Lichter, 2004].

If we are interested in minimal explanations (diagnoses) for
feature model anomalies, the performance of the underlying
algorithms becomes a challenge. An example explanation in
this context would be the minimal set of constraints which
have to be adapted or deleted from an inconsistent feature
model (the determination of a configuration is not possible)
such that the remaining constraints allow the calculation of
at least one configuration. Reiter [Reiter, 1987] introduced
a hitting set based approach to the determination of minimal
explanations (diagnoses) – these diagnoses are also of mini-
mal cardinality since diagnosis search is performed on the ba-
sis of breadth-first search. The idea of applying the concepts
of model-based diagnosis to inconsistent constraint sets has
first been introduced by Bakker et al. [Bakker et al., 1993].

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 117

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Felfernig et al. [Felfernig et al., 2004] continued this work
by introducing an approach to the automated testing and de-
bugging of configuration knowledge bases where test cases
are used to induce conflicts in the knowledge base. These
conflicts are then resolved on the basis of the hitting set algo-
rithm [Reiter, 1987]. First experiences from the application
of these testing and debugging approaches in industrial sce-
narios are reported by Fleischanderl [Fleischanderl, 2002].
Junker [Junker, 2004] introduced the QuickXPlain (QX) al-
gorithm. QX is an efficient divide-and-conquer based ap-
proach to the determination of minimal conflicts which can
then be exploited for the determination of diagnoses. In this
paper we show how diagnosis and redundancy detection algo-
rithms can be applied to support feature model analysis oper-
ations [Benavides et al., 2010]. In this context we show how
to apply the diagnosis algorithm FASTDIAG [Felfernig et al.,
2012] (an algorithm with no need of determining conflict sets)
and introduce the FMCORE algorithm which allows the de-
tection of redundancies in feature models.

The work presented here is in the line of research dedicated
to the development of intelligent quality assurance mecha-
nisms for configuration knowledge bases [Felfernig et al.,
2004]. The major contributions of this paper are the follow-
ing. First, we advance the state of the art in feature model
anomaly detection by formalizing the anomaly types dis-
cussed in the feature modeling community on the basis of the
concepts of inconsistency and redundancy. Second, we intro-
duce the FMCORE algorithm for the detection of redundant
constraints in feature models. Furthermore, we show how to
apply the FASTDIAG algorithm [Felfernig et al., 2012] for ex-
plaining different types of inconsistencies in feature models.
All anomaly types will be discussed in detail in Section 3 in
combination with corresponding explanation approaches.

The remainder of this paper is organized as follows. In
Section 2 we introduce a simple feature model (operating sys-
tem configuration) which will be used as working example
throughout the paper. Furthermore, we introduce the def-
initions of a feature model configuration task and a corre-
sponding feature model configuration. In Section 3 we in-
troduce different relevant forms of anomalies in feature mod-
els together with their formal definitions. The corresponding
anomaly detection algorithms FASTDIAG and FMCORE are
explained in Section 4. The performance of these algorithms
is analyzed in Section 5 on the basis of selected feature mod-
els from the S.P.L.O.T.1 repository. A discussion of further
research issues and a conclusion is provided in Section 6.

2 Feature models
A feature model (FM) defines a set of possible products
of a domain in terms of features and the relationships be-
tween them [Wang et al., 2010]. Features are arranged hi-
erarchically (tree structure with one so-called root feature fr
(fr = true)) [Benavides et al., 2010] where the nodes are the
features and the edges are relationships (constraints) [Segura
et al., 2010]. For a more detailed overview of different feature
model representations we refer the reader to [Batory, 2005;
Benavides et al., 2010].

1See www.splot-research.org.

Semantics of Feature Models. Our representation of FMs
is based on the notation introduced in [Benavides et al.,
2010]. Relationships (constraints) in FMs are represented
in terms of six different types of constraints [Batory, 2005;
Benavides et al., 2010; Segura et al., 2010]: mandatory, op-
tional, alternative, or, requires, and excludes. FMs are rep-
resenting configurable products which can be formalized in
the form of a constraint satisfaction problem (CSP) [Tsang,
1993] where each variable fi has the assigned domain di =
{true, false}. We define a feature model configuration task
as follows (see Definition 1).

Definition 1 (FM Configuration Task). A feature
model (FM) configuration task is defined by the triple
(F,D,C) where F = {f1, f2, ..., fn} is a set of features
fi, D = {dom(f1), dom(f2), ..., dom(fn)} (dom(fi) =
{true, false}) is the set of corresponding feature domains,
and C = CR ∪ CF is a set of constraints restricting the
possible configurations which can be derived from the fea-
ture model. In this context, CR = {c1, c2, ..., ck} repre-
sents a set of requirements (of a specific user) and CF =
{ck+1, ck+2, ..., cm} a set of feature model constraints.

On the basis of this definition of an feature model configu-
ration task, we now introduce the definition of a configuration
for a feature model (FM) configuration task (Definition 2).

Definition 2 (FM Configuration). A feature model (FM)
configuration for a given FM configuration task is a complete
assignment of the variables fi ∈ F . Such a configuration is
consistent iff the constraints ci ∈ C are not contradicting with
the variable assignment. Furthermore, an FM configuration is
valid, if it is consistent and complete.

Feature Model Constraint Types. Six basic types of
constraints can be included in CF [Benavides et al., 2010].
These constraint types are the following – their representation
in a graphical feature model is shown in the example of Fig-
ure 1. In the following we introduce the semantics of these six
types of constraints – this semantics is based on the definition
given in [Benavides et al., 2010].

Figure 1: Feature model (FM) with faulty model elements.

Mandatory: a feature f2 ∈ F is mandatory if it is in a
mandatory relationship with another feature f1 ∈ F . This
means, if f1 is part of the configuration, f2 must be part of
the configuration as well (and vice-versa). The formalization
of this constraint type (relationship) is realized on the basis
of an equivalence: f1 ↔ f2. In Figure 1 the feature gui is a
mandatory feature connected to the feature ubuntu.

118 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Optional: a feature f2 ∈ F can (but must not) be included
in the configuration in the case that feature f1 ∈ F is part of
the configuration. This type of constraint can be formalized
on the basis of an implication: f2 → f1. In Figure 1 the
feature games is an optional feature connected to ubuntu.

Alternative: only one feature fb ∈ F = {f1, f2, ..., fk}
can be selected if feature fa is selected. The property can be
formalized as follows: f1 = true↔ (f2 = false∧...∧fk =
false∧ fa = true)∧ ...∧ fk = true↔ (f1 = false∧ ...∧
fk − 1 = false ∧ fa = true). In Figure 1 an example of a
feature fa is games, the subfeatures are gnuchess and glchess.

Or: at least one feature fb ∈ F = {f1, f2, ..., fk} must
be part of the configuration if feature fa is part of the con-
figuration. This property can be formally defined with fa ↔
{f1, f2, ..., fk}. In Figure 1 an example of a feature fa is gui,
the subfeatures are kde and gnome.

Requires: a feature f2 must be included in a configuration
if feature f1 is included. This requires relationship can be
defined with f1 → f2. In Figure 1 an example of a requires
relationship is games→ gui.

Excludes: it is not allowed to combine two features f1 and
f2 in the same configuration, i.e., feature f1 excludes feature
f2 and vice versa: ¬(f1 ∧ f2). In Figure 1 an example of
an excludes relationship is ¬(bash ∧ gui). Note that this is a
possible faulty constraint to be detected by diagnosis.

Requires and excludes constraints are also denoted as
cross-tree constraints. Finally, the set CR (customer require-
ments) is an additional set of constraints to be taken into ac-
count when determining configurations (solutions). The set
CR specifies a set of key features which have to be included
in the FM configuration for a specific user (customer).

Example Feature Model. A simple example feature
model (from the domain of operating systems) is depicted in
Figure 1. This model specifies a set of features relevant for
configuring an ubuntu operating system installation together
with constraints between the features. Note that faulty ele-
ments (constraints) are contained in this model – our goal in
the remainder of this paper will be to introduce algorithms
which help to identify and explain such faulty constraints.

The CSP-based representation [Tsang, 1993] of the feature
model shown in Figure 1 is the following - a representation
as FM configuration task = (F,D,C=CR ∪ CF).
• F = {ubuntu, texteditor, bash, gui, games, gedit,
vi, kde, gnome, gnuchess, glchess}
• D = {dom(ubuntu) = {true, false}, dom(text−
editor) = {true, false}, dom(bash) = {true,
false}, dom(gui) = {true, false}, dom(games)
= {true, false}, dom(gedit) = {true, false},
dom(vi) = {true, false}, dom(kde) = {true, false},
dom(gnome) = {true, false}, dom(gnuchess) =
{true, false}, dom(glchess) = {true, false}
• CR = {c0: ubuntu = true}
• CF = { c1 : ubuntu ↔ texteditor, c2 : ubuntu ↔
bash, c3: ubuntu ↔ gui, c4: games → ubuntu, c5:
texteditor ↔ gedit ∨ vi, c6: ¬texteditor ∨ ¬bash,
c7: ¬bash ∨ ¬gui, c8: gui ↔ kde ∨ gnome, c9:
games→ gui, c10: (gnuchess↔ ¬glchess∧ games)
∧ (glchess↔ ¬gnuchess ∧ games)}

3 Anomaly Patterns in Feature Models
Anomalies can be defined as patterns in data that do not con-
form to a well defined notion of normal behavior [Chandola
et al., 2009]. Trinidad et al. [Trinidad et al., 2008] are us-
ing the term error for incorrect definitions of relationships,
i.e., the set of products described by a feature model does
not match the SPL (software product line) it describes. We
interpret anomalies in the sense of [Trinidad et al., 2008]:
undesirable FM properties in terms of different facets of con-
tradictory and redundant information contained in the FM.

Handling Inconsistencies. Inconsistent feature models in-
clude contradictory constraints ci ∈ C that can not be sat-
isfied at the same time, leading to no valid instances deriv-
able from FMs [Wang et al., 2010]. For a given FM con-
figuration task this means that no solution can be identi-
fied. In our working example (the FM of Figure 1) no so-
lution can be identified due to an inconsistent constraint set
C={c1, c2, ..., c10}.2 Inconsistent sets of constraints can be
defined on the basis of the concept of conflict sets [Junker,
2004] (see Definition 3).

Definition 3 (Conflict Set) A conflict set CS ⊆ C is a set
of constraints s.t. CS is inconsistent. CS is minimal iff there
does not exist a conflict set CS′ with (CS′ ⊂ CS).

Based on Definition 3, we can identify minimal sets of con-
straints CSi ⊆ C, such that CSi is inconsistent. As long as
there are conflicts in a given constraint set of a feature model,
no solutions for the underlying FM configuration task can be
identified. Our example feature model (see Figure 1) includes
two minimal conflict sets which are CS1 = {c1, c2, c6} and
CS2 = {c2, c3, c7}. Each of these sets is a minimal set such
that (1) no solution (configuration) can be identified and (2)
none of the subsets of CSi is inconsistent. As a consequence
(due to their minimality property) conflicts (represented by
conflict sets) can be resolved by simply deleting one con-
straint from the set.

The resolution of all conflicts (represented by conflict sets)
can be based on the determination of the corresponding hit-
ting sets (also denoted as diagnoses [Reiter, 1987]). The prob-
lem of identifying minimal sets of constraints which have to
be adapted or deleted from the feature model such that the re-
maining constraints become consistent can be represented as
an FM diagnosis task (see Definition 4).

Definition 4 (FM Diagnosis Task) A feature model di-
agnosis task (FM diagnosis task) is a tuple (S, AC) where
S ⊆ AC are constraints of the feature model. The task is to
identify a minimal set of constraints which have to be deleted
from S s.t. consistency can be restored in the feature model.

In this context, S helps us to focus our diagnostic activities,
i.e., to focus on those model parts where we suspect faulty
constraints. If no such suspects exist, S can be set to AC. An
FM diagnosis, i.e., a solution to an FM diagnosis task can be
defined as follows (see Definition 5).

Definition 5 (FM Diagnosis) A feature model diagnosis
(FM diagnosis) is a set of constraints ∆ ⊆ S with AC −∆ is
consistent. ∆ is minimal iff there does not exist a set ∆’ with
∆’ ⊂ ∆ and ∆’ has the diagnosis property as well.

2Note that we interpret the constraint c0 : ubuntu = true as
element of the (customer) requirements CR.

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 119

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

The diagnoses for our example FM diagnosis task are
∆1 = {c1, c3}, ∆2 = {c1, c7}, ∆3 = {c2}, ∆4 = {c3, c6},
∆5 = {c6, c7}. These represent five ways to delete (adapt)
constraints from (in) the feature model such that at least one
configuration can be determined. The calculation of all ∆i is
sketched in Figure 2. The underlying assumption in this ex-
ample is that – conform to the algorithm introduced by Reiter
[Reiter, 1987] – the search tree (hitting set directed acyclic
graph – HSDAG) is expanded in breadth-first manner.

Figure 2: Determination of diagnoses for a given inconsistent
feature model (FM). The following discussion of anomaly
types assumes that ∆5 = {c6, c7} was chosen.

One possible approach to determine the complete set of
diagnoses is based on the hitting set directed acyclic graph
(HSDAG) algorithm introduced by Reiter [Reiter, 1987]. The
basic idea of this algorithm is to determine a conflict (in the
example CS1 : {c1, c2, c6}) and then to resolve this conflict.
If this conflict is resolved (e.g., by deleting the constraint c1)
the algorithm checks whether further conflicts exist in the fea-
ture model. In our example this is the case and the next deter-
mined conflict set is CS2 : {c2, c3, c7}. If we delete, for ex-
ample c3 from CS2, we receive the diagnosis ∆1 = {c1, c3}.
In a similar fashion all other diagnoses can be determined.
Note that {c1, c2} is not a (minimal) diagnosis since {c2} is
already a diagnosis. The HSDAG algorithm is a traditional
way of determining diagnoses – more efficient approaches
will be presented in Section 4.

Feature Model Anomaly Patterns. We can now discuss
in more detail different basic types of feature model anoma-
lies. Ways to explain these anomalies and related algorithms
will then be discussed in detail in Section 4. An overview
of these anomalies and related property checks is shown in
Table 1. The following types of anomalies are taken from
Benavides et al. [Benavides et al., 2010].

Void feature model. If model constraints in CF are in-
consistent (inconsistent(CF ∪ c0)), we are interested in so-
lutions to the FM diagnosis task (S=CF, AC = CF ∪ c0).
In this case we want to figure out which are the minimal
sets of constraints that are responsible for the given incon-
sistency in the feature model. We do not include c0 (e.g.,
c0 : ubuntu = true) in the set S since we are not interested
in changing this constraint. The feature model of our example
(see Figure 1) is an example of a void feature model.

Note that for the following discussions we assume that
∆5 = {c6, c7} (see Figure 2) has been chosen by the engi-

neer and {c6, c7} have been deleted from the feature model.
Dead feature fi. If a feature fi is not included in any of the

possible configurations (i.e., inconsistent(CF ∪ fi = true)),
we are interested in solutions to the FM diagnosis task (S =
CF, AC = CF ∪ {c0} ∪ {fi = true}). This way we are
able to figure out the minimal sets of constraints that are re-
sponsible for the non-acceptance of fi. In our working ex-
ample, there is no such dead feature (assuming that the con-
straints in ∆5 have been deleted from the feature model). If
we would substitute the constraint c9 : games → gui with
c9 : ¬gui ∨ ¬games, the feature games would be a dead
feature. If we then want to make games a feature which is
included in at least one configuration, the diagnoses for (S =
CF, AC = CF ∪ {c0} ∪ {games = true}) are ∆1 = {c3}
and ∆2 = {c9}.

Conditionally dead feature fi. Such a feature fi is not
included in all of the possible configurations, i.e., consis-
tent (CF ∪ {c0} ∪ {fi=false}) and consistent (CF ∪ {c0} ∪
{fi=true}). If we want to have fi in each configuration, we
have to add {fi = true} to the set CF. In our working exam-
ple, games is a conditionally dead feature since there are also
solutions with no inclusion of this feature. In order to make
games part of every possible feature model configuration, we
have to make this clear in the feature model. One way to
achieve this would be to convert constraint c4 into a manda-
tory constraint – this would have the same effect as adding
games = true as an additional constraint to CF.

Full mandatory feature fi. A feature fi is fully mandatory
if it is included in every possible solution (configuration), i.e.,
inconsistent(CF ∪ {c0} ∪ {fi = false}). If we want to adapt
the feature model in such a way that it also allows fi to be not
included, we can determine the corresponding (minimal) sets
of responsible constraints by solving the FM diagnosis task
(S=CF, AC= CF ∪ {c0} ∪ {fi = false}). In our working
example, the feature gui is a full mandatory feature since it
is part of every possible configuration. If we want to allow
configurations where gui is not included, the only diagnosis
for (S=CF, AC= CF ∪ {c0} ∪ {gui = false}) is ∆1 = {c3}.

False optional feature fi. A false optional feature fi is in-
cluded in all configurations (e.g., products of a product line)
although it has not been modeled as mandatory. If we replace
the constraint c9 : games → gui with c9 : gui → games,
the feature games becomes a false optional feature since it is
included in every possible configuration. An alternative in-
terpretation of a false optional feature focuses on the optional
relationship between a feature fpar and fopt. If the consis-
tency check of (CF ∪ {c0} ∪ {fpar = true∧ fopt = false})
returns false (and fpar = true), the feature fopt is not an op-
tion. In our example (under the assumption that c9 is adapted
as mentioned), the diagnosis for (S = CF, AC = CF ∪ {c0} ∪
{ubuntu = true ∧ games = false}) is ∆1 = {c3}.

Redundant constraint ci. In our working example the con-
straint c9 : games → gui is redundant since gui is a full
mandatory feature. If we check the consistency of {CF - {c9}
∪ ¬CF}we see that c9 is redundant since the expression is in-
consistent. In other words, CF - {c9} |= c9, i.e., c9 logically
follows from CF - {c9} – therefore it is redundant. The sec-
ond redundant constraint in our working example is c4 since
the feature ubuntu is a full mandatory feature as well. Con-

120 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Analysis operation Property Check Explanation (Diagnosis Task)
Void feature model inconsistent(CF ∪ {c0})? FASTDIAG(CF,CF ∪ {c0})
Dead (fi) inconsistent(CF ∪ {c0} ∪ {fi=true})? FASTDIAG(CF,CF ∪ {c0} ∪ {fi = true})
Conditionally consistent(CF ∪ {c0} ∪ {fi=false}) and CF← CF ∪ {fi=true}
dead (fi) consistent(CF ∪ {c0} ∪ {fi=true})?
Full mandatory (fi) inconsistent(CF ∪ {c0} ∪ {fi=false})? FASTDIAG(CF,CF ∪ {c0} ∪ {fi = false})
False optional (fopt) inconsistent(CF ∪ {c0} ∪ FASTDIAG(CF, CF ∪ {c0} ∪

{fpar=true ∧ fopt=false})? {fpar = true ∧ fopt = false})
Redundant (ci) inconsistent((CF ∪ {c0} - {ci}) ∪ ¬(CF ∪ c0))? ci /∈ FMCORE(CF ∪ {c0})

Table 1: Feature model analysis operations, property checks, and related explanations. For example, figuring out whether a
feature model is void (no solution can be found) can be determined on the basis of a consistency check inconsistent (CF ∪
{c0}). A related explanation can be determined by solving the FM diagnosis task (CF, CF ∪ {c0}). The related diagnosis
(FASTDIAG) and redundancy detection algorithm (FMCORE) are discussed in Section 4.

sequently, the constraints {c4, c9} can be deleted from the
feature model without changing the underlying semantics.3

In the following section we focus on the presentation of
two algorithms which help to determine explanations for the
different feature model anomaly patterns.

4 Explaining Anomalies
The two basic algorithms for determining diagnoses and
redundancies are FASTDIAG and FMCORE. FASTDIAG
[Felfernig et al., 2012] is a divide-and-conquer algorithm
that supports the efficient determination of minimal diagnoses
without the need of having conflict sets available. FMCORE
is an algorithm which focuses on the determination of mini-
mal cores, i.e., redundancy-free subsets of a constraint set.

Determination of Diagnoses. In FASTDIAG (see Algo-
rithm 1), the set S represents the set of constraints where a
diagnosis should be searched, The set AC contains all con-
straints of the feature model. For example, if we want to
diagnose a void feature model (CF ∪ {c0} is inconsistent –
see Table 1), we would activate the algorithm with FAST-
DIAG(CF,CF ∪ {c0}), i.e., S = CF and AC = CF ∪ {c0}.
We do not include c0 in the set of diagnosable constraints
since c0 (the root constraint) is assumed to be correct (e.g.,
c0 : ubuntu = true). First, the algorithm (see Algorithm
1) checks whether the considered constraint set can be diag-
nosed (if the set S is empty, no diagnosis will be found) and
whether the constraints in AC-S are inconsistent (in this case
no diagnosis can be determined).

Algorithm 1 FASTDIAG(S, AC): ∆

if isEmpty(S) or inconsistent(AC − S) then
return ∅;

else
return DIAG(∅, S,AC)

end if

The major idea of FASTDIAG (and its subfunction DIAG
– see Algorithm 2) is to divide a set S of inconsistent con-
straints into two subsets S1 and S2. If the first part becomes

3Note that redundancies can also be intended to achieve goals
such as improving understandability or increasing efficiency – a dis-
cussion of related issues is outside the scope of this paper.

Algorithm 2 DIAG(D, S = {s1, ..., sr}, AC): ∆

if D 6= ∅ and consistent(AC) then
return ∅;

end if
if singleton(S) then
return S;

end if
k ← d r2e;
S1 ← {s1, ..., sk};S2 ← {sk+1, ..., sr};
∆1 ← DIAG(S2, S1, AC − S2);
∆2 ← DIAG(∆1, S2, AC −∆1);
return(∆1 ∪∆2);

consistent, the diagnosis is searched in the other part and the
first part can be omitted (no constraints part of the diagnosis
will be found there). If a singleton constraint of S triggers
an inconsistency, this constraint is considered a part of the
diagnosis. FASTDIAG determines exactly one diagnosis at
a time. If we want to determine more than one or even the
complete set of diagnoses, we need to combine FASTDIAG
with a corresponding algorithm that supports the construc-
tion of HSDAGs. The discussion of this approach is outside
the scope of this paper. We want to refer the reader to the
work of Felfernig et al. [Felfernig et al., 2012]. Compared
to traditional diagnosis approaches, FASTDIAG needs in the
worst case 2d× log2(n

d) + 2d consistency checks where d is
the number of constraints in the minimal diagnosis and n is
the number of constraints in S [Felfernig et al., 2012]. The
corresponding best case complexity in terms of the number of
consistency checks is log2(n

d +2d). A similar worst case (and
best case) complexity in traditional diagnosis approaches can
be expected for each determination of a conflict set (see, e.g.,
Figure 2) [Felfernig et al., 2012].

Determination of Redundancies. A constraint fi of a fea-
ture model (represented by the constraint set CF) is redundant
if its deletion from the model does not change the set of pos-
sible solutions. More formally, CF - {fi} |= fi which means
that fi logically follows from CF - {fi} and therefore is re-
dundant. An algorithm for redundancy detection should def-
initely not check redundancy properties on the basis of con-
crete configurations since such an approach becomes com-

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 121

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

Feature Model: Car Selection #Variables: 72 #Constraints:96
Diagnoses Inconsistency Rate

2% (8 diagnoses) 5% (64 diagnoses) 7% (182 diagnoses)
FASTDIAG HSDAG FASTDIAG HSDAG FASTDIAG HSDAG

1 452 874 561 1888 858 5366
2 749 890 920 1891 1638 5382
3 1045 921 1294 2138 2059 5506
4 1373 936 1653 2143 2324 5522
5 1529 968 1872 2262 2464 5544
10 – – 2511 2418 2932 5709
20 – – 2964 2450 3806 6162
all 1632 1027 4383 3339 11856 8860

Table 2: Evaluation of FASTDIAG and HSDAG with the Car Selection feature model from S.P.L.O.T.

Feature Model: SmartHome V. 2.2 #Variables: 61 #Constraints:63
Diagnoses Inconsistency Rate

2% (8 diagnoses) 5% (12 diagnoses) 7% (77 diagnoses)
FASTDIAG HSDAG FASTDIAG HSDAG FASTDIAG HSDAG

1 297 920 312 952 577 2683
2 437 967 452 968 951 2684
3 609 983 592 983 1341 2686
4 734 998 733 1139 1762 2699
5 843 1014 842 1155 2090 2671

10 – – 967 1529 2792 2715
20 – – – – 3369 2746
all 1155 1061 1606 1545 6224 3151

Table 3: Evaluation of FASTDIAG and HSDAG with the SmartHome V 2.2 feature model from S.P.L.O.T.

pletely inefficient even in the case of simple feature models.
The basic idea of the FMCORE algorithm is to iterate over
the given set of constraints (S) and for each constraint ci ∈ S
to check whether the deletion of ci changes the semantics of
S. The assumption is that if ci is non-redundant, its deletion
from S will change the semantics of S, i.e., S −{ci} ∪ S be-
comes consistent. All these individual redundant constraints
are deleted from Stemp (a temporal copy of S). Finally, the
algorithm returns the set Stemp which represents a minimal
core, i.e., the original set S without redundant constraints.

Note that – instead of checking the inconsistency of CS −
{ci} ∪ S (see, e.g., [Felfernig et al., 2011]) – FMCORE sys-
tematically reduces the number of constraints to be checked
in S. Given a configuration knowledge base S and its com-
plement S, the (in)consistency check of S−{ci} ∪ S can be
reduced to the inconsistency check of S − {ci} ∪ S′ where
S′ = {¬ci}. If we assume that S = {c1∧c2∧..∧cm∧cm+1∧
..∧cn}, S = {¬c1∨¬c2∨ ..∨¬cm∨¬cm+1∨ ..∨¬cn}, and
γ = {cm+1∧ ..∧cn} then the consistency check of S−γ∪S
can be reduced to {c1∧c2∧ ..∧cm}∪{¬cm+1∨ ..∨¬cn}. In
FMCORE (Algorithm 3) this property is taken into account.

The number of consistency checks of FMCORE in the best
case equals the number of consistency checks in the worst
case – in both cases the number of consistency checks needed
is exactly n (the number of constraints in S).

In order to analyze the performance of FASTDIAG and
FMCORE we conducted a performance analysis for both al-

Algorithm 3 FMCORE(S): ∆

{S: the (redundant constraint set)}
{S: the complement of S}
{∆: set of redundant constraints}
Stemp ← S;
for all ci in Stemp do

if isInconsistent((Stemp − {ci}) ∪ {¬cj}) then
Stemp ← Stemp − {ci};

end if
end for
return Stemp;

gorithms on the basis of different feature models provided by
the S.P.L.O.T. repository. The results of this analysis are pre-
sented in the following section.

5 Performance Evaluation
For evaluation purposes we selected different feature models
offered by the S.P.L.O.T. repository: Car Selection (Table 2),
SmartHome V. 2.2. (Table 3), and Xerox (Table 4). In order
to evaluate the performance of FASTDIAG, we randomly in-
serted additional cross-tree constraints in the feature models
for inducing inconsistencies which could then be exploited
for determining minimal diagnoses. For a systematic eval-
uation we generated different versions of the (inconsistent)
feature models which differed in terms of their inconsistency

122 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

Feature Model: Xerox #Variables: 172 #Constraints:205
Diagnoses Inconsistency Rate

2% (140 diagnoses) 5% (84 diagnoses) 7% (55 diagnoses)
FASTDIAG HSDAG FASTDIAG HSDAG FASTDIAG HSDAG

1 1638 3354 1260 2996 1740 3023
2 2013 6646 1710 3167 2050 3203
3 2262 12106 1970 9454 2330 9544
4 2434 12355 2180 9536 2580 9654
5 2637 28111 2341 12044 2790 12165
10 3417 69950 2921 64631 3330 65240
20 4758 75317 3911 90715 5010 91726
all 46785 >100000 17301 >100000 10541 >100000

Table 4: Evaluation of FASTDIAG and HSDAG with the Xerox feature model from S.P.L.O.T.

Feature Model #Variables #Constraints Redundancy Rate Runtime (ms)
Car Selection 72 96 0.64 5070

SmartHome V. 2.2 61 63 0.29 1907
Xerox 172 205 0.71 3261

Table 5: Evaluation of FMCORE with selected S.P.L.O.T. feature models.

rate (see Formula 1) which was categorized in {2%, 5%, 7%}.
We used a random variable to control the degree of generated
inconsistencies (the number of conflicts) in a feature model.
As reasoning engine we used the CHOCO constraint solving
library.4 In order to import feature models to our environment
we implemented a parser that generated CHOCO knowledge
bases from S.P.L.O.T. SXFM based feature models.

Inconsistency Rate =
#conflicts in FM

#constraints in FM
(1)

The performance tests were executed within a Java appli-
cation running on a 64bit Windows 7 desktop PC using 8GB
RAM and an Intel(R) Core(TM) i5-2320 CPU with 3.0GHz.
Each run of the diagnosis algorithm for a specific setting
has been repeated 10 times were in each run the ordering of
the constraints was randomized. For each setting we eval-
uated the runtime (in ms) of both, the standard hitting set
based approach to the termination of diagnoses [Reiter, 1987]
(HSDAG) and FASTDIAG. As scenario we choose the diag-
nosis of void feature models where we induced different de-
grees of inconsistency (based on the inconsistency rate mea-
sure – see Formula 1). The upper bound for the evaluation
time was set to 100.000 ms – in the case that this upper limit
was exceeded, the search was stopped.

If one or a few diagnoses are required (which is typical
for interactive settings) then FASTDIAG outperforms the stan-
dard HSDAG approach in most of the cases. If all diagnoses
are required, for example, in situations where diagnoses are
computed offline, the standard HSDAG approach seems to be
the better choice. We want to emphasize that the presented di-
agnosis algorithms are independent of the underlying reason-
ing mechanisms, i.e., beside using a basic constraint-based
approach for supporting the reasoning tasks (mainly consis-
tency checking), description logics or SAT-based approaches

4www.emn.fr/z-info/choco-solver.

can be applied as well. Finally, we also evaluated the perfor-
mance of the redundancy detection algorithm FMCORE (see
Table 5). Our goal was to figure out for the selected feature
models to which extent the constraints in the feature models
are redundant. We measured redundancy in the terms of the
redundancy rate (see Formula 2).

Redundancy Rate =
#redundant constraints in FM

#constraints in FM
(2)

The outcome of this analysis was that all the investigated
feature models showed quite different degrees of redundancy
(see Table 5). However, we consider these as preliminary
results and further analyses have to be conducted, for exam-
ple, we are interested in intra-constraint redundancies and the
share of redundancy in cross-tree constraints with regard to
the overall number of constraints in the feature model.

Note that the FMCORE algorithm is especially useful in
situations where models are developed by one or a few en-
gineers. In this case the degree of redundant constraints in
the model is low. For scenarios with high redundancy rate,
alternative algorithms have already been developed (see, e.g.,
[Felfernig et al., 2011]).

6 Conclusions
In this paper we presented a consistency-based approach to
explaining anomalies in feature models. We introduced defi-
nitions which are useful for the explanation of anomalies and
discussed the corresponding algorithms which help to deter-
mine minimal diagnoses (FASTDIAG) and minimal sets of
non-redundant constraints (FMCORE). Our future work will
focus on: (1) The definition of further anomaly patterns in
alternative knowledge representations such as advanced fea-
ture models [Batory, 2005] and UML models [Felfernig et
al., 2000]. Due to higher expressiveness, these representa-
tions include further anomaly patterns such as multiplicity

Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank 123

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria

bounds which can not represented by configurations, unsat-
isfiable preconditions in constraints, and unexplained incom-
patibilities. (2) The development of mechanisms for the auto-
mated generation of test cases for feature models. (3) Further
algorithms that enable the determination of diagnoses and re-
dundancies on an intra-constraint level. (4) Evaluation of the
developed algorithms with further benchmarks.

References
[Bakker et al., 1993] R. Bakker, F. Dikker, F. Tempelman,

and P. Wogmim. Diagnosing and solving over-determined
constraint satisfaction problems. In Proceedings of IJCAI-
93, pages 276–281. Morgan Kaufmann, 1993.

[Batory et al., 2006] D. Batory, D. Benavides, and A. Ruiz-
Cortes. Automated analysis of feature models: challenges
ahead. Comm. of the ACM, 49:45–47, 2006.

[Batory, 2005] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In H. Obbink and K. Pohl, edi-
tors, Software Product Lines Conference, volume 3714 of
LNCS, pages 7–20. Springer, 2005.

[Benavides et al., 2010] D. Benavides, S. Segura, and
A. Ruiz-Cortes. Automated analysis of feature models
20 years later: A literature review. Information Systems,
35:615–636, 2010.

[Benavides et al., 2013] D. Benavides, A. Felfernig,
J. Galindo, and F. Reinfrank. Automated Analysis in
Feature Modelling and Product Configuration. In 13th
International Conference on Software Reuse (ICSR 2013),
number 7925 in LNCS, pages 160–175, Pisa, Italy, 2013.

[Chandola et al., 2009] V. Chandola, A. Banerjee, and
V. Kumar. Anomaly detection: A survey. ACM Computing
Surveys, 41:15:1–15:58, July 2009.

[Czarnecki et al., 2005] K. Czarnecki, S.Helsen, and
U.Eisenecker. Formalizing Cardinality-based Feature
Models and their Specialization. SoftwareProcess:
Improvement and Practice, 10(1):7–29, 2005.

[Felfernig et al., 2000] A. Felfernig, G. E. Friedrich, and
D. Jannach. UML as Domain Specific Language for the
Construction of Knowledge-based Configuration Systems.
International Journal of Software Engineering and Knowl-
edge Engineering, 10(4):449–469, 2000.

[Felfernig et al., 2004] A. Felfernig, G. Friedrich, D. Jan-
nach, and M. Stumptner. Consistency-based diagnosis
of configuration knowledge bases. Artificial Intelligence,
152(2):213 – 234, 2004.

[Felfernig et al., 2011] A. Felfernig, C. Zehentner, and
P. Blazek. Corediag: Eliminating redundancy in constraint
sets. In 22nd International Workshop on Principles of Di-
agnosis, pages 219–224, Murnau, Germany, 2011.

[Felfernig et al., 2012] A. Felfernig, M. Schubert, and C. Ze-
hentner. An efficient diagnosis algorithm for inconsistent
constraint sets. AI for Engineering Design, Analysis, and
Manufacturing (AIEDAM), 26(1):53–62, 2012.

[Felfernig, 2007] A. Felfernig. Standardized configuration
knowledge representations as technological foundation for

mass customization. IEEE Transactions on Engineering
Management, 54:41–56, 2007.

[Fleischanderl, 2002] G. Fleischanderl. Suggestions
from the software engineering practice for applying
consistency-based diagnosis to configuration knowledge
bases. In 13th Intl. Workshop on Principles of Diagnosis
(DX-02), pages 33–35, Semmering, Austria, 2002.

[Junker, 2004] U. Junker. QuickXPlain: preferred explana-
tions and relaxations for over-constrained problems. In
Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI 2004, pages 167–172. AAAI, 2004.

[Kang et al., 1990] K. Kang, S. Cohen, J. Hess, W. No-
vak, and S. Peterson. Feature-oriented Domain Analysis
(FODA) – Feasibility Study. TechnicalReport CMU – SEI-
90-TR-21, 1990.

[Mendonca and Cowan, 2010] M. Mendonca and D. Cowan.
Decision-making coordination and efficient reasoning
techniques for feature-based configuration. Science of
Computer Programming, 75(5):311 – 332, 2010. Coordi-
nation Models, Languages and Applications(SAC 2008).

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, 1987.

[Segura et al., 2010] S. Segura, R. Hierons, D. Benavides,
and A. Ruiz-Cortes. Automated test data generation on
the analyses of feature models: A metamorphic testing ap-
proach. In 3rd Intl. Conference on Software Testing, Veri-
fication and Validation (ICST), pages 35–44, 2010.

[Trinidad et al., 2008] P. Trinidad, D. Benavides, A. Duran,
A. Ruiz-Cortez, and M. Toro. Automated error analysis
for the agilization of feature modeling. Journal of Systems
and Software, 81:883–896, 2008.

[Tsang, 1993] E. Tsang. Foundations of Constraint Satisfac-
tion. Academic Press, London, 1993.

[von der Massen and Lichter, 2004] T. von der Massen and
H. Lichter. Deficiencies in Feature Models. In T. Mannisto
and J. Bosch, editors, Workshop on Software Variability
Management for Product Derivation, 2004.

[Wang et al., 2010] B. Wang, Y. Xiong, Z. Hu, H. Zhao,
W. Zhang, and H. Mei. A dynamic-priority based approach
to fixing inconsistent feature models. In D. Petriu, N. Rou-
quette, and O. Haugen, editors, Model Driven Engineer-
ing Languages and Systems, volume 6394 of LNCS, pages
181–195. Springer Berlin, 2010.

[White et al., 2010] J. White, D. Benavides, D. Schmidt,
P. Trinidad, B. Dougherty, and A. Ruiz-Cortes. Automated
diagnosis of feature model configurations. Journal of Sys-
tems and Software, 83(7):1094–1107, 2010.

124 Alexander Felfernig , D. Benavides, J. Galindo, F. Reinfrank

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria

