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Abstract

This paper deals with mass customization and the
association of the product configuration task with
the planning of its production process while trytog
minimize cost and cycle time. Our research aims at
producing methods and constraint based tools to
support this kind of difficult and constrained prob
lem. In some previous works, we have considered an
approach that combines interactivity and optimiza-
tion issues and propose a new specific optimization
algorithm, CFB-EA (for constraint filtering based
evolutionary algorithm). This article concerns an
improvement of the optimization step for large prob

requirements are then used to support the optiroizaif
both product and production process.

Given this problem, product performance, processlecy
time and process plus product cost can be optimiaed
therefore deal with a multi-criteria problem and goal is
to propose to the user solutions belonging to theetd
front. For simplicity we only consider cycle timadtotal
cost (product cost plus process cost), consequérelywo-
step process can be illustrated as shown in figjure
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lems. Previous experiments have highlighted that
CFB-EA is able to find quickly a good approxima-
tion of the Pareto Front. This led us to propose to
split the optimization step in two sub-steps. Fiest
“rough” approximation of the Pareto Front is quickl
searched and proposed to the user. Then the user in
dicates the area of the Pareto Front that he és-int
ested in. The problem is filtered in order to raist
the solution space and a second optimization step i
done only on the focused area. The goal of the arti
cle is to compare thanks to various experimentation
the classical single step optimization with the two
sub-steps proposed approach.

1 Introduction

This article is about the concurrent optimizatidrpooduct
configuration and production planning. Each probléan
considered as a constraint satisfaction problemPjCGghd
these two CSP problems are also linked with sone co
straints. In a previous paper [Pitiet al., 2013], we have
shown that this allows to consider a two-step psscéi)
interactive configuration and planning, where
negotiable user requirements (product requirememd
production process requirements) are first procksisanks
to constraint filtering and reduce the solutioncepéii) op-
timization of configuration and planning, where ogégble

T >
Initial solution space

non-

T >

Sclution space fine with the user Pareto optimal solutions space

i fine with the user

Step 1 - Interactive Step 2
Configuration ——») Response
Planning optimization

Nen-negotiable
Requirements

Negotiable
Requirements

S

Figurel - Two-step process

user

Some experimental studies, reported last yearofRitial.,
2012], discusses optimization performance accordimg
problem characteristics (mainly size and constrégnel).
That last paper proposes to divide the step 2 (@ &ent
computation) in two tasks, particularly in the caddarge
problems: (i) a first rough computation that pertoihave a
global idea of possible compromises (ii) a seconmhmuta-
tion on a restricted area that is selected by s®e.('he goal
of this article is to present experimental restittst show
that this idea allows to significantly reducing iopkzation
duration while improving optimization quality.

In this introduction, we clarify with a very simpéxample
what we mean by concurrent configuration and plagni
problem and relevant optimization needs. Then tuosd
section formalizes the optimization problem, présethe
optimization algorithm and describes the experimlent
study. The third section is dedicated to variouyseeixnenta-
tions.
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1.1 Configuration and planning processes.

Many authors, since [Mittal and Frayman, 1989],ifi8een

et al., 1998] or [Aldanondcet al., 2008] have defined con-

figuration as the task of deriving the definitiohaospecific
or customized product (through a set of propertms)-
assemblies or bill of materials, etc...) from a generod-
uct or a product family, while taking into accolggecific

customer requirements. Some authors, like [SchiErh(

2001], [Bartaket al., 2010] or [Zhanget al. 2013] have
shown that the same kind of reasoning process eatob-
sidered for production process planning. They toeee
consider that deriving a specific production plapdra-
tions, resources to be used, etc...) from some ddrgeneric
process plan while respecting product charactesiséind

customer requirements, can define production planni

Many configuration and planning studies (see faareple
[Junker, 2006] or [Laborie, 2003]) have shown teath

problem could be successfully considered as a @nst

satisfaction problem (CSP). We proposed to assothsm
in a single CSP in order to process them concuyrent

This concurrent process and the supporting comnstrai

framework present three main interests. First thdgw

considering constraints that links configurationl atanning
in both directions (for example: a luxury produictigh re-
quires additional manufacturing time or a giveneassly

duration forbids the use of a particular kind ofngmnent).
Secondly they allow processing planning requireimenen
if product configuration is not completely definednd

therefore avoid the traditional sequence: configumaduct
then plan its production. Thirdly, CSP fit very Weh one
side, interactive process thanks to constraingrfillg tech-
niques, and on the other side, optimization thaaksrious
problem-solving techniques. However, we assumaitefi
capacity planning and consider that productioraismthed
according to each customer order and productionapis

adapted accordingly.

In order to illustrate the problem to solve we tettee very
simple example, proposed in [Pitiet al., 2012], dealing
with the configuration and planning of a small @aifhe
constraint model is shown in figure 2. The planéé$ined
by two product variables: number of seats (Seaissiple
values 4 or 6) and flight range (Range, possiblaesa600
or 900 kms). A configuration constraint Ccl forbaglane
with 4 seats and a range of 600 kms. The produgtioness
contains two operations: sourcing and assemblingtel
Sourc and Assem). Each operation is described bypiw-
cess variables: resource and duration: for sourdimg re-
source (R-Sourc, possible resources “Fast-S” atayS”)

and duration (D-Sourc, possible values 2, 3, 4e6ks), for
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linking seats with sourcing, Cpl (Seat, R-SourcS@+c),
and a second one linking range with the assemb{ipg
(Range, R-Assem, D-Assem). The allowed combinatafns
each constraint are shown in the 3 tables of figuaed lead
to 12 solutions for both product and productioncess.

Range
600, 900

R-sourc D-Sourc R-Assem D-Assem
Slow-S.Fast-S 2,3,4,6 [Norm-A,Quic-A 4,5,6,7
L
Seats RSourc  D-Sourc Seats Range Range R-Assem D-Assem
4 Slow-5 4 4 900 600 Nom-A 5
4 Fast-S 2 6 600 600 Quic-A 4
6 Slow-8 6 6 900 900 Norm-A 7
6 Fast-S 3 900 Quic-A 6

Cp1 (Seat, R-Sourc, D-Sourc),

Cc1(Seats, Range) Cp2 (Range, R-Assem, D-Assem)

Figure 2 - Concurrent configuration and planning CSP model

1.2 Optimization needs

With respect to the previous problem, once theasust or
the user has provided his non-negotiable requirésnée is
frequently interested in knowing what he can geeims of
price and delivery dates (performance is not cared any
more). Consequently, the previous model must beatigod
with some variables and numerical constraints ienito
compute the two criteria. The cycle time matchesehding
date of the last production operation of the camfégl prod-
uct. Cost is the sum of the product cost and psocest.

R-sourc
Slow-S.Fast-S

100, 110,120,130

C-Seats Seats C-Range Range
90 4 40 600
120 8 &0 900

Cs1 (C-Seats, Seats) Cs2 (CRange, Range)

C-Sourc  R-Sourc  D-Sourc C-Assem R-Assem D-Assem
60 Slow-5 4 100 Norm-A ]
80 Fast-S 2 120 Quic-A 4
70 Slow-5 & 10 Horm-A 7
90 Fast-3 3 130 Quic-A &

Cs3 (C-Sourc, R-Sourc, D-Sourc), Cs4 (C-Assem R-Assemn D-Assem)

Figure 3 - CSP model to optimize
The model of figure 2 is completed in figure 3. Fmst,

each product variable and each process operatiagsisci-
ated with a cost parameter and a relevant costreamts (C-

assembling, the resource (R-Assem, possible ressurcgeats Cs1), (C-Range, Cs2), (C-Sourc, Cs3) ankseem,

“Quic-A" and “Norm-A") and duration (D-Assem, pobis
values 4, 5, 6, 7 weeks).

Two process constraints linking product and process-
bles modulate configuration and planning possibgit one
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cs4) detailed in the tables of figure 3.

The total cost and cycle time are obtained wittumearical
constraint as follows:

Total cost = C-Seats + C-Range + C-Sourc AgSem.
Cycle time = D-Sourc + D-Assem
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The twelve previous solutions are shown on therégd
with the Pareto front gathering the optimal ondse goal of
this article is to improve the computation of tR@reto front
with respect to the user preference.

420
Total cost: k€
400 *
380 - -
...

360 "o *

1

LS

o
340 - <
\\
320 *
406 Cycle Time : weeks
5 7 9 1 13 15

Figure 4 — Problem solutions and Pareto front

2 Optimization problem and techniques

The optimization problem is first defined, and thtee op-
timization algorithm that will be used is describ&thally,
the experimental process is introduced.

2.1 Optimization problem

The optimization problem can be generalized as dhe
shown in figure 5.

Product cost variables

b
u

Process variables
CpC “ *

Process cost variables

®

Figure5 — Constrained optimization problem

The constrained optimization problem (O-CSP) isircbef
by the quadruplet <V, D, C, f > where V is the skteci-
sion variables, D the set of domains linked to whdables
of V, C the set of constraints on variables of \d drthe
multi-valued fitness function. The set V gatheh& product
variables and the resource process variables (svarasthat
duration process variables are deduced from prodndt
resource). The set C gathers: only configurationstraints
(Cc) and process constraints (Cp). The variablesatipn
durations and cycle time are linked with a numéramn-
straint that does not impact solution definitiord aherefore
does not belong to V and C. The same applies tptbe-
uct/process cost variables and total cost, whieh liaked
with cost constraints (Cs) and total cost constsaiifhe
filtering system allows dynamically updating thentlin of
all these variables with respect to the constraifite varia-
bles belonging to V are all symbolic or at leasicdite. Du-
ration and cost variables are numerical and coatiau
Therefore, constraints are discrete (Cc), numerfcgtle
time and total cost) or mixed (Cp and Cs). Discrede-
straints filtering is processed using a conventi@ma con-
sistency technique [Bessiere, 2006] while numeriah-
straints are processed using bound consistencynfibinm
1993].

2.2  Optimization algorithm

A strong specificity of this kind of optimizatiorrgblem is
that the solution space is large. [Amilhastre e2802] re-
port that a configuration solution space of morenth
1.4*10" is required for a car-configuration problem. When
planning is added, the combinatorial structure baoome
huge. Another specificity lies in the fact that tbteape of
the solution space is not continuous and, in mesks,
shows many singularities. Furthermore, the muiteda
problem and the need for Pareto optimal results adse
strong problem expectations. These points expléiyp most
of the articles published on this subject, as franeple
[Hong et al., 2010] or [Liet al., 2006] consider genetic or
evolutionary approaches to deal with this problémthis
article we will use “CFB-EA” (for Constraint Filterg
Based Evolutionary Algorithm) a promising algorittthrat
we have designed specifically for this problem.

CFB-EA is based on the SPEA2 method [Zitz&tral.,
2001] which is one of the most useful Pareto-baseth-
ods. It's based on the preservation of a seleaifdmest so-
lutions in a separate archive. It includes a penfog evalu-
ation strategy that brings a well-balanced popaoitatiensity
on each area of the search space, and it useslaaeatrun-
cation process that preserves boundary solutioansures
both a good convergence speed and a fair presemvafi
solutions diversity.

To deal with constrained problems, we completed thi
method with specific evolutionary operators (irliation,
uniform mutation and uniform crossover) that presdea-
sibility of generated solutions.
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This provides the six steps following approach:
1. |Initialization of individual set that respect th®ne
straints (thanks to filtering),
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tion, (ii) we have an user who can possibly refirecriteria
requirements with regard to the solutions obtaideadng
optimization process ; (iii) CFB-EA is relevant fire range

2. Fitness assignment (balance of Pareto dominance ad concurrent configuration and planning problemguired

solution density)

Individuals selection and archive update

Stopping criterion test

Individuals selection for crossover and mutatioerap

tors (binary tournaments)

6. Individuals crossover and mutation that respecttire
straints (thanks to filtering)

7. Return to step 2.

akrw

For initialization, crossover and mutation opersfogach
time an individual is created or modified, everyngddeci-
sion variable of V) is randomly instantiated ints current
domain. To avoid the generation of unfeasible ittlisls,
the domain of every remaining gene is updated Imgtraint
filtering. As filtering is not full proof, inconsient individu-
als can be generated. In this case a limited baak{process
is launched to solve the problem. This approachsnibe
need any additional parameter tuning for constraim-
dling. In the following, we will briefly remind thprinciples
and operators used in CFB-EA.

Many research studies try to integrate constramisA. C.
Coello Coello proposes a synthetic overview in [Maz
Montes and Coello Coello 2011]. The current tendEnn
the resolution of constrained optimization probleising
EAs are penalty functions, stochastic rankexgpnstrained,
multi-objective concepts, feasibility rules and cipkopera-
tors. CFB-EA belongs to this last family.

The special operators class gathers methods th&b tleal
only with feasible individuals like repairing methg
preservation of feasibility methods or operatort threove
solutions within a specific region of interest viiththe
search space as for example the boundaries ofetimbie
region. Generally and has we verified on our kgteri-
mentations, these methods are known to be perfgrom
non-over-constrained problems (i.e. a feasiblet&oiucan
be obtained in a reasonable amount of time to be tab
generate a population of solutions).

CFB-EA aims at preserving the feasibility of thdiinduals
during their construction or modification. Proposgrcific
evolutionary operators prune search space usingtreomt
filtering. The main difference between our approacid
others is that we do not have any infeasible smbutih our
population or archive. Each time we modify an indial,
the constraints filtering system is used in orderverify
consistency preservation of individuals.

Previous experimentations [Pitietal., 2012] allowed us to
verify that the exact approaches are limited tdjams of
limited size and that CFB-EA is completely competitfor
the level of constraint of the models which intéres. In
this article, we propose a new two sub-step optition
approach that takes advantage of the three follpwirarac-
teristics: (i) EA are anytime algorithms, e.g. thoey supply
a set of solutions (Pareto Front) at any time dft#ializa-

(size and constraints level) and more particuldarban pro-
pose, in a reasonable amount of time, a good ajpadion
of the Pareto Front that allows the user to dealoleut his
own cost/cycle time compromise.

2.3 Two-task optimization approach.

As explained in the introduction, the goal of thiticle is to
evaluate, for large problem, the interest of replgcthe
single shot Pareto front computation by two sudwess
tasks: (i) a first rough computation that providgeglobal
idea of possible compromises (ii) a second comjmtatn a
restricted area selected by the user.

This is shown in the illustration of figure 6. Thedt part of
figure 6 shows a single shot Pareto. The right phfigure
6 shows a rough Pareto quickly obtained (first Yagi-
lowed by a zoom selected by the user (max costnasx
time) and a second Pareto computation only onréssict-
ed area (second task). The restricted area isnglatdiy con-
straining the two criteria total cost and cyclediffor inter-
esting area) and filtering these reductions on hmle
problem.

Total cost Total cost
max cost
7 ~ -
Yoo\ \ l 2" Pareto on
\ i \V restricted area
t v
\ "1 \|
\ \
\\ Single shot \ Rough It Pareto
\A/ Pareto
. rT‘BXE%‘e \\\'\
— iy
Cycle time Cycle time”

Figure 6 — Single shot and two-task optimization principles

The second optimization task does not restart fsonatch.

It benefits from the individuals of the archiveth&longs to
the restrained area founded during first task. Ves tre-
placed the initialization of our CFB-EA (constituti of the
first population) by a selection of a set of thettsolutions
obtained during the first rough optimization.

This provides the following process:

1. Interactive configuration and planning using fion
negotiable requirements of the user (as before),

2.1 - ' global optimization task on negotiable requirersent
of the user

2.2 - 29 optimization on interesting area initialized with
individuals of the previous step.
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3 Experimentations

3.1 Mode used and performance measure

The goal of the proposed experiments is to compzee
two optimization approaches (single-shot and tvei-tap-
timization approaches) in terms of result qualitd @ompu-
tation time. In terms of quality we want to comp#re two
fronts and will use the Hypervolume measuremenp@sed
by [Zitzler and Thiele 1998] which is illustratedl figure 7.
It measures the hypervolume of the space dominayed
set of solutions. It thus allows evaluating botimwergence
and diversity proprieties (the fittest and mostedsified set
of solutions is the one that maximizes hypervolumig)
terms of computation time, we want to evaluate af@iven
Hypervolume result the time reduction provided bg se-
cond approach.

Worst Point W

Max_cost

C;= (Costi-Max_cost)* (time-Max_time)

| .
Pareto
individual Lﬁ

R
#= g
i=d

Global Cost

]

Cycle time Max_time

Figure7 — Hyper volume definition

In terms of problem size, we consider a model ddifall_

aircraft” that gathers 92 variables (symbolic, ggeor float

variables) linked by 67 constraints (compatibiligbles,

equations or inequalities). Among these variables,find

21 decision variables that will be manipulated bg bpti-

mization algorithms (chromosome in EAS):

- 12 variables (each with 6 possible discrete valties)
describe product customization possibilities,

- 9 variables (each with 9 possible discrete valdles)
describe production process possibilities. In fadog

47

- Aircraft_zoom_1: area that correspond to solutiwith
a cycle time less than 410 (solutions with shortgste
times),

- Aircraft_zoom_2: area that correspond to solutiwith
a cycle time less than 470 and a total cost lems ®35
(compromise solutions),

- Aircraft_zoom_3: area that correspond to solutiaite
a total cost less than 475 (solutions with lowesalt
costs).

T30

o0

Totad cost

Cycle tme

® Archave after 3 hours + Final Archive after 24 hours.

Figure 8 —Pareto-fronts obtained on “full aircraft modeftea 3
and 24 hours of computation

These three areas correspond with a division offithed

Pareto front obtained after 24h of computatiorhie¢ equal
parts. These areas have been selected in ordemtoate
performance of the proposed two-task approachjtkalso
corresponds with some classical preference of a wke

could wish: (i) a less expensive plane, (ii) a slegcle time,
(iii) a compromise between total cost and cycleetirive
will discuss this aspect in section 3.3.

The optimization algorithms were implemented in Goreo-

gramming language and interacted with the filtesygtem
coded in Perl language. All tests were done usitaptop
computer powered by an Intel core i5 CPU (2.27 Gimty

one CPU core is used) and using 2.8 Go of ram.

3.2 Two-task approach evolutionary settings

For a first experimentation of the two-task appiare use
classical evolutionary settings (e.g. the same wialary
settings used for the single-shot approach: Padpulaize:

nine values aggregate 3 resource types and 3 resour30, Archive size: 100, Individual Mutation Probatyil 0.3,
quantities for each of the 9 process operations th4>ene Mutation Probability: 0.2, Crossover Probgbild.8).

compose the production process.
Without any constraints, this provides a numbepagdsible
combinations around (= 6'x 9°). An average constraint
level (around 93% of solutions rejected) allows*TCB°
feasible solutions. Results of experimentation’shwother
model sizes and other constraint levels can beutigasin
[Pitiot et al., 2012].

Figure 8 shows the Pareto Fronts obtained with ERB-
after 3 and 24 hours of computation. The rough B&rent

obtained after 3 hours of computation allows therus

decide in which area he is interested in. In thet rseib-

section, we will study a division of this Paretorft in three
restricted area:

The main difference with the single-shot approagiwith
the backtrack limit (e.g. number of allowed backkran
mutation or crossover operator). This limit hasrbeet to
100 in the one-shot approach and to 30 in the tep-ap-
proach.

Indeed in the two-step approach, it could be tim@saming
to obtain a valid solution. For example with thegse-shot
optimization, only 2.5% of filtered individuals weunfea-
sible and none of them were abandoned; while \kighttvo-
task approach and a lower backtrack limit, aroufa af
filtered individuals were unfeasible and 0.3% dérthwere
abandoned. So a lower backtrack limit reduces ime t
spend to try to repair unfeasible individuals.
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The only other difference between single-shot CHB&ad
two-task CFB-EA is the stopping criterion. Whiledimgle-
shot approach, we use a fix time limit (24hourkg two-
task approach uses a bcondition stopping teststioats ei-
ther if there is no HV improvement after 2 hoursafier 12
hours of computation (that must be added to theetlmitial
hours for getting the rough Pareto Front).

3.3 Experimental results

The goal of this section is to evaluate the twd-@stimiza-
tion on the three selected areas of figure 8 (z&pzoom 2
and zooma3) with respect to the single-shot optitioza

First result illustrations

Figure 9 illustrates an example of the Pareto &dhat can
be obtained on the zoom 1 area :

- rough Pareto obtained after 3 hours (fig 9 sg)are

- two-task, after 3+12 hours (fig 9 triangles),

- single-shot, stopped after 24 hours (fig 9 diad®)n

750

B
8 ]
I
3 700
® L}
L}
650 * -
YW ow, [}
600
*
»
& % ey ovy ‘ﬁ. [ ]
550 *U . vy =
500
330 340 350 360 370 380 390 400 410

m Archive after 3 hours Cycle time

v Final archive on zoom after 12hours (3h+9h only on zoomed area)
+ Final Archive after 24 hours

Figure 9 —Example of Pareto fronts obtained on zoom1

The Pareto Fronts obtained by the two approachieglés
shot and two-task) are very close when the cyclgresiter
than 355. For lower cycle times, the proposed tagktap-
proach is a little better. However, these curvesespond
with a specific run. In order to derive strongenclasions,
10 executions of the two approaches have beenwachier
each of the three zoom areas.

Detailed comparisons

Detailed experimental results achieved on the tta@sm
areas are presented in figure 10 and table 1.

On each graph of figure, the vertical axis corresisato the
hyper volume (average of ten runs) reach and hot@@ne
is the time spent. At time 0, the single-shot optation is
launched (dotted line). After 3 hours (10800 sesdnd

- the single-shot keeps going on (dotted line),

- the two-task is launched (solid line).

The table provides numeric results for each zooga.afhe
columns display the single-shot, two-task and %afap

- average final hypervolume,
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- average % standard deviation of hypervolume
- average computation time,
- average % standard deviation of computation time,
- maximum value of hypervolume.
7000

6000

Total cost

5000

4000

3000
2000

1000

04
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

—Average HV on zoom1 area with zoomed CFB-EA Cycle time
---Average HV on zoom1 area with global CFB-EA

2000

D
§ 1800
g 1600
= 1400
1200
1000
800
600
400
200
0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
—Auverage HV on zoom2 area with zoomed CFB-EA Cycle time
---Average HV on zoom2 area with global CFB-EA
" 2000
g 1800
T 1600
O
L2

1400
1200
1000
800
600
400
200

0 =
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
—Average HV on zoom3 area with zoomed CFB-EA Cycle time
---Average HV on zoom3 area with global CFB-EA

Figure 10 — Evolution of hypervolume

In terms of quality, the new proposed approach ek
optimization) allows to obtain a similar performanwith
respect to single-shot one:

- 0.4% worse on zooml

- 1% worse on zoom?2

- 4% better on zoom3

but in around half of computing time:

- 13 h instead of 24h for on zoom1

- 13.5h instead of 24h for on zoom2

- 10.5h instead of 24h for on zoom 3.

Furthermore, this computing time includes the 2rkhoof
computation without any hypervolume reduction befor
stopping (stopping criterion of the two-task apiga
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It can be seen on the figurel0 that when the sisigtt
CFB-EA has trouble to obtain a good Pareto Fromtndu
the first three hours, the more the two-task CFBi&Ager-
forming. On zoom1 area, single-shot CFB-EA readlets
tively quickly a near-final Pareto Front; while @oom3
area, it reaches it very slowly.

Single-shot Two-task .
CFBEA CFBEA gap in %
Average
Final HV 5849 5823 -0.4
Average o 0
E HV RSD 3.8% 5.1%
8| Total
NI ime 86400(24h) 47996 (=13h) -44.6
Total
time 0 15%
RSD
Max HV 6043 6057 0.2
Single-shot Two-task .
CFBEA CFBEA gap in %
Average
Final HV 1758 1740 -1.
Average o o
%1 HV RSD 2.1% 2.3%
8| Total
N time 86400(24h) 48501 (=13.5h) -44
Total
time 0 16%
RSD
Max HV 1795 1776 -1
Single-shot Two-task .
CFBEA CFBEA gap in %
Average
Final HV 1765 1844 4.4
Average o o
oé HV RSD 3.16% 0.07%
8| Total
N time 86400(24h) 38185 (=10.5h) -55.9
Total
time 0 26%
RSD
Max HV 1831 1845 0,7

Table 1. Comparison of the two approaches

4 Conclusions

The goal of this paper was to evaluate a new opétign
principle that can handle concurrent configuratim plan-
ning. First the background of concurrent configimmatand
planning has been recalled with associated constai
modeling elements. Then an initial optimization ra@eh
(single-shot CFB-EA) was described followed by the-
task approach object of this paper.

Instead of computing a Pareto Front on the wholetiso
space, the key idea is: to compute quickly a roBgheto
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Front, to ask the user about an interesting areh tm
launch Pareto computation only on this area.

According to experimental results, in terms of comation
time, the new two-task approach allows a signifidéme
saving around half of the previous time neededhgydin-
gle-shot optimization approach. In terms of qualidyper-
volume computation are very close or even a litéter in
some case.

Furthermore, these results have been obtained m@athar
large problem that contains around100"’ solutions. With
smaller problems, the proposed approach shouldoerf
much better. We are already working on a more e&ien
test (different model size and different level ohstraints)
as we did in [Pitiotet al., 2012]. Another key aspect that
needs to be study is to find a way to define theghoPareto
computation time.
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