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Abstract
Knowledge-based configuration has been used for
numerous applications including natural language
processing (NLP). By formalising property gram-
mars as a configuration problem, it has been shown
that configuration can provide a flexible, non-
deterministic, method of parsing natural language.
However, it focuses only on syntactic parsing. In
contrast, configuration is usually performed using
knowledge about a domain and is semantic in na-
ture. Therefore, we argue that configuration has
the potential to be used, not only for syntactic pro-
cessing, but for the semantic processing of natural
language, effectively supporting Natural Language
Understanding (NLU).
In this paper, we propose an approach to NLP that
applies configuration to the (partial) domain model
evoked by the processing of a sentence. This has
the benefit of ensuring the meaning of the sentence
is consistent with the existing domain knowledge.
Moreover, it allows the dynamic incorporation of
domain knowledge in the configuration model as
the text is processed. We demonstrate the approach
on a business specification based on the Semantics
of Business Vocabulary and Rules.

1 Introduction
Knowledge-based configuration has been used in numerous
applications. While historically used for configuring phys-
ical products, configuration has been applied to other do-
mains such as software services, software product lines, and
constraint-based language parsing [Hotz and Wolter, 2013].

In particular, [Estratat and Henocque, 2004; Kleiner et al.,
2009] have applied configuration to a translation of prop-
erty grammars (a constraint-based linguistic formalism). By
formalising property grammars as a configuration problem,
they show that configuration can provide a flexible, non-
deterministic method for parsing natural language. However,
these approaches focus on syntactic parsing by using the con-
figuration process to generate a parse tree. In contrast, con-
figuration is usually applied to domain knowledge, that is, se-
mantic processing. Furthermore, in [Kleiner et al., 2009] ad-
ditional processes are required in order to transform the parse

tree into a semantic model to make use of the domain knowl-
edge. This causes some issues in ensuring the consistency
and correctness of the domain knowledge.

In this paper we present an approach to parsing natural lan-
guage that performs semantic processing directly using con-
figuration. Instead of a model of language categories (e.g.
noun, verb, noun phrase) and the properties (or constraints)
on those categories, such as property grammars, we use a
model of domain concepts and the relations between them.
As a result, we perform natural language understanding; at
least with respect to the semantic model being used.

Our approach maintains the advantages of using configu-
ration for natural language processing, while gaining the fol-
lowing: (1) a simplified lexicon containing minimal lexical
information, (2) improved consistency of the domain knowl-
edge as the configuration process ensures its consistency dur-
ing parsing, and (3) the semantic disambiguation of terms.

As our aim is to support the translation of informal natu-
ral language business specifications into formal models, we
demonstrate our approach on an example from the business
domain. The example business specification is defined us-
ing the Semantics of Business Vocabulary and Business Rules
(SBVR) [OMG, 2008], which we use as our semantic model.
SBVR and the example are discussed in more detail later.

The remainder of this paper is organised as follows: Sec-
tion 1.1 provides a brief introduction to SBVR and its con-
cepts, Section 2 presents an example that will be used
throughout the paper, Section 3 describes our approach to
parsing natural language, Section 4 presents experimental re-
sults, Section 5 discusses related work, and Section 6 pro-
vides insight into future work and concludes the paper.

1.1 Brief overview of SBVR
The Semantics of Business Vocabulary and Business Rules
(SBVR) is a standard developed by the Object Management
Group (OMG) to facilitate the transfer of business knowledge
between business people and the technical experts respon-
sible for developing information systems for them [OMG,
2008]. It encompasses two aspects: (1) a meta-model for rep-
resenting vocabularies, facts, and rules in a machine process-
able format, and (2) a controlled English notation for repre-
senting the same vocabularies, facts, and rules more suited to
people. Therefore, SBVR supports the exchange of business
specifications between both organisations and software tools.
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The SBVR meta-model standardises concepts for the defi-
nition of business vocabularies (i.e. sets of concepts relevant
to a particular organisation or business domain) and rules re-
lating to those vocabularies. It is based on formal logic; pri-
marily first-order predicate logic with an extension in modal
logic (necessity, possibility, permissibility, and obligation).

Within the meta-model, vocabularies are defined on the ba-
sis of Meanings and Representations. They consist of sets of
interrelated object types, individual concepts, and fact types.
A distinction is made between a meaning and its representa-
tion, allowing a single concept to be represented with multiple
words (possibly in different languages), images, or sounds.

The semantic structure of business rules are formed by
the Logical Formulations aspect of the meta-model. This in-
cludes concepts for first-order logical operators (e.g. conjunc-
tion, disjunction, implication), quantification (e.g. universal,
existential, exactly n), and modal operators (e.g. necessity,
obligation). These concepts allow business people to define
structural and operative rules. Structural rules include such
rules as cardinality constraints on the relations between con-
cepts and cannot be violated, while operative rules may be
violated by a person involved in conducting the business.

2 Motivating Example
This section introduces an example that identifies the limita-
tions of existing approaches and that will be used in the re-
mainder of this paper to demonstrate our approach. It is an
extract of the EU-Rent business specification included in the
SBVR specification [OMG, 2008, Annex E].

EU-Rent is a fictional car rental company with a global
presence. The example business specification defines domain
specific vocabulary and rules for EU-Rent, its structure, and
how it conducts its business. Figure 1 shows a portion of the
vocabulary related to the organisational structure of EU-Rent.
The following is a structural rule, based on this vocabulary,
that defines a cardinality constraint on the part-of relationship
between a ‘branch’ and a ‘local area’.

(1) Each branch is included in exactly one local area.

rental organisation unit
Definition: organisational unit that operates part of EU-Rent’s
car rental business

rental organisation unit having rental responsibility
Definition: . . .the rental organisation unit is responsible for the
operation of customer-facing rental business

rental organisation unit having area responsibility
Definition: . . .the rental organisation unit includes organisation
units for which it has the responsibility to coordinate operations
and ensure resources

local area
Definition: rental organisation unit . . . .that has area responsibility

branch
Definition: rental organisation unit . . . .that has rental responsibility

branch is included in local area
Synonymous Form: local area includes branch

Figure 1: Business vocabulary used by the example rule with
SBVR markup: object types, fact types, and . . . . . . . . . .keywords.

Although quite simple, this example demonstrates a num-
ber of important concepts such as nouns, verbs, and quanti-
fiers. The approach of [Kleiner et al., 2009] processes the
sentence by executing a series of model transformations that
result in a UML model of the text, using SBVR as an interme-
diate model between the natural language text and UML. The
steps up to the creation of the SBVR model are as follows:

1. a text-to-model transformation creates an Ordered
Words model that annotates the words with their posi-
tion in the sentence

2. a model-to-model transformation creates a Labelled
Words model by labelling each word with their possible
syntactic categories using a lexicon (model)

3. configuration is used to transform the Labelled Words
model into a Syntax model, performing syntactic and
grammatical analyses, and

4. a model-to-model transformation creates an SBVR
model from the Syntax model

Performing this process on the example sentence would re-
sult in the Syntax and SBVR models displayed in Figure 2.

This approach provides a flexible, non-deterministic, and
extensible method of parsing natural language [Kleiner et al.,
2009]; however, it has several issues, chiefly: (1) it is pri-
marily syntactic, (2) it requires a detailed lexicon, and (3) the
mapping to SBVR can be problematic, e.g. in the handling of
‘local area’ two correct interpretations can be conceived.

The first is the main issue as, although [Estratat and
Henocque, 2004] suggest that configuration can combine syn-
tactic and semantic analysis, it is primarily used for generat-
ing syntactic parse trees. As a result, a sentence could be syn-
tactically correct but not meaningful and, therefore, must be
linked to the semantics somehow (e.g. through a model trans-
formation to SBVR like that used in [Kleiner et al., 2009]).

Although [Kleiner et al., 2009] introduce some semantic
elements into their model (i.e. each category can be linked
to a basic element of the SBVR model1), they do so only to
ease the transformation to the SBVR model. The existence
of the SBVR elements does not provide any semantic guaran-
tees. Therefore, semantic inconsistencies need to be resolved
either during the transformation to SBVR, making it much
more complex, or by post-processing of the SBVR model.
However, this seems unnecessary if it can be achieved during
the configuration process itself.

The requirement of a detailed lexicon is more an issue
for our target application area than with the parsing method
itself. In the context of businesses creating and maintain-
ing their own sets of domain specific business vocabularies
and business rules, we do not see business people defining
detailed lexicons with linguistic information such as voice,
genre, transitivity, etc. In this application area, the business
vocabulary is more like a glossary containing domain specific
words and their definitions, like that of Figure 1, rather than
a dictionary containing detailed lexical information. There-
fore, an approach that requires less linguistic information to
be defined is required for our purposes.

1This is not shown in Figure 2a for readability.
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(a) (b)

Figure 2: Example Syntax model (a) and SBVR model (b) generated by the process of [Kleiner et al., 2009]

Finally, there are some problems with mapping the syntac-
tic tree to the SBVR semantics. Consider how the term ‘local
area’ is handled in the above example. For simplicity, ‘local
area’ is a single noun, which maps directly to the object type
‘local area’ in SBVR. However, in reality it would be consid-
ered a noun phrase, where the term ‘local’ would be used in
an adjective sense and ‘area’ would be the noun. This would
map to the object type ‘area’ with the characteristic ‘being lo-
cal’. However, in the vocabulary of EU-Rent, ‘local area’ is a
single concept and should not be decomposed in this way.

It seems a simple problem to fix: the term ‘local area’ could
be included as a noun in the lexicon, which is what would
happen if a business were defining its vocabulary. However,
unless the individual terms ‘local’ and ‘area’ were removed,
which could affect the processing of sentences in other con-
texts, it would result in two correct parses of the sentence:
one in which ‘local area’ is treated as a simple noun and one
treating it as a noun phrase. The transformation to the SBVR
model would not resolve this issue either, as both forms have
a valid mapping. Therefore, the user would have to select
the preferred mapping or the SBVR model would have to be
processed to see if either one or the other has already been
created. Either way it makes the process more cumbersome,
whereas we propose that by configuring the SBVR model di-
rectly, this problem would be avoided (as long as only one or
the other has been specified in the vocabulary).

It could be argued that this problem is a quirk of the SBVR
model as other semantic representations with a structure more
similar to the parse tree would have more direct mappings.
However, it is an important issue as SBVR has gained trac-
tion in our application domain in recent years [Nemuraite et
al., 2010; Sukys et al., 2012] and is an important part of the
OMG’s Model-Driven Architecture [OMG, 2008]. Moreover,

we will show that our proposed approach does not reduce the
flexibility with respect to the semantic representation used.

3 Parsing Process
In order to overcome these limitations we propose the use of
knowledge-based configuration on the semantic representa-
tion directly, rather than configuring a syntactical parse tree.
In this way we maintain the benefits of parsing using config-
uration, while ensuring semantic consistency and removing
a step from the process. Furthermore, this approach remains
agnostic with respect to the semantic representation used; al-
though we utilise the SBVR meta-model in this paper.

In order to avoid complex syntactical analysis, which is a
difficult problem in itself, we use an approach inspired by
Cognitive Grammar, a theory of grammar from the field of
Cognitive Linguistics [Langacker, 2008]. Cognitive Gram-
mar takes a holistic view of language, combining syntax, se-
mantics, and pragmatics into a unified whole. In particular,
our approach is based on that of [Holmqvist, 1993], which
provides a computational model of Cognitive Grammar.

In Cognitive Grammar, the meaning of an expression is
understood by combining the semantic structures evoked by
its constituent expression into a unified structure; a process
called semantic accommodation in [Holmqvist, 1993]. Evok-
ing the semantic structure of an expression is a relatively sim-
ple endeavour as the two are linked; therefore, a semantic
structure is evoked by looking up the expression in a lexicon.
As a result, our method is able to do away with traditional
syntactic analysis for a much simpler model, leaving most of
the effort in understanding the expression to be performed by
the accommodation process. With the aim of combining se-
mantic structures into a composite structure based on the al-
lowable relationships between them, the accommodation pro-
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cess is analogous to a configuration task.
The syntactic analysis and the accommodation process us-

ing configuration are detailed in the following sections. These
two processes are performed iteratively with the first using the
expectations, or placeholders in our case, to propose possible
parses of the sentence, and the second combining the seman-
tic aspects of the suggested parses into a complete structure.
The result is a progressively more detailed and complete set
of domain knowledge containing the concepts, their defini-
tions, and their associated rules.

3.1 Syntactic Analysis
The syntactic analysis of our approach is primarily the evo-
cation of semantic structures from the lexicon, taking into ac-
count grammatical dependencies. For example, in the exam-
ple expression, there are two quantifiers ‘each’ and ‘exactly
one’. If only the evoked semantic structures were known, the
configurator would not know which quantifier applies to what
concept, yet we know that ‘each’ is supposed to apply to the
term ‘branch’ and ‘exactly one’ to ‘local area’.

Traditionally, these dependencies are handled by the rela-
tionships between categories (as shown in Figure 2a). How-
ever, as this leads to complex lexicons that are not suitable
for our target application and require complex processing to
produce, we account for these dependencies using so called
grammatical expectations [Holmqvist, 1993]. Grammatical
expectations are a relatively simple model of grammatical
dependency that identify locations in an expression where
other expressions are “expected” to fill. Moreover, grammat-
ical expectations are a good match for SBVR-based seman-
tics, as they are similar to the placeholders of fact types. In
[Holmqvist, 1993], only left and right expectations were in-
troduced, which search to the left or right for another expres-
sion. We also introduced internal expectations, which search
within the span of the expression, in order to more easily deal
with SBVR fact types with more than two placeholders.

This model defines lexicon and lexical entries as follows.
Definition 1 (Lexicon). A lexicon is a tuple

l = (E,LE, lookup)
where E is a set of expressions, LE is a set of lexical entries,
and lookup : E → 2LE\∅
Definition 2 (Lexical Entry). A lexical entry is a tuple

le = (e, ss,GE, typeGE)
where e is an expression of one or more words, ss is its as-
sociated semantic structure, GE is a set of grammatical ex-
pectations, and typeGE : GE → {left, internal, right}
assigns a type to each grammatical expectation ge ∈ GE.

This definition is purposefully generic with respect to the
form the semantic structure takes. While we use the SBVR
meta-model, other semantic representations could be used.
As a result, our approach remains flexible in terms of vary-
ing the model being configured, as in [Kleiner et al., 2009].

The lexicon is partly predefined. For example, words with
explicit semantics in SBVR, such as those for quantifications,
logical operators, etc., are explicitly defined as certain ex-
pressions, semantic structures, and grammatical expectations.
Domain specific terms are provided by the vocabulary of a
business specification, e.g. a glossary of terms, which have

their semantic structures and grammatical expectations deter-
mined by the representation of object types and fact types in
SBVR. In our application domain, the vocabulary is provided
by business people, which drives our need for a simple lexi-
con with minimal information.

Using grammatical expectations, the syntactic analysis is
performed incrementally, when an expression is found to fill
an expectation (i.e. the expectation is said to catch the ex-
pression [Holmqvist, 1993]) a possible parse is proposed and
kept in a suggestion list. Since the number of suggestions
increases rapidly, the suggestion list is kept short by order-
ing the suggestions using heuristics to identify the best parse
and pruning off any suggestions over a limit and/or that are
not considered good candidates [Holmqvist, 1993]. The met-
rics used by the heuristics include: (1) catching distance, the
linear distance to the word (or combination) filling a place-
holder; (2) binding energy, the summation of all catching dis-
tances in a suggestion; (3) local coverage, the ratio of words
in the suggestion to words spanned by the suggestion; and
(4) global coverage, the ratio of words in the suggestion to all
words of the expression encountered up to the current point.

The suggestion list and suggestions are defined as follows.
Definition 3 (Suggestion List). A suggestion list SL is an
ordered set of suggestions, where each suggestion s ∈ SL is
a tuple s = (SLE,C, be, lc, gc) such that:
• SLE is a set of lexical entries or previous suggestions

included in s
• C is a set of tuples

catch = (sle1 ∈ SLE, ge, sle2 ∈ SLE, cd)
that associate a grammatical expectation, ge, of the
catching lexical entry or suggestion, sle1, to the lexical
entry or suggestion that it catches, sle2, with the catch-
ing distance, cd.
• be = ∑

c∈C c.cd is the binding energy of the suggestion,
• lc is the local coverage of the suggestion,
• gc is the global coverage of the suggestion
The order for each s1, s2 ∈ SL is determined by:
s1 � s2 ⇐⇒ (s1.gc, s1.lc, s1.be) ≤l (s2.gc, s2.lc, s2.be)

Based on the preferences that: the best parse should cover
the entire sentence; suggestions should have no holes; and,
words should be captured at the shortest distance.

Due to the recursive compositional nature of the sugges-
tions, i.e. each x ∈ SLE is a lexical entry or another sug-
gestion, the catching information constitutes a non-traditional
parse tree. Figure 3 shows an example of a parse tree pro-
duced by our syntactic analysis compared to the traditional
parse tree equivalent to Figure 2a. The parse tree and the
partial SBVR model (i.e. the semantic structures) of the sug-
gested parse are provided to the semantic accommodation
process to be configured into a complete model.

The general algorithm for the syntactic analysis is as fol-
lows, for each word in the expression:

1. Retrieve the entry for the current word from the lexicon
2. If the current word has any left placeholders, for each

suggested parse in the suggestion list:
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(a) (b)

Figure 3: A traditional parse tree (a) and one created by our
analysis (b)

(a) catch the closest word (or word combination) to the
left of the current word

(b) add the new suggested parse to the suggestion list
3. Else, for each suggested parse in the suggestion list, if

the previous word or combination has any internal place-
holders and the current word is within its span:
(a) catch the current word with the internal placeholder
(b) add the newly suggested parse to the suggestion list

4. Else, for each suggested parse in the suggestion list, if
the previous word or combination has any right place-
holders:
(a) catch the current word with the right placeholder
(b) add the newly suggested parse to the suggestion list

5. Update the heuristics, distances between words, order
the suggestion list, and cull excess entries

6. Provide newly suggested parses to the semantic accom-
modation/configuration process

7. Remove suggestions that failed accommodation
An example of the syntactic analysis after a complete parse

of the example sentence is displayed in Figure 4.

Figure 4: Lexical analysis of the rule ‘Each branch is included
in exactly one local area.’ Asterisks represent the grammati-
cal expectations, hexagons represent the catching word, rect-
angles represent the caught word, catching distance is shown
above each line.

3.2 Semantic Accommodation/Configuration
Parses suggested by the syntactic analysis are sent to the
semantic accommodation process to determine whether or
not they are admissible in the (SBVR) semantics. Rather
than the numerous processes for accommodation discussed
in [Holmqvist, 1993], we utilise knowledge-based configura-
tion to perform the accommodation. Specifically, component-
oriented configuration is used, which combines advantages
from connection-, resource-, and structure-based approaches
[Soininen et al., 1998; Stumptner, 1997]. Moreover, the
object-oriented nature of component-oriented configuration
lends itself more easily to that of the SBVR meta-model.

Using the terminology of [Soininen et al., 1998], the SBVR
meta-model constitutes the configuration model knowledge of
our approach, i.e. it defines the types of entities, properties,
and rules that specify the set of correct configurations. It fol-
lows that an SBVR (terminal) model constitutes the configu-
ration solution knowledge or (possibly partial) configuration.
Lastly, the parse tree created by the lexical analysis consti-
tutes the requirements knowledge, i.e. additional constraints
on the configuration that are not strictly part of the configura-
tion model. For example, the SBVR meta-model may allow
either quantification to be applied to either object type in the
example rule, however, the grammatical dependencies require
that ‘each’ be applied to ‘branch’ and ‘exactly one’ to ‘local
area’ for the correct interpretation of the sentence.

Since the SBVR (meta-)model is defined using ECore, the
Eclipse Modelling Framework 2 implementation of EMOF
from the MOF specification of the OMG [OMG, 2006],
we first discuss its mapping to the configuration ontology
of [Soininen et al., 1998]. The configuration ontology de-
fines standard concepts for representing the different aspects
of configuration knowledge including: taxonomy, attributes,
structure, topology, and constraints. An example of the map-
ping for SBVR is displayed in Figure 5. It focuses on the con-
figuration model knowledge, with some example component
individuals. For simplicity, port individuals are not included
in the figure. The mapping is by no means complete, but pro-
vides a link between the meta-model representation and the
representation used for the configuration task.

Taxonomy
ECore allows classification hierarchies to be defined through
the use of the concepts EClass and EObject, and the rela-
tions eSuperTypes and eClass. The concept EClass gener-
ically represents a type and therefore could be mapped to
Configuration Type; however, ECore does not dis-
tinguish the sub-types Component Type, Port Type,
Resource Type, and Function Type in the same
manner as [Soininen et al., 1998]. Therefore, it is more
appropriate to map instances of EClass to Component
Types. Other ECore concepts map to the other configuration
types. Therefore, only component types have a classification
hierarchy; the others are made direct subtypes of their appro-
priate configuration type (i.e. Attribute Type, etc.).

Sub-types and super-types in ECore are represented by eS-
uperTypes. This relation defines the direct super-types of an

2http://www.eclipse.org/modeling/emf/
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Figure 5: Fragment of the configuration model derived from the ECore mapping of the SBVR meta-model.

EClass and, therefore, maps to the isa relation. Moreover,
multiple inheritance is allowed in both representations.

In ECore, an EClassmay be abstract, i.e. cannot have any
instances. However, in the context of configuration, it makes
sense to relax this definition to allow partial information of a
configuration, such as in [Soininen et al., 1998]. Therefore,
abstract and non-abstract (i.e. concrete) types in ECore are
mapped to abstract and concrete classes in the ontology using
the appropriate Abstraction Definition.

Instances of EObject represent Individuals from the
ontology. In ECore, these are associated to their type by
eClass, which maps to is directly of. Moreover, since eClass
specifies the EClass of an individual, EObject necessarily
maps to Component Individual.

Attributes
Attributes in ECore are represented by the concept
EAttribute, which have a name, a type specified by eAt-
tributeType, and relations for the lower and upper bounds of
their cardinality (lowerBound and upperBound, respectively).

An eAttributeType links an EAttribute to its
EDataType, which maps to the concept Attribute
Type from [Soininen et al., 1998]. It follows that
EAttributes map to Attribute Definitions
with the appropriate Attribute Name, Attribute
Value Type (from eAttributeType), and Necessity
Definition. The value of an attribute for a specific
EObject is mapped to an Attribute with the respective
Attribute Value and Component Individual.

In ECore, attributes can have a zero-to-many cardinality,
while Necessity Definitions are restricted to exactly
one (necessary) and at most one (optional) attributes. As a
result, there exists only a partial mapping to the configuration
ontology; however, this is not a problem for the SBVR meta-

model as it only includes necessary and optional attributes.

Structure and Topology
The ontology of [Soininen et al., 1998] differentiates be-
tween Part Definitions, which specify the composi-
tional structure of components, and Port Definitions,
which specify the topological connections (either physical or
logical) between components. Part Definitions con-
stitute a direct has-part relation between components. This
relation must be anti-symmetric and anti-reflexive. Moreover,
the transitive closure of has-part defines a transitive has-
part relation, which must also be anti-symmetric and anti-
reflexive. Port Definitions have no such restriction.

In ECore, both Part Definitions and Port
Definitions are represented by the concept
EReference. An EReference may be a contain-
ment reference (for compositional relationships) and/or it
may have an eOpposite for bi-directional relationships.

While it seems intuitive to map containment and uni-
directional references to part definitions, and bi-directional
relationships to port definitions, this is not possible as ECore
does not uphold the anti-symmetric and anti-reflexive require-
ments of has-part relations. For example, the situation shown
in Figure 6, in which the transitive closure of the has-part
relations between Meaning, Representation, and Expression
are reflexive, is allowable in ECore but not the configuration
ontology. To determine those EReferences that could be
mapped to part definitions would require analysis of the meta-
model; instead, we map all EReferences to ports. As a re-
sult, we effectively use ports as a generalised structural rela-
tionship similar to that described in [Hotz and Wolter, 2013].

A Port Definition requires a Port Name, a
Possible port type set, and a Cardinality.
Similar to EAttribute, EReferences have a name,
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Figure 6: Transitive relationships in the SBVR meta-model

a lowerBound, and an upperBound. Therefore, an
EReference maps to a Port Definition, with the
name mapping to the Port Name, and the lowerBound
and upperBound are mapped to the Cardinality. Port
Types and their Compatibility Definitions are
created for each EReference to ensure the associated ports
can only connect to each other correctly.

When two EObjects are associated to one an-
other through an EReference the appropriate
Port Individuals of the equivalent Component
Individual are connected-to each other.

Constraints
Arbitrary constraints in ECore are specified using anno-
tations on model elements, written in some constraint
language. These annotations are mapped to Constraint
Instances and their corresponding Constraint
Expressions. Special cases of constraints, particularly
Property Definition and its sub-types (Attribute
Definition, etc.), are utilised by previous mappings.

The constraints defined in our configuration model come
from the SBVR specification. An example is shown in Fig-
ure 6 in that, the ‘has meaning’ relation between an ‘Expres-
sion’ and a ‘Meaning’ is allowed if and only if the ‘Meaning’
is connected to the ‘Expression’ through a ‘Representation’
and the ‘has representation’ and ‘has expression’ relations.

In the configurator used by our implementation the differ-
ent aspects of the configuration knowledge are mapped to a
generative CSP (or GCSP) as described in [Stumptner et al.,
1998]. This particular approach differs in its definition of
some of the previously discussed concepts of [Soininen et al.,
1998] in the following respects:
• Non-leaf nodes in the taxonomy are assumed to be ab-

stract; therefore, concrete component types that have
sub-types are split into two types: an abstract super-type
and a concrete sub-type.
• Ports are specified as necessary or optional; therefore,
Port Definitions with higher cardinalities result
in multiple ports that are then grouped into port sets,
which allow quantitative reasoning over their members.

By configuring the SBVR models directly, we perform
configuration of the concepts in a business specification rather
than a syntactic parse tree as in [Kleiner et al., 2009]. This
results in an iteratively more detailed domain model, where
new domain knowledge is taken into account each time a new
sentence is processed. In addition, inconsistencies can be de-
tected more easily than by reprocessing the model after new
knowledge is added through a model transformation. Finally,
the mapping to SBVR is simplified as the lexicon maps di-
rectly to the semantics, rather than an intermediate syntactic
model. This solves the issue of multiple parse trees with cor-
rect mappings to SBVR as, for example, the parse of ‘Each

branch is included in exactly one local area’ where ‘local
area’ is considered a noun phrase would be inconsistent with
the domain knowledge, while the parse where ‘local area’ is
considered a noun would be consistent.

4 Experimental Results
We present the results of early experiments on the configura-
tion of domain knowledge for NLP. We performed multiple
tests of the example structural rule (1) and gathered statistics
on the performance of the configurator in configuring these
kinds of models. The results are summarised in Table 1.

The configurations produced were evaluated by hand for
correctness. In each case the configuration was correct (cor-
responding with that shown in Figure 2b). The high num-
ber of variable assignments are due to relationships in the
SBVR meta-model with cardinalities higher than one produc-
ing multiple ports in the configuration model; therefore, most
port assignments are to the unconnected state.

It is interesting to note the correlation between the (mini-
mum) number of backtracks and the number of components
generated. This is due to the nature of the SBVR meta-model
in two respects: (1) it contains a large number of relations
with a cardinality of zero-to-many, and (2) it uses reified re-
lations, which means that, in terms of configuration, each re-
lation is represented as a component.

To prevent spurious connections between components,
ports representing a zero-to-many relation are first set to the
unconnected state; therefore, they are only connected to a
component if being unconnected violates some constraint,
causing a backtrack. Furthermore, the use of reified relations
means that new relation components need to be created, even
if it results in connecting two existing (non-relation) compo-
nents. Therefore, in the optimal search of only connecting
existing (non-relation) components, there will always be the
same number of backtracks as generated components.

The higher number of backtracks in other configurations
of the example are the result of the non-deterministic solver
attempting variable assignments in a suboptimal order. This
has a negative impact on performance. However, this could be
avoided by providing SBVR specific procedural strategies for
guiding the search [Stumptner et al., 1998; Hotz and Wolter,
2013]. For example, ordering heuristics can be provided to
change the order in which different component types or port
types are assigned. Moreover, the search space could be re-
duced by preventing the creation of certain component types.
For example, we assume a sentence is to be interpreted in the
context of a provided vocabulary, hence we could prevent the

Sentence (1)
# Constraints 197
# Variable Assignments 5162
Min. # Backtracks 6
Max. # Backtracks 25
Ave. # Backtracks 17
# Components Generated 6

Table 1: Performance statistics of the configuration process
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creation of new object types, fact types, and other concepts
related to the vocabulary aspects of the SBVR meta-model.

We are in the process of implementing a larger example,
a portion of which assigned 4812 variables, generated 5 new
components, and took 49 backtracks to do so. This empha-
sises the need for heuristics to help guide the search.

5 Related Work
Previous work in using configuration for natural language
parsing has translated property grammars into a configuration
model [Estratat and Henocque, 2004]. Using this approach,
a simple context free-grammar (anbn) and a subset of French
were processed. This approach focuses primarily on the syn-
tactic aspect of generating parse trees. Although the possi-
bility of incorporating semantics is suggested in [Estratat and
Henocque, 2004], none were incorporated in the processing
of the natural language subset.

The approach of [Estratat and Henocque, 2004] was
adapted to English and a Model-Driven Engineering environ-
ment in [Kleiner et al., 2009]. Although their focus remains
on the syntactic aspect of generating parse tress, SBVR se-
mantics are partially taken into account by associating ele-
ments of the parse tree with SBVR types. This information
is used to simplify the model transformation; however, the
domain knowledge included in the SBVR model is not taken
into account and, therefore, the process is not truly semantic.

Other approaches have used standard CSP translations of
Dependency Grammars [Duchier, 1999] and, more recently,
Property Grammars [Duchier et al., 2012] in order to process
natural language. However, both of these approaches focus
on syntactic parsing, while we aim to incorporate semantics
and domain knowledge directly into the parsing process.

6 Conclusions and Future Work
In this paper we have presented an approach to natural lan-
guage processing that utilises configuration of domain knowl-
edge to determine the validity of an expression. In effect, this
performs natural language understanding, at least in terms of
the semantic representation used. Moreover, we have demon-
strated how techniques from Cognitive Linguistics can be
combined with a translation of the SBVR meta-model (the se-
mantic representation in our case) into a configuration prob-
lem in order to achieve this natural language understanding.

Our approach is novel in its combination of techniques
from Cognitive Linguistics and configuration, and in that it
performs configuration directly on the semantics of the do-
main knowledge. This is in contrast to previous approaches
that use configuration or CSPs for natural language process-
ing, as they tend to focus only on the syntactic aspect of gen-
erating a parse tree. As a result, our approach benefits from
a simplified lexicon (important to our application in the busi-
ness domain), improved mapping to the target semantics, and
the semantic disambiguation of terms during processing.

The presented experimental results demonstrate the feasi-
bility of our approach. In its current form, however, the con-
figuration of the SBVR model can be inefficient and, there-
fore, future work will look at providing heuristics in order
to ensure better performance in the configuration process. In

addition, a more thorough evaluation of the process will be
performed over larger examples in order to determine the ef-
fect of growing domain knowledge on the process.
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