
 1

GODO: Goal driven orchestration for Semantic Web
Services

Juan Miguel Gómez 1, Mariano Rico2, Francisco García-Sánchez 3, Rodrigo Mar-
tínez Béjar3 , Christoph Bussler1

1 Digital Enterprise Research Institute (DERI). National University of Ireland, Galway
Galway, Ireland.

{juan.gomez,chris.bussler}@deri.org
2 Universidad Autónoma de Madrid

Madrid, Spain.
Mariano.rico@uam.es

3 Universidad de Murcia
 Murcia, Spain

{fgs2@alu.um.es,rodrigo@dif.um.es}

Abstract. Current orchestration models rely on workflow specifications and
old-fashioned hard wired means. With the advent of Semantic Web technolo-
gies, a goal driven approach provides a basis to establish a ubiquitous technical
platform for eCommerce interactions based on customer wish and needs. Ide-
ally, a customer would like to specify their goals in natural language and wait
for them to happen. In this paper, we present GODO, a best of breed ultimate
engine which uses natural language processing and mapping techniques for or-
chestrating goals and achieves them by means of web services.

1. Introduction

The Internet is going trough several major changes. Recently, it has become a new
vehicle for business transactions and information exchange rather than just a reposi-
tory of information. Companies are challenged to publish and share services on the
web. Furthermore, integration of services through different companies would foster
the development of Business-to-Business (B2B) [1] and Business-to-Consumer
(B2C) interactions by sharing costs and reusability.
 As the technologies associated to eCommerce interactions, such as web services gain
momentum, the need for an application to fulfill the customer expectations becomes
increasingly important. The goal of current Semantic Web Services initiatives such as
OWL-S [9] or WSMO [2] is to actually add semantics to current web services to
match the expectations of the consumer of the web service. The most prominent com-
pliant implementation is the WSMX [3] platform. In the WSMX architecture, a goal
[6] specifies the objectives that a client may have when he consults a web service and
it also contains a list of preferences [7]. These preferences represent constraints on
non-functional properties of a web service (i.e., they narrow the scope of the selection
spectrum of a web service).

 2

 In B2C, the real challenge is therefore to commit ad maximum with the cus-
tomer’s wish. This is the main impetus behind this work. Goal driven orchestration is
inspired in the principles of a semantically enhanced goal-driven approach in which a
customer writes down its wishes and they immediately turn into goals which will be
processed by WSMX giving as a result the final expected overall result.

 In this paper, we propose the Goal Driven Orchestration, for short, system, and
depict its architecture and technical details about its implementation. Finally, we
detail a use case which sheds light on the advantages and interest of our approach.

 This paper is structured as follows. In section 2, we present a general introduction
of GODO and its architecture. Section 3 shows an example and some advantages of
our approach. Finally, we present future and related work in section 4.

2. Goal driven orchestration

2.1. Making the dreams of users come true

In May 2001, Tim Berners-Lee, James Hendler and Ora Lassila, depicted their vi-
sion of the semantic web in their famous Scientific American article [18] . They
showed us a future world where the software agents could deal with our wishes, ex-
changing information with other agents, offering us the best options and executing
our final decisions. Current efforts envision reaching that ideal world, and a critical
aspect is the way these agents interact with us. The current state-of-the-art is based on
the concept of goal and how to describe it, but, at the end, we have always a human
being, without any idea about computer science or the existence of agents. It is clear
that a user wants to express his wishes in a more familiar language: natural language.
Expressing the user wishes is hence the first step in the chain. Voice recognition
systems are restricted to specific requisites such as headphones, noiseless environ-
ments, etc. Furthermore, most of the user interaction is through the web navigator.
Ideally, the user would interact with the agent through this well-known device and
write down there his wishes. In a second step, his goals could be extracted, searched
and finally, achieved. Our proposal goes in the direction of this second step with the
help of Semantic Web technologies [14]. These technologies are bout adding ma-
chine-processable semantics to data so that the computer can understand the informa-
tion and process it on behalf of the human user. Finally, the ultimate goal is to have
an automation process of the aforementioned tasks required for a web service. For
this, the new paradigm of Semantic Web Services promises to enable users to locate,
select, employ, compose, and monitor Web-based services automatically [13].
 Our approach is to first extract the goals from the natural text introduced by the user.
For this, we will be using Natural Language processing techniques. A language ana-
lyzer will filter the different concepts and relationships in the text, creating a so-called
lightweight ontology. Lightweight ontologies are a key-enabling technology for the
use of the semantic web [15].

 3

 Orchestration comes once those goals have been found. In our approach, a goal is
seen as a single execution step. A sequence of goals is composed and sent to the
WSMX platform. Spoken on layman terms, the user will have to write down its text
and GODO will find the way of extracting the goals, composing them and make sure
they reach WSMX, where they will match web services capabilities and will execute
certain web services.

2.2. The GODO Architecture

Software is everywhere. It is an integral part of our society that is becoming increas-
ingly larger and more complex. Software development is a difficult activity and many
software projects take longer than expected, have large operational failures or are
simply cancelled [10]. These problems are one of the main concerns of the software
engineer community and a way of decreasing it is to build software models. A model
is a simplification of the reality that still retains the elements relevant to our problem.
The purpose of the software model is to explain these concepts in a easy way and
ignore all unimportant details. There are several models for describing the architec-
ture of software systems, based on the use of multiple, concurrent views, such as the
Krutchen “4+1” View Model [11] and those based on the description of each of their
components. We will follow the latter approach to capture the gist of the GODO
architecture.
 The aim of this section is to describe the functionality of the components in the archi-
tecture. Loose coupling and reusability of components have been the major intentions
behind the architectural decisions and implementation. Some of these details are re-
flected in the particular components to make them more understandable. Figure 1
depicts the big picture of the architecture.

GODO Control ManagerGUI

Language
Analyzer

Goal
Matcher

WSML
Goal

WSML
GoalGoal

Loader

WSMO
goal

repository

Network

Goal
Sender

User wish and
goal text

Figure 1. The GODO architecture

 4

2.2.1. Language Analyzer

The task of the Language Analyzer is to filter and process the input introduced by the
user in natural language and determine the concepts (attributes and values) and rela-
tions included in it.
The Language Analyzer used in this work is based on the methodology presented in
[16] to get knowledge from text. This methodology, which uses ontologies and one
incremental knowledge acquisition technique termed MCRDR [12], is based on the
idea that relationships between concepts are usually associated to verbs in natural
language. This methodology uses the mentioned technique and the grammar category
of the words in the current sentence to infer other knowledge entities (e.g., concept,
attributes and values) in order to create an ontology from a text fragment.
It is necessary a previous phase of training in which the experts establish all the pat-
terns that will use the analyzer to get the concepts and relations within the sentence
introduced by the user. This training process is based on the study of a set of texts in
natural language related to a specific domain. In this phase, the experts indicate the
concepts, concepts’ attributes, attributes’ values and relations among concepts, and
the system stores all this information in the database. After this, when a real user
introduces a sentence the system must be able to get the concepts, attributes, values
and relations within this sentence taking into account all what it has learned in the
training process.
 This knowledge acquisition process is divided into three sequential phases, namely
the “POS-Tagging”, “Concept search” and “inference” phases.
 The main objective of the POS-Tagging phase is to obtain the grammatical category
of each word in the current sentence; for this purpose, the POS-tagger described in
[17] is used. In the Concept search phase, linguistic expressions representing con-
cepts are identified. The associations between linguistic expressions and concepts
have been stored in a conceptual knowledge base obtained in the (previous) training
phase of the system. As a result of this phase we obtain all the expressions of the
fragment, which are already in the conceptual knowledge base. The last phase, infer-
ence, is based on the idea that, in natural language, relationships between concepts
are usually associated to verbs. The MCRDR component used to obtain the relation-
ships between concepts is formed by a knowledge base containing linguistics expres-
sions representing generic conceptual relationships, and by a subsystem that infers the
participants in these relationships.
 The modus operandi of this process is as follows. Firstly, the verb in the current
sentence is identified. Then, the system searches for the type of semantic relationship
associated to that verb. Once the type of relation associated to the main verb in the
current sentence has been found, the MCRDR sub-system is applied to extract knowl-
edge by means of the grammatical category of the words, their position in the current
sentence, and the type of relation associated to the verb, if any. We will include the
following example for further clarification.
 Suppose that the Language Analyzer component receives a sentence in natural lan-
guage as a parameter and returns the concepts (attributes and values) within this sen-

 5

tence and the relations among these concepts (a lightweight ontology). As a result, the
ontology resulting from the sentence “I want to buy a plane ticket from Galway to
Madrid, then book a hotel in the center and rent a C class car” would be like the one
shown in Figure 2. In this figure we can distinguish four concepts (“Subject”, “Planet
ticket”, “Hotel” and “Car”) and three relations (“buy”, “book” and “rent”). The con-
cept “Subject” is a more general concept than “I” and is directly inferred by the sys-
tem. The other three concepts have attributes such as “from”, “to” and values for
these attributes (“Galway”, “Madrid”)

2.2.2. Goal Loader

This component looks for the goals in the WSMO goal repository or in an internal
file where the goals are stored. This component is outside the architecture so that
anybody may plug in his/her own goal repository.
The syntax of these goals is expressed in the Web Services Modeling Language
(WSML) [7] used by WSMO as the underlying logical formalism. From our point of
view, these goals are just syntactically important given that, at this stage of the im-
plementation, we will be using the inline concepts for our matching.

2.2.3. Goal Matcher

Matching is a widely-used term which is limited in our case to a syntactical scope.
The Goal Matcher compares the concepts extracted from the natural language analy-
sis and the ones included in the WSML goals. From this matching, several goals are
selected that are composed by the Control Manager in order to build up the orchestra-
tion.

Subject(I)

Planet ticket
from: Galway
to: Madrid

Hotel

in: center

Car

class: C

<rent>

<book>

<buy>

Figure 2. A resulting ontology

 6

2.2.4. Goal Sender
This component sends the different goals to WSMX. Its functionality is quite simple
since the orchestration is predefined in the GODO control manager. The goals are
sent sequencially, without taking into account any other workflow constructs.

2.2.5. GUI

This is the component that interacts with the user. It collects the users request and
presents the results obtained to them.
The software tool developed is a Web application. The application architecture is
based on the Model 2 approach in a similar way to that specified in “The Apache
Struts Web Application Framework”1. In fact, it is a variation of the classic Model-
View-Controller (MVC) design paradigm. This framework also indicates the way in
which the different web technologies must be applied to build a web application.
In this way, the Controller is a Servlet, which receives all petitions, determines the
action that has to be applied and returns the appropriate view. The View is based on
the Java Server Pages (JSP) and the user browser. The JSPs get data from the model
and compose the HTML page that will be viewed by the user. Finally, for the Model
the system can interact with several technologies for accessing data like JDBC and
EJB.
Briefly, the execution model can be summarized as follows (Figure 3 shows a general
scheme of this model): the Controller examines the request of a user, and determines
the action to be applied and start its execution. The actions conform the system
model. These actions interact with the “Business Logic”, retrieve the information
asked by the user and pass this information to the View (i.e. the JSP pages) by means
of JavaBeans. The JSP page, using that information and (possibly) tags developed to
support the graphic designer work, creates the HTML document which will be shown
to the user by the browser.

1 http://struts.apache.org/

 7

 Figure 3. Sequence diagram of the GUI

2.2.6. Godo Control Manager

This is the main component of the architecture. It manages the different interactions
among the components. Firstly, it is informed by the GUI that the wish of the user has
been described in plain text. Then, it instructs the Language Analyzer to attempt the
recognition of the major concepts in the text and communicates with the Goal Loader
and the Goal Matcher to orchestrate the different goals that will be sent to WSMX
through the Goal Sender. Then, it communicates with the GUI so that the user re-
ceives a view of the selected goals and decides if they are correct and comply with
his/her expectations. Finally, if the user approves them, they are sequentially sent.

3. Use case

In this section, we will illustrate the advantages of our approach. First of all, we will
present a real-world scenario in the next section. In a simple B2C scenario, let us
suppose that a customer wants to arrange a trip. In an ideal case, he would specify
this wish in natural language, so he will interact with the web-based GODO GUI and
fill in with a sentence like this: “I want to buy a plane ticket from Galway to Madrid,

 8

then book a hotel in the center and then rent a C class car”. A first view of GODO is
shown in figure 4.

Figure 4. GODO interaction with the user

Current technologies such as Google [20] would just index these words in a meaning-
less way and try to find pure syntactical relationships among them. However, GODO
goes further and classifies the goals loaded from the WSMO repository. These goals
are chained and orchestrated as depicted in figure 5.

 9

 Figure 5. GODO interaction with the user (II)

Finally, these goals will be sent and performed by WSMX once the user has verified
and confirmed that this is what (s) he wanted.

4. Conclusions and related work

A similar application is described in [19]. This is an e-commerce system where a user
agent uses a natural language processing tool to study a sentence introduced by the
user expressing his wishes. When the agent gets the concepts and relations within the
sentence, it tries to design a plan with the actions needed to achieve the user final
goal. In this case, these actions involve the communication with other intelligent
agents that act on behalf of supplier companies. It also uses the Natural Language
Processing resources mentioned in section 2.

 There is much related work with regards to NLP resources transforming natural
language text into semi-ontological structures. TextoOnto[22] supports semi-
automatic creation of ontologies by applying text mining algorithms. Currently it
includes a term extraction algorithm, a concept association extraction algorithm and
an ontology pruning algorithm. This tool aids users in creating and maintaining on-
tologies through the application of text-mining algorithms in such a way that it helps
detecting concepts and relationships that the ontology engineer has initially missed,

 10

but that may be inferred from texts about the domain being modeled. ASIUM [4] is a
clustering and cooperative methods-based system, which takes the syntactic analysis
of sentences as the input such that the phrases are identified ASIUM creates an ontol-
ogy given a text as input and a set of case frames where the semantic features are
filled by ontology concepts. Also, it uses a graphic interface to allow the user to in-
spect, validate and refine the knowledge learned at each step of the learning process.
There are some other efforts to combine interactive extraction and extension of on-
tologies from text, like OntoLT [21]. This application provides a Protégé plugin and
an environment for the integration of linguistic analysis in ontology engineering
through the definition of mapping rules that map linguistic entities in annotated text
collections to concept and attribute candidates (i.e. Protégé classes and slots). A rele-
vant work in this area is the OntoText Knowledge Information Management (KIM)
[8] platform. KIM enables Semantic annotation of text. It also allows for automatic
ontology population and open-domain dynamic semantic annotation of (unstructured
or semi-structured) content for Semantic Web and Knowledge Management applica-
tions where indexing, retrieval, query and exploration of formal knowledge is feasi-
ble.
There are several approaches regarding orchestration. In WSMO terms, orchestration
[2] decomposes a capability (i.e., the functionality of a web service) in terms of func-
tionality required by other services, namely other providers view. This could be ap-
plied to current business process execution initiatives. In our approach, we have
worked with an extended vision of orchestration.
 Finally, our future work will focus on determining the feasibility of a semantic match
of lightweight ontologies extracted from natural language text and ontologies defin-
ing goals in particular domains. This work is related to existing efforts about ontology
merging and alignment. Future version of GODO will be oriented towards that direc-
tion. Also, ways to overcome the limitations of having one single step execution per
goal will be explored.

5. Acknowledgment

The work is funded by the European Commission under the projects DIP, Knowledge
Web, Ontoweb, SEKT and SWWS; by Science Foundation Ireland under the DERI-
Lion project; and by the Austrian government under the CoOperate Programm.
We thank the Spanish Ministry for Science and Technology for its support for the
development of the system through projects TIC2002-03879, FIT-110100-2003-73
and FIT-150500-2003-503. This work has also been partially funded by the Spanish
Ministry of Science and Technology, in the context of the project TIC2002-1948

 11

6. References

[1] C. Bussler: B2B Integration, Concepts and Architecture. Springer-Verlag, 2003, ISBN 3-
540-43487-9.

[2] D. Roman, H. Lausen, U. Keller: Web Service Modeling Ontology Standard. WSMO
Working Draft v02, 2004. Available from http://www.wsmo.org/2004/d2/v02/20040306/.

[3] E. Oren, M. Zaremba, M. Moran: Overview and Scope of WSMX. WSMX Working Draft,
2004. Available from http://www.wsmo.org/2004/d13/d13.0/v0.1/20040611/.

[4] Faure D. and Nédellec C. Knowledge acquisition of predicate argument structures from
technical texts using Machine Learning: the system ASIUM. In Dieter Fensel Rudi Studer,
editor, 11th European Workshop EKAW'99, pages 329-334, Springer-Verlag, May 1999

[5] J. Bruijn, D. Foxvog, E. Oren, D. Fensel: WSML-Core, Working Draft, 2004.
[6] D. Fensel and C. Bussler: The Web Service Modeling Framework WSMF. Electronic

Commerce Research and Applications, Vol. 1, Issue 2, Elsevier Science B.V.
[7] E. Cimpian, A. Mocan, M. Moran, E. Oren, M. Zaremba: WSMX Conceptual Model.

WSMX Working Draft, 2004. Available from http://www.wsmo.org/2004/d13/d13.1/v0.1/.
[8] Popov.B, Kiryakov. A. Towards Semantic Web Information Extraction.Human Language

Technologies Workshop at the 2nd International Semantic Web Conference (ISWC2003).
Florida,USA..

[9] OWL-S: Semantic Markup for Web Services.
[10] W.Wayt Gibbs. Software chronic crisis. Scientific American, pages 72-81. September, 94
[11] P. Krutchen: The “4+1” View Model of Software Architecture. IEEE Software, 12, pages

42-50.November,95
[12] Kang, B (1996). Multiple classification ripple down rules. PhD Thesis, University of New

South Wales.
[13] McIllraith,Sheila.. Semantic Web Services. XML-Web Services. ONE conference.

June,202
[14] D. Fensel. Ontologies: A silverbullet for Knowledge Management and Electronic Com-

merce. 2nd Edition, Springer 2003.
[15] Gartner Research Note (ID=T-17-5338). “Semantic Web Technologies Take Middleware

to Next Level”. Autores: Jim Jacobs y Alexander Lind
[16] Valencia-García R., Ruiz-Sánchez J.M., Vivancos-Vicente P.J., Fernández-Breis J.T.,

Martínez-Béjar R. (2004) An incremental approach for discovering medical knowledge from
texts. Expert Systems With Applications, VOL. 26, Nº 3, 291—299

[17] Ruiz Sánchez, J. M., Valencia García, R., Fernández Breis, J. T., Martínez Béjar, R. &
Compton, P. (2003). An approach for incremental knowledge acquisition from text. Expert
Systems with Applications, 25, 77-86.

[18] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific Ameri-
can, May 2001. http://www.scientificamerican.com/issue.cfm?issuedate=May-01

[19] García-Sánchez, F. (2003).Diseño e implementación de un entorno para desarrollo de
aplicaciones de comercio electrónico basados en teoría de la decisión y tecnologías del co-
nocimiento. Master Thesis, University of Murcia. (in Spanish)

[20] Google. Inc. (www.google.com)
[21] Protégé Plug-In for Ontology Extraction from Text Based on Linguistic Analysis. Paul

Buitelaar, Daniel Olejnik, Michael SintekIn: Proceedings of the 1st European Semantic
Web Symposium (ESWS), Heraklion, Greece, May 2004.

[22] TextOnto: http://kaon.semanticweb.org/Members/rvo/Module.2002-08-22.4934
.

