Trading-off incrementality and dynamic restart of
multiple solvers in IC3

G. Cabodi (*), A. Mishchenko (**), M. Palena (*)
(*) Dip. di Automatica ed Informatica
Politecnico di Torino - Torino, Italy
(**) Dept. of EECS, University of California, Berkeley, CAJSA

Abstract—This papertaddresses the problem of SAT solver process by constantly refining a set of over-approximations
performance in IC3, one of the major recent breakthroughs to forward reachable states with new inductive clauseshat t
in Model Checking algorithms. Unlike other Bounded and = ,qoi10m Jevel, a SAT solving framework is exploited by the

Unbounded Model Checking algorithms, IC3 is characterized ton-| | algorithm t dt . bout th ¢
by numerous SAT solver queries on small sets of problem OP-€VEL algorithm 1o respond 1o queries about the system.

clauses. Besides algorithmic issues, the above scenarioses AS shown in [7], these two layers can be separated by means
serious performance challenges for SAT solver configuratio of a clean interface.
and tuning. As well known in other application fields, finding Performance of IC3 turns out to be both highly sensitive

a good compromise between learning and overhead is key to
performance. We address solver cleanup and restart heurigts, to the various internal behaviours of SAT solvers, and tijric

as well as clause database minimality, based on on-demancake dependenton the way the top-level algorithmiis integratigal w
loading: transition relation clauses are loaded in solver bsed the underlying SAT solving framework.
on structural dependency and phase analysis. We also comm@r The peculiar characteristics exposed by the SAT queries of

different solutions for multiple specialized solvers, andve provide . .
an experimental evaluation on benchmarks from the HWMCC IC3 can thus be exploited to improve the overall performance

suite. Though not finding a clear winner, the work outlines seeral ©f the algorithm in two different manners:
pqtentlal [improvements for a portfolio-based verification tool 1) Tuning the internal behaviours of the particular SAT
with multiple engines and tunings. .
solver employed to better fit IC3 needs.
|. INTRODUCTION 2) Defining better strategies to manage the SAT solving

. . . L . work required by IC3.
IC3 [1] is a SAT-based invariant verification algorithm

for bit-level Unbounded Model Checking (UMC). Since its In this paper we address this second issue, proposing and
introduction, IC3 has immediately generated strong istereCOmMparing different implementation strategies for haglli
and is now considered one of the major recent breakthrougt! gueries in I1C3. The aim of this paper is to identify the
in Model Checking. IC3 proved to be impressively effective oMost efficient way to manage SAT solving in IC3. To achieve
solving industrial verification problems. Our experiencighw this goal we experimentally compare a number of different
the algorithm shows that IC3 is the single invariant vertfia implementation strategies over a selected set of benctlimark
algorithm capable of solving the largest number of instanc&om the recent HWMCC.

among the benchmarks of the last editions of the HardwareThe experimental work has been done by two different

Model Checking Competition (HWMCC). research groups, on two different state-of-the-art vetiion
tools, ABC [8] and PATRAV [9], that share similar architec-
A. Motivations tural and algorithmnic choices in their implementation 68l

IC3 heavily relies on SAT solvers to drive several parts of The focus of this paper is neither on the IC3 algorithm
the verification algorithm: a typical run of IC3 is charadted itself nor on the internal details of the SAT solving procesiu
by a huge amount of SAT queries. As stated by Bradley in [&mployed, but rather on the implementation details of the
the queries posed by IC3 to SAT solvers differ significantlijptegration between IC3 and the underlying SAT solving
in character from those posed by other SAT-based invarigramework.
verification algorithms (such as Bounded Model Checking [3]
k-induction [4] [5] or interpolation [6]). Most notably, SA
gueries posed by IC3 don't involve the unrolling of the tians
tion relation for more than one step and are thus charaetériz. The main contributions of this paper are:
by small-sized formulas.

IC3 can be thought as composed of two different layers:
at the top level, the algorithm itself drives the verificatio

B. Contributions

« A characterization of SAT queries posed by IC3.
« Novel approaches to solver allocation, loading and clean
up in IC3.

1This work was supported in part by SRC Contracts No. 2012328 and « An _e_zxpgrlmental evaluation of performance using two
No. 2265.001 verification tools.

C. Outline P holds for every reachable state it Vs € R(S) : s = P.

First in Section Il we introduce the notation used and giva" @lgorithm used to solve the invariant verification prable
some background on IC3. Then, in Section Il we present'$ called an invariant verificatio algorithm.
systematic characterization of the SAT solving work reedir Definition 8. Given a transition systent = (M, I,T), a
by IC3. Section IV introduces the problem of handling SAboolean predicate” over M is called an inductive invariant

queries posed by IC3 efficiently. Both commonly used arfdr S if the following two conditions hold:
novel approaches to the allocation, loading and cleaningfup , pase case7 — F

SAT solvers in IC3 are discussed in Sections V, VI and VII Inductive caseF AT —s F’

respectively. Experimental data comparing these appasact& boolean predicaté’ over M is called an inductive invariant

are presented_ n Sectlon_ VIl Flnally_, n Section IX we draVYor S relative to another boolean predicatg if the following
some conclusions and give summarizing remarks.

two conditions hold:
Il. BACKGROUND o Base casel — F

. « Relative inductive case A AT — F/
A. Notation

Definition 1. A transition system is the tripl& = (M, I,T')

where)M is a set of boolean variables called state variables
the system/ (M) is a boolean predicate oveY/ representing
the set of initial states of the system affid)M, M’) is a Definition 9. Given a transition syster = (M, I,T) and a
predicate overM, M’ that represents the transition relationboolean predicate® over M, an inductive strengthening &t
of the system. for S is an inductive invarian# for S such thatF' is stronger

Definition 2. A state of the system is represented by tganP.

complete assignment to the state variables\/. A set of Lemma 2. Given a transition systen$ = (M, ,T) and a
states of the system is represented by a boolean predicht®lean predicate”® over M, if an inductive strengthening of
over M. Given a boolean predicaté’ over M, a complete P can be found, then the properf holds for every reachable
assignement such thats satisfiesF (i.e. s = F)) represents state ofS. The invariant verification problem can be seen as
a state contained inF" and is called anF-state. Primed the problem to find an inductive strengtheningrfor S.

state variablesM’ are used to represent future states andB Ic3

accordingly, a boolean predicate ovér’ represent a set of
future states. Given a transition systerfi = (M, I, T') and a safety prop-

o i L erty P overM, IC3 aims to find an inductive strengthening of
Definition 3. A boolean predicaté’ is said to be stronger than p t5r 5. For this purpose, it maintains a sequence of formulas
another boolean predicat€' if /" — G, i.e. every[™-state is p,__ i F, such that, for every) <i <k, F, is an

also aG-state. over-approximation of the set of states reachable in at most

Definition 4. A literal is a boolean variable or the negation ofé Steps inS. Each of these over-approximations is called a
a boolean variable. A disjunction of literals is called a ot time frameand is represented by a set of clauses, denoted by
while a conjunction of literals is called a cube. A formulglauses(F;). The sequence of time fram@& is calledtrace
is said to be in Conjunctive Normal Form (CNF) if it is a@nd is maintained by IC3 in such a way that the following
conjunction of clauses. conditions hold throughout the algorithm:

1) Fo=1

(2) F;, — Fi+1, forall0<i<k

@) FiNT — F{ y, forall0<i<k

4) F;, » P, forall0<i<k

Condition (1) states that the first time frame of the trace is
special and is simply assigned to the set of initial states of
S. The remaining conditions, claim that for every time frame
Definition 6. Given a transition systeifi = (M, I, T'), a state F; but the last one: (2) ever;-state is also & ;-state, (3)
s is said to be reachable if if there exists a pathy, s1,...,s, every successor of ah;-state is anF;-state and (4) every
such thats, is an initial state (i.e.sgp = I). We denote with F;-state is safe. Condition (2) is maintained syntactically,
R, (S) the set of states that are reachable$nin at mostn enforcing the condition (2'}lauses(F;11) C clauses(F}).
steps. We denote witR(S) the overall set of states that are, cmma 3. Let S — (M,I,T) be a transiion system,

reachable inS. Note thatR(S) = ;s Ri(S). Fx = Fy, F1,...F, a sequence of boolean formulas over
Definition 7. Given a transition systertfi = (M, I,T) and a M and let conditions (1-3) hold fofy. Then eachF;,
boolean predicateP over M (called A safety property), the with 0 <i < k, is an over-approximation to the set of states
invariant verification problem is the problem of determupiih reachable withini steps insS.

Lemma 1. Given a transition systent = (M, I,T), an
élfﬁductive invariantF' for S is an over-approximation to the
set of reachable stateB(.S).

Definition 5. Given a transition syster§ = (M, I,T), if an
assignment, t’ satisfies the transition relatiof (i.e. if s, ¢’ |=
T) thens is said to be a predecessor vfandt is said to be
a successor of. A sequence of states, sq,...,s, is said
to be a path inS if every couple of adjacent states, s; 1,
i <0 < n satisfies the transition relation (i.e.4f,s; | = T).

Lemma 4. Let S = (M, I,T) be a transition system a to a bad cubes. This is done by means of thExtendt)
safety property oveiM, Fy = Fy, Fi,... F; a sequence of procedure (line 5), not reported here, that employs ternary
boolean formulas oveM and let conditions (1-4) hold for simulation to remove some literals fromThe resulting cube
Fx. Then P is satisfied up tok — 1 steps inS (i.e. there s includest and violates the property, it is thus abad
doesn'’t exist any counter-examplefoof length less or equal cube The algorithm then tries to block the whole bad cube
thank — 1). s rather thant. It is showed in [7] that extending bad states

The main procedure of IC3 is described in Algorithm 1 aninto bad cubes before blocking them dramatically improves
PC3 performance.

is composed of two nested iterations. Major iterationefif- . _ . .
P) ¢ Once a bad cube is found, it is blocked inF} calling

16) try to prove thatP is satisfied up tok steps inS, for) .
increasing values df. To prove so, in minor iterations (lines 4—.the BlockCubés, Q, Fi) procedure (line 6). This procedure

9), IC3 refines the trac®y computed so far, by adding new's described in Algorithm 2.
relative inductive clauses to some of its time frames. The

algorithm iterates until either (i) an inductive strengtimg | 'NPUt: s: bad cube inFj; Q: priority queue; Fy: trace
of the property is produced (line 4), or (i) a counter-exdenp| Output: SUCCESS or FAIlA), with o counter-example
to the property is found (line 7). 1: add a proof-obligatiorts, k) to the queue?
2: while Q is not emptydo
Input: S = (M, I,T); P(M) 3. extract(s,j) with minimal j from Q
Output: SUCCESS or FAIlA), with o counter-example 4 if j >k ort % Fj then continug,
1 k0 5. if j =0 then return FAIL(o)
2 F« I 6: if 3,0 :t,v = Fj_1 AT A—s A s then
3: repeat 7 p + Extend() '
4. while 3t: ¢ = Fy AP do 8: add(p,j — 1) and(s, j) to Q
5: s « Extend() 9 else _
6: if BlockCubgs, Q, F},) = FAIL(o) then 10: ¢ + Generalizef, s, Fi,) -
7: return FAIL(o) 11 Fi+— F,Ucfor0<i<jy
8: end if 122 add(j+1,c)to @
o: end while 13 end if
10: Fpq < 0 14: end while
11 kek+1 15: return SUCCESS
12: F « Propagatefi) Algorithm 2. BlockCube{, Q, Fi)
13: if F; = F;;1 for some0 < i < k then
i: enrdet_?rn SUCCESS Otherwise, ifQ; is UNSAT, every bad state df}, has been
16: until folrever blocked so far, conditions (1-4) hold fér+ 1 and IC3 can

safely move to the next major iteration, trying to prove that
Algorithm 1. 1C3(S, P) P is satisfied up tok + 1 steps. Before moving to the next
iteration, a new empty time framg).,, is created (line 10).
At major iterationk, the algorithm has computed a tracenitially, clauses(F+1) = 0 and such time frame represent
F). such that conditions (1-4) hold. From Lemma 4, it follow¢he entire state space, i.é%1 = Space(S). Note that
that P is satisfied up tok — 1 steps inS. IC3 then tries to Space(S) is a valid over-approximation to the set of states
prove thatP is satisfied up td: steps as well. This is done byreachable withink 4- 1 steps inS. Then a phase callgprop-
enumeratingFy,-states that violat®> and then trying to block agation takes place (line 12). The proceduPeopagatéFy,)
them in F. (Algorithm 4), which is discussed later, handles that phase
uring propagation, IC3 tries to refine every time fraifig
ith ¢ < 0 < k, by checking if some clauses of one time
frame can be pushed forward to the following time frame.
Possibly, propagation refines the outmost timeframeao that
To enumerate each state Bf that violatesP (line 4), the Fj C Space(S). Propagation can lead to two adjacent time
algorithm poses SAT queries to the underlying SAT solvinjames becoming equivalent. If that happens, the algorithm
framework in the following form: has found an inductive strengthening BfS (equal to those
time frames), so the property holds for for every reachable
SAT ARk A =P) (@1) state ofS and IC3 return success (line 13).
If Q1 is SAT, a bad state in Fj can be extracted from the The procedureBlockCubés, @, Fy) (Algorithm 2) is re-
satisfying assignment. That state must be blockediinTo sponsible for refining the track in order to block a bad cube
increase performance of the algorithm, as suggested in [#]found in F}.. To preserve condition (3), prior to blocking a
the bad stateé generated this way is first (possibly) extendedube in a certain time frame, IC3 has to recursively block its

Definition 10. Blocking a state (or, more generally, a cubeg
s in a time frameF;, means provings unreachable withink
steps inS, and consequently refing, to exclude it.

predecessor states in the preceding time frames. To kedp trim clausec = —s while maintaining its inductiveness relative
of the states (or cubes) that must be blocked in certain tirtee ;_,, in order to preserve condition (2). The resulting
frames, IC3 uses the formalism pfoof-obligations clause is added not only tB}, but also to every time frame
F;, 0 < i < j (line 11). Doing so discharges the proof-
obligation is a couplg(s, j) formalizing the fact that must oblig_ation(s,j_'). In. fac_t, this refinement_ rulg out'from every
be blocked inF.. F; with 0 < i < J- Since the s_etsﬂ with ¢ > j are larger
J than F;, s may still be present in one of them afe j + 1)

Given a proof obligation(s,j), the cubes can either may become a new proof-obligation. To address this issue,
represent a set of bad states or a set of states that canAtdorithm 2 adds(s,j + 1) to the priority queue (line 12).
reach a bad state in one or more transitions. The number Otherwise, ifQ3; is SAT (lines 7-8), a predecessorof s
indicates the position in the trace whesemust be proved in F;_; can be extracted from the satisfying assignment. To
unreachable, or else the property fails. preserve condition (3), before blocking a cuben a time
frameF}, every predecessor efmust be blocked if;_;. So,
the predecessdris extended with ternary simulation (line 7)
into the cubep, and then both proof-obligatiorig, j — 1) and

IC3 maintains a priority queu&) of proof-obligations. (s, ;) are added to the queue (line 8).
During the blocking of a cube, proof-obligatioris, j) are
extracted from@ and discharged for increasing values df nput: j: time frame index;s: cube such that-s is
j, ensuring that every predecessor of a bad cubeill be inductive relative toF;_;; Fy: trace
blocked in F; (j < k) befores will be blocked inFy. In | output: ¢ : a sub-clause of-s
the BlockCubgs, @, Fy) procedure, first a proof-obligation| 4. .. _
encoding the fact that must be blocked infy, is added to | . for all literals! in ¢ do

Q@ (line 1). Then proqf-obligation_s are iteratively extrabte| 3. ¢ry < the clause obtained by deletifigrom c
from the queue and discharged (lines 2-14).

Definition 11. Given a cubes and a time frameF;, a proof-

Definition 12. A proof obligation (s, 7) is said to be dis-
charged whers becomes blocked if;.

} ¢ es 4 if At v = Fj_1 AT ANtry A —try’ then
Prior to discharge the proof-obligatids, j) extracted, IC3 5: if At = IA—try then
checks if that proof-obligation still needs to be dischatge| . ¢ try
It is in fact possible for an enqueued proof-obligation to . end if

become discharged as a result of the discharging of someg. gnd if

previously extracted proof-obligations. To perform thigeck, o end for
the following SAT query is posed (line 4): 10: return c
SAT?(Fj A s) (Q2) Algorithm 3. Generalizef, s, F},)

If the result of@- is SAT, then the cube is still in F; and
(s,7) still needs to be discharged. Otherwisehas already The Generalizj, s, Fx) procedure (Algorithm 3) tries to
been blocked inF; and the procedure can move on to théemove literals from-s while keeping it relatively inductive
next iteration. to F;_;. To do so, a clauseintialized with—s (line 1) is used

If the proof-obligation(s, j) still needs to be discharged,to represent the current minimal inductive clause. Forever
then IC3 checks if the time frame identified byis the initial literal of ¢, the clausetry obtained by dropping that literal
time frame (line 5). If so, the states represented laye initial from c (line 3), is checked for inductiveness relative fp_;
states that can reach a violation of the propé?tyA counter- by means of the following SAT query (line 4):
examples to P can be constructed going up the chain of
proof-obligations that led t¢s, 0). In that case, the procedure
terminates with failure returning the counter-examplenitbu

To discharge a proof-obligatiof, j), i.e. to block a cube
s in F}, IC3 tries to derive a clause such thatc C —s and
c is inductive relative toF;_;. This is done by posing the
following SAT query (line 6):

SAT?F;—1 Ntry AT A =try’) (Qa)

If Q4 is UNSAT, the iductive case for the reduced formula
still holds. Since dropping literals from a relatively irative
clause can break both the inductive case and the base case, th
latter must be explicilty checked too for the reduced clause
try (line 5). This is done by posing the following SAT query:

SAT?(Fj_l /\ﬁS/\T/\S/) (@Qs3)
' SAT?(I A —try) (@s)
If Q3 is UNSAT (lines 10-12), then the clauses is
inductive relative taF;_; and can be used to refiidg, ruling If both the inductive case and the base case hold for the

out s. To pursue a stronger refinement bf, the inductive reduced clauseéry, the currently minimal inductive clause
clause found undergoes a process caitellictive generaliza- is updated withiry (line 6).

tion (line 10) prior to being added td’;. Inductive gener- The PropagatéFy) procedure (Algorithm 4) handles the
alization is carried out by the proceduBeneraliz¢j, s, F,) propagation phase. For every clausef each time framée;,
(Algorithm 3), which tries to minimize the number of litesal with 0 < j < k£ — 1, the procedure checks éf can be pushed

Input: F}: trace Name Query Type Query
Output: F}: updated trace 8; Taé?oeéklgéercs:?tfgon S ?X;g{ %L_/\Aﬁsl)a)
1 forj=0tok—1do Qs Relative Induction | SAT?(F; A—~s AT A s')
2. forall c€ Fj;do Q4 Inductive Generalization SAT?(F; AcAT A =c)
3 if 3t,0" ¢, = F; AT A then Qs Base of Induction SAT?(I A —c)
4 Fji1 + Fj1U{c} Qs Clause Propagation SAT?(F; AT A =c')
5 end if
6. end for Table I: SAT Queries Breakdown in IC3
7: end for
8: return Fj

) o SAT calls involved in inductive generalization are by
Algorithm 4. Propagate€) far the most frequent ones. These are in fact the calls
that appears at the finest granularity. In the worst case
scenario, one call is posed for every literal of every
forward to F; 1, (line 3). To do so, it poses the following SAT inductive clause found.
query: « Inductive generalization and propagation checks are the
SATUF; AT A) (Q6) most expensive queries in terms of average SAT solving

If the result of Qg is SAT, then it is safe, with respect to time required. _ ,
condition (3), to push clauseforward to F,.;. Otherwise c « Targetintersection calls are very infrequent and don#tak

can't be pushed and the procedure iterates to the next clause Much time to be solved. _ _
« Blocked cube and relative induction checks are close in

C. Related works the number of calls and solving time.
In [2], Aaron Bradley outlined the opportunity for SAT and
SMT researchers to directly address the problem of impgpvin

IC3's performance by exploiting the peculiar characterhef t Query bCa”S . Avg Time
SAT queries it poses. A description of the IC3 algorithm, 5 [Num fé]s [g]l [ms] o1
specifically addressing implementation issues, is givefrin Q; 278911 68 219
Qs 31172| 7.6 334

[1l. SAT SOLVING IN IC3 s 142327 | 347 575

SAT queries posed by IC3 have some specific characteris- Qs 147248 | 35.9 112
tics: Qs 61114 | 14.9 681

« Small-sized formulaghey employ no more than a single) . o)
instance of the transition relation: Table Il: SAT queries statistics in 1C3: Number of calls,

. Large number of calsreasoning during the verification PETC€Ntage, and average time spent in different SAT queries

process is highly localized and takes place at relativelg-urmg an IC3 run.
small-cubes granularity;

« Separated contexteach SAT query is relative to a single
time frame;

« Related calls subsequent calls may expose a certain Subsequent SAT calls in IC3 are often applied to highly
correlation (for instance, inductive generalization salldifferent formulas. In the general case, two subsequett cal
take place on progressively reduced formulas). can in fact be posed in the context of different time frames,

We performed an analysis of the implementation of ICtus involving different sets of clauses. In addition, orfe o

within the academic model checking suite PATRAV, closeffém may require the use of the transition relation, while
following the description of IC3 given in [7] (there calledthe other may not, and each query can involve the use of
PDR: Property Directed Reachability). The experimental-an temporary clauses/cubes that are needed only to respomatto t
ysis lead us to identify six different types of SAT querieatth Particular query (e.g. the candidate inductive clause ueed
the algorithm poses during its execution. These queries &R€ck relative inductiveness during cube blocking or iriec
the ones already outlined in Section 1I-B. The type of thegeneralization).
queries is reported in Table I. In the general case, whenever a new query is posed by
For each of the queries identified, we have measured te3 to the underlying SAT solving framework, the formula
average number of calls and the average solving time. Thé&sarently loaded in the solver must be modified to accomodate
statistics are reported in Table II. The results were ctdboy the new query. For this reason, IC3 requires the use of
running PATRAV's implementation of IC3 on the complete sétAT solvers that expose an incremental SAT interface. An
of 310 single property benchmarks of the HWMCC'12, usin'gﬂcremental SAT interface for IC3 must support the follogvin
time and memory limits of 900 s and 2 GB, respectively. features:
Such statistics can be summarized as follows: « Pushing and popping clauses to or from the formula.

IV. HANDLE SAT SOLVING IN IC3

« Specifying literal assumptions. The reason why inductive generalization calls are so ex-

Many state-of-the-art SAT solvers, like MiniSAT [10], feafPensive can be due to the fact that during the inductive
ture an incremental interface capable of pushing new ctaugeneralization of a clause, at every iteration a slightgraing
into the formula and allowing literal assumptions. Remgvinformula is queried for a satisfying assignment in increglgin
clauses from the current formula is a more difficult task sindarger subspaces. Given two subsequent queries in in@uctiv
one have to remove not only the single clause speciﬁegﬁneralization, in fact, it can be noticed that their forasul
but also every learned clause that has been derived fréan differ only for one literal of the present state clausg
it. Although solvers such agchaff [11] directly support and one literal of the next state cubery. As the subspace
clause removal, the majority of the state-of-the-art SAVess becomes larger solving times for those queries increases.
feature an interface like the one of MiniSAT, in which clauséhe average expensiveness of clause propagation calls can
removal can only be simulated. This is done through the useli intuitively motivated by noticing that they are posed one
literal assumptions and the introduction of auxiliary wates time for every clause of every time frame. The innermost
known asactivation variables as described in [12]. In suchtime frames are the ones with the largest number of clauses,
solvers, clauses aren’'t actually removed from the formufnd thus require the largest number of propagation calls.
but only made redundant for the purpose of determining théfortunately, given the high number of clauses in thosetim
satisfiability of the rest of the formula. Since such clausé&gmes, the CNF formulas upon which such calls act are highly
are not removed from the formula, they still participate igonstrained and usually harder to solve. So during profagat
the Boolean Constraint Propagation (BCP) and, thus, degrddere are, in general, more hard queries than simple queries
the overall SAT solving performance. In order to minimizénaking the average SAT solving time for those queries high.
this degradation, each solver employed by IC3 must be pedn an attempt to reduce the burden of each time frame’s SAT
riodically cleaned up, i.e. emptied and re-loaded with onfolver, we have experimented the use of specialized sdivers
relevant clauses. In this work we assume the use of a Sh@ndling such queries. For every time frame, a second sisiver
solver exposing an incremental interface similar to the @he instantiated and used to respond a particular type of qugry (
MiniSAT. or Qg). Table lll summarize the results of such experiment.

Once an efficient incremental SAT solving tool has been
chosen, any implementation of IC3 must face the problem
of deciding how to integrate the top-|eve| a|gorithm witheth To minimize the size of the formula to be loaded into each

underlying SAT solving layer. Such problem can be dividegolver, a common approach is to load, for every SAT call that
into the following three sub-problems: gueries the dynamic behavior of the system, only the nepessa

« SAT solvers allocatiandecide how many different SAT Part of the transition relation.
solvers to employ and how to distribute workload among 't iS €asy to observe that every SAT call that uses the
them. fransition relation involves a constraint on the next state

« SAT solvers loadinglecide which clauses must be loadelfariables of the system in the form of a culeSuch queries
in each solver to make them capable of respondih"’&k if there is a state of the system satisfying some consdrai
correctly to the SAT queries posed by IC3. on the present state, which can reach in one transitionsstate

« SAT solvers clean umlecide when and how often thefepresented by’. Sincec’ is a cube, the desired state must

algorithm must clean up each solver, in order to avoidave a successprsuch thap correspond te’ for the value of
performance degradation. every variable of’. It's easy to see that the only present state

variables that are relevant in determining if such a statg®x
V. SAT SOLVERS ALLOCATION are those in the structural support of the next state vasabl
We assume in this work the use of multiple SAT solverf ¢'. It follows that the only portions of the transition relatio
one for each different time frame. Using multiple solvers, wrequired to answer such queries are the logic cones of the nex
observed that performance is highly related to: state variables of’.
« Solver cleanup frequencgleaning up the solver means Such loading strategy, known #azy loading of transition

removal of incrementally loaded problem clauses arf@lation, is commonly employed in various implementations
learned clauses of IC3, as the ones of PATRAV and ABC. We observed in

« Clause loading strategyn-demand loading of transition @verage 50% reduction in the size of the CNF formula for the
relation clauses based on topological dependency transition relation using lazy loading of transition resat
o We noticed that, for these queries, the portions of the

A. Specialized solvers transition relation loaded can be further minimized emisigy

From the statistical results of reported in Table Il it'syasa CNF encoding technique, called Plaisted-Greenbaum CNF
to see that inductive generalization and clause propagatencoding [13] (henceforth simply called PG encoding). The
queries are by far the most expensive ones in terms of aver&d€& representation of the transition relation togetherhwit
SAT solving time. Inductive generalization queries, iniéidd the assumptions specified by the next state cubean be
of being expensive, are also the most frequent type of quesfigwed as aconstrained boolean circuifl4], i.e. a boolean
posed. circuit in which some of the outputs are constrained to agsum

V1. SOLVER LOADING

certain values. The Plaisted-Greenbaum encoding is aape€hese heuristics clean up each solver as soon as the computed
encoding that can be applied in the translation of a comsthi estimate meets some, often static, threshold.

boolean circuit into a CNF formula. Our experiments with IC3 prove that the frequency of
Below we give an informal description of the PG encodinghe cleanups play a crucial role in determining the overall
For a complete description refer to [13] or [14]. verification performance. We explored the use of new cleanup

Given an AIG representation of a circuit, a CNF encodingeuristics based on more precise measures of the number of
first subdivides that circuit into a set of functional blocks. irrelevant clauses loaded and able to exploit correlationrey
gates or group of connected gates representing certaiedwoldifferent SAT calls to dynamically adjust the frequency of
functions, and introduces a new CNF variabldor each of cleanups.
these blocks. For each functional block representing atfimc For SAT calls in IC3, notice that there are two sources of

f on the input Variable&l,xg, ey, Tp, A set of clauses is irrelevant clauses loaded in a solver:

derived translating into CNF the formula: 1) Deactivated clauses loaded for previous inductive check

a f(x1,22,...,2Tn) (1) (Qs and Q4 queries).
2) Portions of logic cones loaded for previous calls query-

The final CNF formula is obtained by the conjunction of these ing the dynamic behavour of the system.

sets of clauses. Different CNF encodings differ in the way th
gates are grouped together to form functional blocks and inCleanup heuristics commonly used, such as the ones used
the way these blocks are translated into clauses. The idednobaseline versions of ABC and PATRAV, typically take into
PG encoding is to start from a base CNF encoding, and th@gcount only the number of deactivated clauses in the stiver
use both output assumptions and topological information &@mpute an estimate of the number of irrelevant clauses. We
the circuit to get rid of some of the derived clauses, whil@vestigated the use of a new heuristic measure taking into
still producing an equi-satisfiable CNF formula. Based am tfccount the second source of irrelevant clauses, i.eeuaat
output constraints and the number of negations that can Rtions of previously loaded cones.

found in every path from a gate to an output node, it can beEvery time a new query requires to load a new portion of the
shown that, for some gates of the circuit, an equi-satisfiadransition relation, to compute a measure of the numberef th
encoding can be produced by only translating one of the tweelevant transition relation’s clauses, the followingaatities
sides of the bi-implication (1). The CNF formula producedre computed (assuming thetis the cube constraining the

by PG encoding will be a subset of the one produced by thext state variables for that query):

traditional encoding. o . o A: the number of transition relation clauses already
PG encoding proves to be effective in reducing the size |paded into the solver (before loading the logic cones
of loaded formulas, but it is not certain whether it is more required by the current query);

efficient for SAT solving, since it may have worst propagatio
behaviour [15].

We observed a 10-20% reduction in the size of the CNF
formula for the transition relation.

o S(c'): the size (number of clauses) of the logic cones
required for solving the current query;

L(c'): the number of clauses in the required logic cones to
be loaded into the solver (equal to the size of the required
VIl. SOLVERS CLEAN UP logic cone minus the number of clauses that such cone

A natural question arises regarding how frequently and at shares with previously loaded cones);

what conditions SAT solvers cleanups should be scheduledA measure of the number of irrelevant transition relation’s
Cleaning up a SAT solver, in fact, introduces a certain oveglauses loaded fot’, denoted byu(c’), can be computed as

head. This is because: follows:
« Relevant clauses for the current query must be reloaded. u(d)=A—(S() - L(c")) 2)
« Relevant inferences previously derived must be derived
again from those clauses. Such a heuristic measure, divided by the number of clauses

A heuristic cleanup strategy is needed in order to achievdaaded into the solver, indicates the percentage of iraglev
trade-off between the overhead introduced and the slowdoslauses loaded in the solver w.r.t the current query. In Sec-
in BCP avoided. The purpose of that heuristic is to determitien VIII we investigate the use new cleanup strategies dhase
when the number of irrelevant clauses (w.r.t. the curreetygu on this measure. In order to take into account correlation
loaded in a solver becomes large enough to justify a cleaniyetween subsequent SAT calls, we consider such measure
To do so, a heuristic measure representing an estimate of #iveraged on a time window of the last SAT calls.
number of currently loaded irrelevant clauses is compared t
certain threshold. If that measure exceeds the threshudd, t VIII. E XPERIMENTAL RESULTS
the solver is cleaned up.

Clean up heuristics currently used in state-of-the-artsioo We have compared different cleanup and clause loading
like ABC and PdTRAV, rely on loose estimates of the sizbeuristics in both PATRAV and ABC. In this section, we
of irrelevant portions of the formula loaded into each solvebriefly summarize the obtained results.

A. PG encoding o« H4: H2 || H3;

A first set of experiments was done on the full set of Heuristic H1 is the Cleanup heuristic used in the baseline
310 HWMCC'12 benchmarks [16], with a lower timeout, ofversions of both PdATRAV and ABC. The static threshold of
900 seconds, in order to evaluate the use of PG encodii§? activation literals was determined experimentally. Hguri
Results were controversial. A run in PdTRAV, withoo tic H2 cleans up each solver as soon as half of its variables
seconds timeout' showed a reduction in the number of solva& used for activation literals. It can be seen as a flrStlBlmp
instances fronT9 to 63 (3 of which previously unsolved). The attempt to adopt a dynamic cleanup threshold. HeuristicsH3 i
percentage reduction of loaded transition relation clawgas the first heuristic proposed to take into account the second
21.32%. source of irrelevant clauses described in Section VI, i.e.

A similar run on ABC, showed a more stable Comparijrrelevant portions of previously loaded cones. In H3 a splv
son, from80 to 79 solved instances3(of which previously is cleaned up as soon as the percentage of irrelevant tcamsit
unsolved). So a first conclusion is that, PG encoding waglation’s clauses loaded, averaged on a window of the last
not able to win over the standard encoding’ Suggesting it C&ﬂOO Ca”s, reaches 50%. Heuristic H4 takes into accouiht bot
indeed suffer of worst propagation behaviour. Nonetheligss sources of irrelevant clauses, combining H2 and H3.
was very interesting to observe that the overall number

f
" Configuration

. Solved [# N # Avg Ti
solved problems grew from9 to 82 in PATRAV and fromg0 B0 (H1) 0\234 il ew [#] Vglg%%[s]
to 85 in ABC. P3 (H2) 60 1 122.19

Different results between the two tools in this experi- P4 (H3) 44 116.28
mentation could be partially due to different light-weight P5 (H4) 62 3 125.94

preprocessing done by default within them. We started a more
detailed comparison, in order to better understand thégfigrt

controversial results.
Table IV shows a comparison among H1 (rdW), H2,

B. Experiments with PATRAV H3, and H4, in rowsP3, P4, and P5, respectively. No PG

We then focused on a subset o selected circuits, for encoding, nor specialized solvers were used. Heuristic H1,
which preprocessing was done off-line, and the tools wetigat employs a static threshold, was able to solve the larges
run on the same problem instances. In the following tablesymber of instances. Among dynamic threshold heuristics,
the PO rows always represent the default setting of PdTRAWoth H2 and H3 take into account a single source of irrelevant
We report number of solver instances (out76) and average loaded clauses, respectively the deactivated clauses in H2
execution time (time limit900 seconds). Column labeledand the unused portions of transition relation in H3. Data
New, when present, shows the number of instances not soh@early indicates that H3 has worse performance. This sug-

Table IV: Tests on clean up heuristics.

by PO. gests that deactivated clauses play a bigger role in degyadi
SAT solvers’ performance than irrelevant transition rielas
Configuration | Solved [#] | New [#] | Avg Time [s] clauses do. Taking into account only the latter source of
PPlO (g’ass‘;'('ence)) gg 4 1431171'22 irrelevant clauses it's not sufficient. It can be noticedttha
4 - . . .
P2 Qs spec.) 60 3 134,25 heuristic H4, that takes into account both sources, outpeis

both H2 and H3. This proves that considering irrelevant
clauses arising from previoulsy loaded cones in addition to
deactivated clauses can be beneficial. In addition Table IV
: . . : ._shows that dynamic heuristics were able solve some instance
Table Il shows two different implementations with sloeCIaIthat can'’t be solved by the static heuristic H1 and vicevdrsa

ized solvers (so two solvers per time frame): in the first one . o
L . térms of overall number of solved instances, the staticisgur
(P1) the second solver handles generalization calls while

the second oneH2) the it handles propagation calls. Overall outperformes our best dynamic heuristic H4. This can be
o . . tue to the fact that the threshold parameter of H1 results fro
we see a little improvement b#1, with two more instances . . . : :
. . . extensive experimentation while to determine the paramete
solved w.r.tP0, including 4 instances not solved b#0. .)
of H4 (window size and percentage thresholds) a narrower

The next two tables show an evaluation of different solver . .
éxperimentation has been performed.

f:leanup heuristics. Let be the number of gcnvatl_on variables We then focused on H4. and benchmarked it in different
in the solver|vars| the total number of variables in the solver .
setups. Results are showed in table V.

1 /
LCZGU.S?' the total ncl;.mber ogcllaugest_ln th\t;llsolve(c) the Here PG encoding was used in configuratidttand P8,
eunstic measure discussed In section atlz,n) a single solver per time frame 6, additional specialized

sliding window containing the values af for the lastn SAT solver for generalization inP7 and P8. We see that the

calls. The heuristics compared are the following: specialized solver configuration appears to perform worse
e H1:a > 300; with PG encoding. Also, adding a specialized solver for
« H2ia > %|W7"S|i/ generalization to the dynamic heuristic H4 doesn’t seem to
e H3: avg(W (22<Ll. 1000)) > 0.5 be as effective as it is when using the static heuristic H1.

|clause|?

Table l1I: Tests on specialized solvers.

Configuration | Solved [#] | New [#] | Avg Time [s] | qqtic heuristic H1 hasn't been found yet, we believe that a
PO (baseline) 64 137.00 . . -
P6 (PG) 59 3 208.85 more extensive experimentation could lead to better result
P7 Qa4 spec) 58 1 111.59 Nonetheless, the results are more interesting if we conside
P8 (PG4 spec) 50 1 178.56 them from the standpoint of a portfolio-based tool, since th

overall coverage (by the union of all setups) is definitely
Table V: Tests on mixed strategies for cleanup heuristic Higher.
So we believe that more effort in implementation, experi-
mentation, and detailed analysis of case sudies, needs to be
This can be due to the fact that irrelevant clauses arisio fr done. We also deem that this work contributes to the disoossi
generalization calls are not taken into account to scheithele of new developments in the research related to I1C3.
clean up of the main solver that, in turn, is cleaned up less

frequently REFERENCES
. . [1] A. R. Bradley, “SAT-based model checking without unimg,” in
C. Experiments with ABC VMCA|, Austin, Texas, Jan. 2011, pp. 70-87.

[2] A. R. Bradley, “Understanding IC3,” inrSAT, ser. Lecture Notes in
The 70 selected circuits were also benchmarked with ABC, Computer Science, A. Cimatti and R. Sebastiani, Eds., v8L77

with same pre-processing used in PATRAV: Table VI report in Springer, 2012, pp. 1-14.
row A0 the default setting of ABC. Rowd1 shows the variant [3] A Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu Symbolic

. . . . Model Checking using SAT procedures instead of BDDs Pimc. 36th
with PG encoding, ronA2 shows a run without dynamic TR Design Automation Conf. New Orleans, Louisiana; IEEE Computer

clause loading. RowA3 finally shows a different period for Society, Jun. 1999, pp. 317-320.

; i [4] M. Sheeran, S. Singh, and G. Stalmarck, “Checking $aRrbperties
solver cIeanupl(OOO variables instead 0300)' Using Induction and a SAT Solver,” irProc. Formal Methods in
Computer-Aided Designser. LNCS, W. A. Hunt and S. D. Johnson,

Configuration | Solved [#] New [#] Avg Time [s] Eds., vol. 1954. Austin, Texas, USA: Springer, Nov. 2000, pp8—
A0 64 138.66 125.
Al 63 1 152.18 [5] P. Bjesse and K. Claessen, “SAT-Based Verification wittetate Space
A2 63 2 158.75 Traversal,” inProc. Formal Methods in Computer-Aided Desiggser.
A3 64 138.45 LNCS, vol. 1954. Austin, TX, USA: Springer, 2000.

[6] K. L. McMillan, “Interpolation and SAT-Based Model Chidag,” in
. . . Proc. Computer Aided Verificatiorser. LNCS, vol. 2725. Boulder,
Table VI: Tests on ABC with different strategies. CO, USA: Springer, 2003, pp. 1-13.
[7] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient ingphentation
. . . . of property directed reachability,” ifMCAD, 2011, pp. 125-134.
Overall, results show little variance among differentisgl, [g] A. Mishchenko, “ABC: A System for Sequential Synthesisdaverifi-
which could suggest lesser sensitivity of ABC to different cation, http://www.eecs.berkeley.egwdlanmi/abc/,” 2005.
tunings. Nonetheless, a further experimentation with ABC o9 G: Cabodi, S. Nocco, and S. Quer, "Benchmarking a modetleér for

. . .. algorithmic improvements and tuning for performand&tmal Methods
the full set 0f310 benchmarks (witf800 seconds time limit), ingSystem Design/ol. 39, no. 2, pp_ggo5_pzz7‘ 2011.

showed a 14% improvement in the number of solved proble8] N. Eén and N. Srensson, “The Minisat SAT Solver, http://minisat.se,”

; indi ial i Apr. 2009.
(from 71 to 81), which indicate a potential improvement for[ll] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Mallchaf:

a portfolio-based tool, able to concurrently exploit nulti Engineering an Efficient SAT Solver,” iRroc. 38th Design Automation
settings. Conf. Las Vegas, Nevada: IEEE Computer Society, Jun. 2001.
[12] N. Eén and N. Sorensson, “Temporal induction by inveatal SAT
IX. CONCLUSIONS solving,” Electr. Notes Theor. Comput. Soiol. 89, no. 4, pp. 543-560,
2003.

The paper shows a detailed analysis and characterizatiori@f D. A. Plaisted and S. Greenbaum, “A structure-presgrwilause form
SAT queries posed by IC3. We also discuss new ideas for_translation,’J. Symb. Compytvol. 2, no. 3, pp. 293-304, 1986.
sqlver aIIocation/Ioad!ng/restarting. The experimemlu- mafiz:]vslsgf'c/?\iFE,?'I?(,E&U?QS].Mpé;il:)lﬁi'm;éﬁr,]Lﬂgfmn%.mz',}lsg,elssélerﬂlig,
ation done on two different state-of-the-art academicgool 2012.
shows lights and shadows, as no breakthrough or clear winbiét Nf- _Eény;Pfalﬁtical SACTi atg(t)%rial on applied satisfiip solving,” Slides
emerges from the new ideas. [16] g\. Ig\i/elztr% atr?d 'I?tJ'l:J'\s/lsiIQ,D“Tth\./lodel Checking Competitid/eb Page,

PG encoding showed to be less effective than expected. nttp://fmv.jku.athwmee.”

This is probably because the benefits introduced in terms of
loaded formula size will be overwhelmed by the supposed
worst propagation behaviour of that formula.

The use of specialized solvers seems to be effective when a
static cleanup heuristic is used, less effective when coatbi
with PG encoding or a dynamic heuristic.

Our experiments showed that, when a dynamic cleanup
heuristic is used, IC3’s performance can be improved byntaki
into account both deactivated clauses and irrelevantqof
previously loaded cones. Even if a parameter configuration f
H4 that is able to outperform the currently used, well-raeshd

