
Trading-off incrementality and dynamic restart of
multiple solvers in IC3
G. Cabodi (*), A. Mishchenko (**), M. Palena (*)

(*) Dip. di Automatica ed Informatica
Politecnico di Torino - Torino, Italy

(**) Dept. of EECS, University of California, Berkeley, CA,USA

Abstract—This paper1addresses the problem of SAT solver
performance in IC3, one of the major recent breakthroughs
in Model Checking algorithms. Unlike other Bounded and
Unbounded Model Checking algorithms, IC3 is characterized
by numerous SAT solver queries on small sets of problem
clauses. Besides algorithmic issues, the above scenario poses
serious performance challenges for SAT solver configuration
and tuning. As well known in other application fields, finding
a good compromise between learning and overhead is key to
performance. We address solver cleanup and restart heuristics,
as well as clause database minimality, based on on-demand clause
loading: transition relation clauses are loaded in solver based
on structural dependency and phase analysis. We also compare
different solutions for multiple specialized solvers, andwe provide
an experimental evaluation on benchmarks from the HWMCC
suite. Though not finding a clear winner, the work outlines several
potential improvements for a portfolio-based verification tool
with multiple engines and tunings.

I. I NTRODUCTION

IC3 [1] is a SAT-based invariant verification algorithm
for bit-level Unbounded Model Checking (UMC). Since its
introduction, IC3 has immediately generated strong interest,
and is now considered one of the major recent breakthroughs
in Model Checking. IC3 proved to be impressively effective on
solving industrial verification problems. Our experience with
the algorithm shows that IC3 is the single invariant verification
algorithm capable of solving the largest number of instances
among the benchmarks of the last editions of the Hardware
Model Checking Competition (HWMCC).

A. Motivations

IC3 heavily relies on SAT solvers to drive several parts of
the verification algorithm: a typical run of IC3 is characterized
by a huge amount of SAT queries. As stated by Bradley in [2],
the queries posed by IC3 to SAT solvers differ significantly
in character from those posed by other SAT-based invariant
verification algorithms (such as Bounded Model Checking [3],
k-induction [4] [5] or interpolation [6]). Most notably, SAT
queries posed by IC3 don’t involve the unrolling of the transi-
tion relation for more than one step and are thus characterized
by small-sized formulas.

IC3 can be thought as composed of two different layers:
at the top level, the algorithm itself drives the verification

1This work was supported in part by SRC Contracts No. 2012-TJ-2328 and
No. 2265.001

process by constantly refining a set of over-approximations
to forward reachable states with new inductive clauses; at the
bottom level, a SAT solving framework is exploited by the
top-level algorithm to respond to queries about the system.
As shown in [7], these two layers can be separated by means
of a clean interface.

Performance of IC3 turns out to be both highly sensitive
to the various internal behaviours of SAT solvers, and strictly
dependent on the way the top-level algorithm is integrated with
the underlying SAT solving framework.

The peculiar characteristics exposed by the SAT queries of
IC3 can thus be exploited to improve the overall performance
of the algorithm in two different manners:

1) Tuning the internal behaviours of the particular SAT
solver employed to better fit IC3 needs.

2) Defining better strategies to manage the SAT solving
work required by IC3.

In this paper we address this second issue, proposing and
comparing different implementation strategies for handling
SAT queries in IC3. The aim of this paper is to identify the
most efficient way to manage SAT solving in IC3. To achieve
this goal we experimentally compare a number of different
implementation strategies over a selected set of benchmarks
from the recent HWMCC.

The experimental work has been done by two different
research groups, on two different state-of-the-art verification
tools, ABC [8] and PdTRAV [9], that share similar architec-
tural and algorithmnic choices in their implementation of IC3.

The focus of this paper is neither on the IC3 algorithm
itself nor on the internal details of the SAT solving procedures
employed, but rather on the implementation details of the
integration between IC3 and the underlying SAT solving
framework.

B. Contributions

The main contributions of this paper are:

• A characterization of SAT queries posed by IC3.
• Novel approaches to solver allocation, loading and clean

up in IC3.
• An experimental evaluation of performance using two

verification tools.



C. Outline

First in Section II we introduce the notation used and give
some background on IC3. Then, in Section III we present a
systematic characterization of the SAT solving work required
by IC3. Section IV introduces the problem of handling SAT
queries posed by IC3 efficiently. Both commonly used and
novel approaches to the allocation, loading and cleaning upof
SAT solvers in IC3 are discussed in Sections V, VI and VII
respectively. Experimental data comparing these approaches
are presented in Section VIII. Finally, in Section IX we draw
some conclusions and give summarizing remarks.

II. BACKGROUND

A. Notation

Definition 1. A transition system is the tripleS = 〈M, I, T 〉
whereM is a set of boolean variables called state variables of
the system,I(M) is a boolean predicate overM representing
the set of initial states of the system andT (M,M ′) is a
predicate overM,M ′ that represents the transition relation
of the system.

Definition 2. A state of the system is represented by a
complete assignments to the state variablesM . A set of
states of the system is represented by a boolean predicate
over M . Given a boolean predicateF over M , a complete
assignements such thats satisfiesF (i.e. s |= F ) represents
a state contained inF and is called anF -state. Primed
state variablesM ′ are used to represent future states and,
accordingly, a boolean predicate overM ′ represent a set of
future states.

Definition 3. A boolean predicateF is said to be stronger than
another boolean predicateG if F → G, i.e. everyF -state is
also aG-state.

Definition 4. A literal is a boolean variable or the negation of
a boolean variable. A disjunction of literals is called a clause
while a conjunction of literals is called a cube. A formula
is said to be in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses.

Definition 5. Given a transition systemS = 〈M, I, T 〉, if an
assignments, t′ satisfies the transition relationT (i.e. if s, t′ |=
T ) thens is said to be a predecessor oft and t is said to be
a successor ofs. A sequence of statess0, s1, . . . , sn is said
to be a path inS if every couple of adjacent statessi, si+1,
i ≤ 0 < n satisfies the transition relation (i.e. ifsi, s′i+1 |= T ).

Definition 6. Given a transition systemS = 〈M, I, T 〉, a state
s is said to be reachable inS if there exists a paths0, s1, . . . , s,
such thats0 is an initial state (i.e.s0 |= I). We denote with
Rn(S) the set of states that are reachable inS in at mostn
steps. We denote withR(S) the overall set of states that are
reachable inS. Note thatR(S) =

⋃

i≥0 Ri(S).

Definition 7. Given a transition systemS = 〈M, I, T 〉 and a
boolean predicateP over M (called A safety property), the
invariant verification problem is the problem of determining if

P holds for every reachable state inS: ∀s ∈ R(S) : s |= P .
An algorithm used to solve the invariant verification problem
is called an invariant verificatio algorithm.

Definition 8. Given a transition systemS = 〈M, I, T 〉, a
boolean predicateF overM is called an inductive invariant
for S if the following two conditions hold:

• Base case:I → F

• Inductive case:F ∧ T → F ′

A boolean predicateF overM is called an inductive invariant
for S relative to another boolean predicateG if the following
two conditions hold:

• Base case:I → F

• Relative inductive case:G ∧ F ∧ T → F ′

Lemma 1. Given a transition systemS = 〈M, I, T 〉, an
inductive invariantF for S is an over-approximation to the
set of reachable statesR(S).

Definition 9. Given a transition systemS = 〈M, I, T 〉 and a
boolean predicateP overM , an inductive strengthening ofP
for S is an inductive invariantF for S such thatF is stronger
thanP .

Lemma 2. Given a transition systemS = 〈M, I, T 〉 and a
boolean predicateP overM , if an inductive strengthening of
P can be found, then the propertyP holds for every reachable
state ofS. The invariant verification problem can be seen as
the problem to find an inductive strengthening ofP for S.

B. IC3

Given a transition systemS = 〈M, I, T 〉 and a safety prop-
ertyP overM, IC3 aims to find an inductive strengthening of
P for S. For this purpose, it maintains a sequence of formulas
Fk = F0, F1, . . . Fk such that, for every0 ≤ i < k, Fi is an
over-approximation of the set of states reachable in at most
i steps inS. Each of these over-approximations is called a
time frameand is represented by a set of clauses, denoted by
clauses(Fi). The sequence of time framesFk is called trace
and is maintained by IC3 in such a way that the following
conditions hold throughout the algorithm:

(1) F0 = I

(2) Fi → Fi+1, for all 0 ≤ i < k

(3) Fi ∧ T → F ′
i+1, for all 0 ≤ i < k

(4) Fi → P , for all 0 ≤ i < k

Condition (1) states that the first time frame of the trace is
special and is simply assigned to the set of initial states of
S. The remaining conditions, claim that for every time frame
Fi but the last one: (2) everyFi-state is also aFi+1-state, (3)
every successor of anFi-state is anFi+1-state and (4) every
Fi-state is safe. Condition (2) is maintained syntactically,
enforcing the condition (2’)clauses(Fi+1) ⊆ clauses(Fi).

Lemma 3. Let S = 〈M, I, T 〉 be a transition system,
Fk = F0, F1, . . . Fk a sequence of boolean formulas over
M and let conditions (1-3) hold forFk. Then eachFi,
with 0 ≤ i < k, is an over-approximation to the set of states
reachable withini steps inS.



Lemma 4. Let S = 〈M, I, T 〉 be a transition system,P a
safety property overM, Fk = F0, F1, . . . Fk a sequence of
boolean formulas overM and let conditions (1-4) hold for
Fk. ThenP is satisfied up tok − 1 steps inS (i.e. there
doesn’t exist any counter-example toP of length less or equal
than k − 1).

The main procedure of IC3 is described in Algorithm 1 and
is composed of two nested iterations. Major iterations (lines 3-
16) try to prove thatP is satisfied up tok steps inS, for
increasing values ofk. To prove so, in minor iterations (lines 4-
9), IC3 refines the traceFk computed so far, by adding new
relative inductive clauses to some of its time frames. The
algorithm iterates until either (i) an inductive strengthening
of the property is produced (line 4), or (ii) a counter-example
to the property is found (line 7).

Input: S = 〈M, I, T 〉 ;P (M)
Output: SUCCESS or FAIL(σ), with σ counter-example

1: k ← 0
2: Fk ← I

3: repeat
4: while ∃t : t |= Fk ∧ ¬P do
5: s← Extend(t)
6: if BlockCube(s, Q, Fk) = FAIL(σ) then
7: return FAIL(σ)
8: end if
9: end while

10: Fk+1 ← ∅
11: k ← k + 1
12: Fk ← Propagate(Fk)
13: if Fi = Fi+1 for some0 ≤ i < k then
14: return SUCCESS
15: end if
16: until forever

Algorithm 1. IC3(S, P )

At major iterationk, the algorithm has computed a trace
Fk such that conditions (1-4) hold. From Lemma 4, it follows
that P is satisfied up tok − 1 steps inS. IC3 then tries to
prove thatP is satisfied up tok steps as well. This is done by
enumeratingFk-states that violateP and then trying to block
them inFk.

Definition 10. Blocking a state (or, more generally, a cube)
s in a time frameFk means provings unreachable withink
steps inS, and consequently refineFk to exclude it.

To enumerate each state ofFk that violatesP (line 4), the
algorithm poses SAT queries to the underlying SAT solving
framework in the following form:

SAT ?(Fk ∧ ¬P ) (Q1)

If Q1 is SAT, a bad statet in Fk can be extracted from the
satisfying assignment. That state must be blocked inFk. To
increase performance of the algorithm, as suggested in [7],
the bad statet generated this way is first (possibly) extended

to a bad cubes. This is done by means of theExtend(t)
procedure (line 5), not reported here, that employs ternary
simulation to remove some literals fromt. The resulting cube
s includes t and violates the propertyP , it is thus abad
cube. The algorithm then tries to block the whole bad cube
s rather thant. It is showed in [7] that extending bad states
into bad cubes before blocking them dramatically improves
IC3 performance.

Once a bad cubes is found, it is blocked inFk calling
the BlockCube(s, Q, Fk) procedure (line 6). This procedure
is described in Algorithm 2.

Input: s: bad cube inFk; Q: priority queue;Fk: trace
Output: SUCCESS or FAIL(σ), with σ counter-example

1: add a proof-obligation(s, k) to the queueQ
2: while Q is not emptydo
3: extract(s, j) with minimal j from Q

4: if j > k or t 6|= Fj then continue;
5: if j = 0 then return FAIL(σ)
6: if ∃t, v′ : t, v′ |= Fj−1 ∧ T ∧ ¬s ∧ s′ then
7: p← Extend(t)
8: add (p, j − 1) and (s, j) to Q

9: else
10: c← Generalize(j, s,Fk)
11: Fi ← Fi ∪ c for 0 < i ≤ j

12: add (j + 1, c) to Q

13: end if
14: end while
15: return SUCCESS

Algorithm 2. BlockCube(s, Q, Fk)

Otherwise, ifQ1 is UNSAT, every bad state ofFk has been
blocked so far, conditions (1-4) hold fork + 1 and IC3 can
safely move to the next major iteration, trying to prove that
P is satisfied up tok + 1 steps. Before moving to the next
iteration, a new empty time frameFk+1 is created (line 10).
Initially, clauses(Fk+1) = ∅ and such time frame represent
the entire state space, i.e.Fk+1 = Space(S). Note that
Space(S) is a valid over-approximation to the set of states
reachable withink + 1 steps inS. Then a phase calledprop-
agation takes place (line 12). The procedurePropagate(Fk)
(Algorithm 4), which is discussed later, handles that phase.
During propagation, IC3 tries to refine every time frameFi,
with i < 0 ≤ k, by checking if some clauses of one time
frame can be pushed forward to the following time frame.
Possibly, propagation refines the outmost timeframeFk so that
Fk ⊂ Space(S). Propagation can lead to two adjacent time
frames becoming equivalent. If that happens, the algorithm
has found an inductive strengthening ofP S (equal to those
time frames), so the propertyP holds for for every reachable
state ofS and IC3 return success (line 13).

The procedureBlockCube(s, Q, Fk) (Algorithm 2) is re-
sponsible for refining the traceFk in order to block a bad cube
s found in Fk. To preserve condition (3), prior to blocking a
cube in a certain time frame, IC3 has to recursively block its



predecessor states in the preceding time frames. To keep track
of the states (or cubes) that must be blocked in certain time
frames, IC3 uses the formalism ofproof-obligations.

Definition 11. Given a cubes and a time frameFj , a proof-
obligation is a couple(s, j) formalizing the fact thats must
be blocked inFj .

Given a proof obligation(s, j), the cubes can either
represent a set of bad states or a set of states that can all
reach a bad state in one or more transitions. The numberj

indicates the position in the trace wheres must be proved
unreachable, or else the property fails.

Definition 12. A proof obligation (s, j) is said to be dis-
charged whens becomes blocked inFj .

IC3 maintains a priority queueQ of proof-obligations.
During the blocking of a cube, proof-obligations(s, j) are
extracted fromQ and discharged for increasing values of
j, ensuring that every predecessor of a bad cubes will be
blocked inFj (j < k) before s will be blocked inFk. In
the BlockCube(s, Q, Fk) procedure, first a proof-obligation
encoding the fact thats must be blocked inFk is added to
Q (line 1). Then proof-obligations are iteratively extracted
from the queue and discharged (lines 2-14).

Prior to discharge the proof-obligation(s, j) extracted, IC3
checks if that proof-obligation still needs to be discharged.
It is in fact possible for an enqueued proof-obligation to
become discharged as a result of the discharging of some
previously extracted proof-obligations. To perform this check,
the following SAT query is posed (line 4):

SAT ?(Fj ∧ s) (Q2)

If the result ofQ2 is SAT, then the cubes is still in Fj and
(s, j) still needs to be discharged. Otherwise,s has already
been blocked inFj and the procedure can move on to the
next iteration.

If the proof-obligation(s, j) still needs to be discharged,
then IC3 checks if the time frame identified byj is the initial
time frame (line 5). If so, the states represented bys are initial
states that can reach a violation of the propertyP . A counter-
exampleσ to P can be constructed going up the chain of
proof-obligations that led to(s, 0). In that case, the procedure
terminates with failure returning the counter-example found.

To discharge a proof-obligation(s, j), i.e. to block a cube
s in Fj , IC3 tries to derive a clausec such thatc ⊆ ¬s and
c is inductive relative toFj−1. This is done by posing the
following SAT query (line 6):

SAT ?(Fj−1 ∧ ¬s ∧ T ∧ s′) (Q3)

If Q3 is UNSAT (lines 10-12), then the clause¬s is
inductive relative toFj−1 and can be used to refineFj , ruling
out s. To pursue a stronger refinement ofFj , the inductive
clause found undergoes a process calledinductive generaliza-
tion (line 10) prior to being added toFi. Inductive gener-
alization is carried out by the procedureGeneralize(j, s,Fk)
(Algorithm 3), which tries to minimize the number of literals

in clausec = ¬s while maintaining its inductiveness relative
to Fj−1, in order to preserve condition (2). The resulting
clause is added not only toFj , but also to every time frame
Fi, 0 < i < j (line 11). Doing so discharges the proof-
obligation(s, j). In fact, this refinement rule outs from every
Fi with 0 < i ≤ j. Since the setsFi with i > j are larger
thanFj , s may still be present in one of them and(s, j + 1)
may become a new proof-obligation. To address this issue,
Algorithm 2 adds(s, j + 1) to the priority queue (line 12).

Otherwise, ifQ3 is SAT (lines 7-8), a predecessort of s
in Fj−1 can be extracted from the satisfying assignment. To
preserve condition (3), before blocking a cubes in a time
frameFj , every predecessor ofs must be blocked inFj−1. So,
the predecessort is extended with ternary simulation (line 7)
into the cubep, and then both proof-obligations(p, j−1) and
(s, j) are added to the queue (line 8).

Input: j: time frame index;s: cube such that¬s is
inductive relative toFj−1; Fk: trace

Output: c : a sub-clause of¬s
1: c← ¬s
2: for all literals l in c do
3: try ← the clause obtained by deletingl from c

4: if 6 ∃t, v′ : t, v′ |= Fj−1 ∧ T ∧ try ∧ ¬try′ then
5: if 6 ∃t |= I ∧ ¬try then
6: c← try

7: end if
8: end if
9: end for

10: return c

Algorithm 3. Generalize(j, s,Fk)

The Generalize(j, s,Fk) procedure (Algorithm 3) tries to
remove literals from¬s while keeping it relatively inductive
to Fj−1. To do so, a clausec intialized with¬s (line 1) is used
to represent the current minimal inductive clause. For every
literal of c, the clausetry obtained by dropping that literal
from c (line 3), is checked for inductiveness relative toFj−1

by means of the following SAT query (line 4):

SAT ?(Fj−1 ∧ try ∧ T ∧ ¬try′) (Q4)

If Q4 is UNSAT, the iductive case for the reduced formula
still holds. Since dropping literals from a relatively inductive
clause can break both the inductive case and the base case, the
latter must be explicilty checked too for the reduced clause
try (line 5). This is done by posing the following SAT query:

SAT ?(I ∧ ¬try) (Q5)

If both the inductive case and the base case hold for the
reduced clausetry, the currently minimal inductive clausec
is updated withtry (line 6).

The Propagate(Fk) procedure (Algorithm 4) handles the
propagation phase. For every clausec of each time frameFj ,
with 0 ≤ j < k − 1, the procedure checks ifc can be pushed



Input: Fk: trace
Output: Fk: updated trace

1: for j = 0 to k − 1 do
2: for all c ∈ Fj do
3: if ∃t, v′ : t, v′ |= Fj ∧ T ∧ c′ then
4: Fj+1 ← Fj+1 ∪ {c}
5: end if
6: end for
7: end for
8: return Fk

Algorithm 4. Propagate(Fk)

forward toFj+1 (line 3). To do so, it poses the following SAT
query:

SAT ?(Fj ∧ T ∧ c′) (Q6)

If the result ofQ6 is SAT, then it is safe, with respect to
condition (3), to push clausec forward toFi+1. Otherwise,c
can’t be pushed and the procedure iterates to the next clause.

C. Related works

In [2], Aaron Bradley outlined the opportunity for SAT and
SMT researchers to directly address the problem of improving
IC3’s performance by exploiting the peculiar character of the
SAT queries it poses. A description of the IC3 algorithm,
specifically addressing implementation issues, is given in[7].

III. SAT SOLVING IN IC3

SAT queries posed by IC3 have some specific characteris-
tics:

• Small-sized formulas: they employ no more than a single
instance of the transition relation;

• Large number of calls: reasoning during the verification
process is highly localized and takes place at relatively-
small-cubes granularity;

• Separated contexts: each SAT query is relative to a single
time frame;

• Related calls: subsequent calls may expose a certain
correlation (for instance, inductive generalization calls
take place on progressively reduced formulas).

We performed an analysis of the implementation of IC3
within the academic model checking suite PdTRAV, closely
following the description of IC3 given in [7] (there called
PDR: Property Directed Reachability). The experimental anal-
ysis lead us to identify six different types of SAT queries that
the algorithm poses during its execution. These queries are
the ones already outlined in Section II-B. The type of these
queries is reported in Table I.

For each of the queries identified, we have measured the
average number of calls and the average solving time. These
statistics are reported in Table II. The results were collected by
running PdTRAV’s implementation of IC3 on the complete set
of 310 single property benchmarks of the HWMCC’12, using
time and memory limits of 900 s and 2 GB, respectively.

Such statistics can be summarized as follows:

Name Query Type Query
Q1 Target Intersection SAT ?(Fk ∧ ¬P )
Q2 Blocked Cube SAT ?(Fi ∧ s)
Q3 Relative Induction SAT ?(Fi ∧ ¬s ∧ T ∧ s′)
Q4 Inductive Generalization SAT ?(Fi ∧ c ∧ T ∧ ¬c′)
Q5 Base of Induction SAT ?(I ∧ ¬c)
Q6 Clause Propagation SAT ?(Fi ∧ T ∧ ¬c′)

Table I: SAT Queries Breakdown in IC3

• SAT calls involved in inductive generalization are by
far the most frequent ones. These are in fact the calls
that appears at the finest granularity. In the worst case
scenario, one call is posed for every literal of every
inductive clause found.

• Inductive generalization and propagation checks are the
most expensive queries in terms of average SAT solving
time required.

• Target intersection calls are very infrequent and don’t take
much time to be solved.

• Blocked cube and relative induction checks are close in
the number of calls and solving time.

Query Calls Avg Time
[Number] [%] [ms]

Q1 483 0.1 81
Q2 27891 6.8 219
Q3 31172 7.6 334
Q4 142327 34.7 575
Q5 147248 35.9 112
Q6 61114 14.9 681

Table II: SAT queries statistics in IC3: Number of calls,
percentage, and average time spent in different SAT queries
during an IC3 run.

IV. H ANDLE SAT SOLVING IN IC3

Subsequent SAT calls in IC3 are often applied to highly
different formulas. In the general case, two subsequent calls
can in fact be posed in the context of different time frames,
thus involving different sets of clauses. In addition, one of
them may require the use of the transition relation, while
the other may not, and each query can involve the use of
temporary clauses/cubes that are needed only to respond to that
particular query (e.g. the candidate inductive clause usedto
check relative inductiveness during cube blocking or inductive
generalization).

In the general case, whenever a new query is posed by
IC3 to the underlying SAT solving framework, the formula
currently loaded in the solver must be modified to accomodate
the new query. For this reason, IC3 requires the use of
SAT solvers that expose an incremental SAT interface. An
incremental SAT interface for IC3 must support the following
features:

• Pushing and popping clauses to or from the formula.



• Specifying literal assumptions.
Many state-of-the-art SAT solvers, like MiniSAT [10], fea-

ture an incremental interface capable of pushing new clauses
into the formula and allowing literal assumptions. Removing
clauses from the current formula is a more difficult task since
one have to remove not only the single clause specified,
but also every learned clause that has been derived from
it. Although solvers such aszchaff [11] directly support
clause removal, the majority of the state-of-the-art SAT solvers
feature an interface like the one of MiniSAT, in which clause
removal can only be simulated. This is done through the use of
literal assumptions and the introduction of auxiliary variables
known asactivation variables, as described in [12]. In such
solvers, clauses aren’t actually removed from the formula
but only made redundant for the purpose of determining the
satisfiability of the rest of the formula. Since such clauses
are not removed from the formula, they still participate in
the Boolean Constraint Propagation (BCP) and, thus, degrade
the overall SAT solving performance. In order to minimize
this degradation, each solver employed by IC3 must be pe-
riodically cleaned up, i.e. emptied and re-loaded with only
relevant clauses. In this work we assume the use of a SAT
solver exposing an incremental interface similar to the oneof
MiniSAT.

Once an efficient incremental SAT solving tool has been
chosen, any implementation of IC3 must face the problem
of deciding how to integrate the top-level algorithm with the
underlying SAT solving layer. Such problem can be divided
into the following three sub-problems:

• SAT solvers allocation: decide how many different SAT
solvers to employ and how to distribute workload among
them.

• SAT solvers loading: decide which clauses must be loaded
in each solver to make them capable of responding
correctly to the SAT queries posed by IC3.

• SAT solvers clean up: decide when and how often the
algorithm must clean up each solver, in order to avoid
performance degradation.

V. SAT SOLVERS ALLOCATION

We assume in this work the use of multiple SAT solvers,
one for each different time frame. Using multiple solvers, we
observed that performance is highly related to:

• Solver cleanup frequency: cleaning up the solver means
removal of incrementally loaded problem clauses and
learned clauses

• Clause loading strategy: on-demand loading of transition
relation clauses based on topological dependency

A. Specialized solvers

From the statistical results of reported in Table II it’s easy
to see that inductive generalization and clause propagation
queries are by far the most expensive ones in terms of average
SAT solving time. Inductive generalization queries, in addition
of being expensive, are also the most frequent type of query
posed.

The reason why inductive generalization calls are so ex-
pensive can be due to the fact that during the inductive
generalization of a clause, at every iteration a slightly changing
formula is queried for a satisfying assignment in increasingly
larger subspaces. Given two subsequent queries in inductive
generalization, in fact, it can be noticed that their formulas
can differ only for one literal of the present state clausetry

and one literal of the next state cube¬try. As the subspace
becomes larger solving times for those queries increases.
The average expensiveness of clause propagation calls can
be intuitively motivated by noticing that they are posed one
time for every clause of every time frame. The innermost
time frames are the ones with the largest number of clauses,
and thus require the largest number of propagation calls.
Unfortunately, given the high number of clauses in those time
frames, the CNF formulas upon which such calls act are highly
constrained and usually harder to solve. So during propagation
there are, in general, more hard queries than simple queries,
making the average SAT solving time for those queries high.

In an attempt to reduce the burden of each time frame’s SAT
solver, we have experimented the use of specialized solversfor
handling such queries. For every time frame, a second solveris
instantiated and used to respond a particular type of query (Q4

or Q6). Table III summarize the results of such experiment.

VI. SOLVER LOADING

To minimize the size of the formula to be loaded into each
solver, a common approach is to load, for every SAT call that
queries the dynamic behavior of the system, only the necessary
part of the transition relation.

It is easy to observe that every SAT call that uses the
transition relation involves a constraint on the next state
variables of the system in the form of a cubec′. Such queries
ask if there is a state of the system satisfying some constraints
on the present state, which can reach in one transition states
represented byc′. Sincec′ is a cube, the desired state must
have a successorp such thatp correspond toc′ for the value of
every variable ofc′. It’s easy to see that the only present state
variables that are relevant in determining if such a state exists,
are those in the structural support of the next state variables
of c′. It follows that the only portions of the transition relation
required to answer such queries are the logic cones of the next
state variables ofc′.

Such loading strategy, known aslazy loading of transition
relation, is commonly employed in various implementations
of IC3, as the ones of PdTRAV and ABC. We observed in
average 50% reduction in the size of the CNF formula for the
transition relation using lazy loading of transition relation.

We noticed that, for these queries, the portions of the
transition relation loaded can be further minimized employing
a CNF encoding technique, called Plaisted-Greenbaum CNF
encoding [13] (henceforth simply called PG encoding). The
AIG representation of the transition relation together with
the assumptions specified by the next state cubec′ can be
viewed as aconstrained boolean circuit[14], i.e. a boolean
circuit in which some of the outputs are constrained to assume



certain values. The Plaisted-Greenbaum encoding is a special
encoding that can be applied in the translation of a constrained
boolean circuit into a CNF formula.

Below we give an informal description of the PG encoding.
For a complete description refer to [13] or [14].

Given an AIG representation of a circuit, a CNF encoding
first subdivides that circuit into a set of functional blocks, i.e.
gates or group of connected gates representing certain boolean
functions, and introduces a new CNF variablea for each of
these blocks. For each functional block representing a function
f on the input variablesx1, x2, . . . , xn, a set of clauses is
derived translating into CNF the formula:

a↔ f(x1, x2, . . . , xn) (1)

The final CNF formula is obtained by the conjunction of these
sets of clauses. Different CNF encodings differ in the way the
gates are grouped together to form functional blocks and in
the way these blocks are translated into clauses. The idea of
PG encoding is to start from a base CNF encoding, and then
use both output assumptions and topological information of
the circuit to get rid of some of the derived clauses, while
still producing an equi-satisfiable CNF formula. Based on the
output constraints and the number of negations that can be
found in every path from a gate to an output node, it can be
shown that, for some gates of the circuit, an equi-satisfiable
encoding can be produced by only translating one of the two
sides of the bi-implication (1). The CNF formula produced
by PG encoding will be a subset of the one produced by the
traditional encoding.

PG encoding proves to be effective in reducing the size
of loaded formulas, but it is not certain whether it is more
efficient for SAT solving, since it may have worst propagation
behaviour [15].

We observed a 10-20% reduction in the size of the CNF
formula for the transition relation.

VII. SOLVERS CLEAN UP

A natural question arises regarding how frequently and at
what conditions SAT solvers cleanups should be scheduled.
Cleaning up a SAT solver, in fact, introduces a certain over-
head. This is because:

• Relevant clauses for the current query must be reloaded.
• Relevant inferences previously derived must be derived

again from those clauses.
A heuristic cleanup strategy is needed in order to achieve a

trade-off between the overhead introduced and the slowdown
in BCP avoided. The purpose of that heuristic is to determine
when the number of irrelevant clauses (w.r.t. the current query)
loaded in a solver becomes large enough to justify a cleanup.
To do so, a heuristic measure representing an estimate of the
number of currently loaded irrelevant clauses is compared to a
certain threshold. If that measure exceeds the threshold, then
the solver is cleaned up.

Clean up heuristics currently used in state-of-the-art tools,
like ABC and PdTRAV, rely on loose estimates of the size
of irrelevant portions of the formula loaded into each solver.

These heuristics clean up each solver as soon as the computed
estimate meets some, often static, threshold.

Our experiments with IC3 prove that the frequency of
the cleanups play a crucial role in determining the overall
verification performance. We explored the use of new cleanup
heuristics based on more precise measures of the number of
irrelevant clauses loaded and able to exploit correlation among
different SAT calls to dynamically adjust the frequency of
cleanups.

For SAT calls in IC3, notice that there are two sources of
irrelevant clauses loaded in a solver:

1) Deactivated clauses loaded for previous inductive checks
(Q3 andQ4 queries).

2) Portions of logic cones loaded for previous calls query-
ing the dynamic behavour of the system.

Cleanup heuristics commonly used, such as the ones used
in baseline versions of ABC and PdTRAV, typically take into
account only the number of deactivated clauses in the solverto
compute an estimate of the number of irrelevant clauses. We
investigated the use of a new heuristic measure taking into
account the second source of irrelevant clauses, i.e. irrelevant
portions of previously loaded cones.

Every time a new query requires to load a new portion of the
transition relation, to compute a measure of the number of the
irrelevant transition relation’s clauses, the following quantities
are computed (assuming thatc′ is the cube constraining the
next state variables for that query):

• A: the number of transition relation clauses already
loaded into the solver (before loading the logic cones
required by the current query);

• S(c′): the size (number of clauses) of the logic cones
required for solving the current query;

• L(c′): the number of clauses in the required logic cones to
be loaded into the solver (equal to the size of the required
logic cone minus the number of clauses that such cone
shares with previously loaded cones);

A measure of the number of irrelevant transition relation’s
clauses loaded forc′, denoted byu(c′), can be computed as
follows:

u(c′) = A− (S(c′)− L(c′)) (2)

Such a heuristic measure, divided by the number of clauses
loaded into the solver, indicates the percentage of irrelevant
clauses loaded in the solver w.r.t the current query. In Sec-
tion VIII we investigate the use new cleanup strategies based
on this measure. In order to take into account correlation
between subsequent SAT calls, we consider such measure
averaged on a time window of the last SAT calls.

VIII. E XPERIMENTAL RESULTS

We have compared different cleanup and clause loading
heuristics in both PdTRAV and ABC. In this section, we
briefly summarize the obtained results.



A. PG encoding

A first set of experiments was done on the full set of
310 HWMCC’12 benchmarks [16], with a lower timeout, of
900 seconds, in order to evaluate the use of PG encoding.
Results were controversial. A run in PdTRAV, with900
seconds timeout, showed a reduction in the number of solved
instances from79 to 63 (3 of which previously unsolved). The
percentage reduction of loaded transition relation clauses was
21.32%.

A similar run on ABC, showed a more stable compari-
son, from80 to 79 solved instances (3 of which previously
unsolved). So a first conclusion is that, PG encoding was
not able to win over the standard encoding, suggesting it can
indeed suffer of worst propagation behaviour. Nonetheless, it
was very interesting to observe that the overall number of
solved problems grew from79 to 82 in PdTRAV and from80
to 85 in ABC.

Different results between the two tools in this experi-
mentation could be partially due to different light-weight
preprocessing done by default within them. We started a more
detailed comparison, in order to better understand the partially
controversial results.

B. Experiments with PdTRAV

We then focused on a subset of70 selected circuits, for
which preprocessing was done off-line, and the tools were
run on the same problem instances. In the following tables,
theP0 rows always represent the default setting of PdTRAV.
We report number of solver instances (out of70) and average
execution time (time limit900 seconds). Column labeled
New, when present, shows the number of instances not solved
by P0.

Configuration Solved [#] New [#] Avg Time [s]
P0 (baseline) 64 137.00
P1 (Q4 spec.) 66 4 144.18
P2 (Q6 spec.) 60 3 134.25

Table III: Tests on specialized solvers.

Table III shows two different implementations with special-
ized solvers (so two solvers per time frame): in the first one
(P1) the second solver handles generalization calls while in
the second one (P2) the it handles propagation calls. Overall,
we see a little improvement byP1, with two more instances
solved w.r.tP0, including4 instances not solved byP0.

The next two tables show an evaluation of different solver
cleanup heuristics. Leta be the number of activation variables
in the solver,|vars| the total number of variables in the solver,
|clauses| the total number of clauses in the solver,u(c′) the
heuristic measure discussed in Section VII andW (x, n) a
sliding window containing the values ofx for the lastn SAT
calls. The heuristics compared are the following:

• H1: a > 300;
• H2: a > 1

2 |vars|;

• H3: avg
(

W
(

u(c′)
|clause| , 1000

))

> 0.5

• H4: H2 || H3;
Heuristic H1 is the cleanup heuristic used in the baseline

versions of both PdTRAV and ABC. The static threshold of
300 activation literals was determined experimentally. Heuris-
tic H2 cleans up each solver as soon as half of its variables
are used for activation literals. It can be seen as a first simple
attempt to adopt a dynamic cleanup threshold. Heuristic H3 is
the first heuristic proposed to take into account the second
source of irrelevant clauses described in Section VII, i.e.
irrelevant portions of previously loaded cones. In H3 a solver
is cleaned up as soon as the percentage of irrelevant transition
relation’s clauses loaded, averaged on a window of the last
1000 calls, reaches 50%. Heuristic H4 takes into account both
sources of irrelevant clauses, combining H2 and H3.

Configuration Solved [#] New [#] Avg Time [s]
P0 (H1) 64 137.00
P3 (H2) 60 1 122.19
P4 (H3) 44 116.28
P5 (H4) 62 3 125.94

Table IV: Tests on clean up heuristics.

Table IV shows a comparison among H1 (rowP0), H2,
H3, and H4, in rowsP3, P4, andP5, respectively. No PG
encoding, nor specialized solvers were used. Heuristic H1,
that employs a static threshold, was able to solve the largest
number of instances. Among dynamic threshold heuristics,
both H2 and H3 take into account a single source of irrelevant
loaded clauses, respectively the deactivated clauses in H2
and the unused portions of transition relation in H3. Data
clearly indicates that H3 has worse performance. This sug-
gests that deactivated clauses play a bigger role in degrading
SAT solvers’ performance than irrelevant transition relation’s
clauses do. Taking into account only the latter source of
irrelevant clauses it’s not sufficient. It can be noticed that
heuristic H4, that takes into account both sources, outperforms
both H2 and H3. This proves that considering irrelevant
clauses arising from previoulsy loaded cones in addition to
deactivated clauses can be beneficial. In addition Table IV
shows that dynamic heuristics were able solve some instances
that can’t be solved by the static heuristic H1 and viceversa. In
terms of overall number of solved instances, the static heuristic
H1 outperformes our best dynamic heuristic H4. This can be
due to the fact that the threshold parameter of H1 results from
extensive experimentation while to determine the parameters
of H4 (window size and percentage thresholds) a narrower
experimentation has been performed.

We then focused on H4, and benchmarked it in different
setups. Results are showed in table V.

Here PG encoding was used in configurationsP6 andP8,
single solver per time frame inP6, additional specialized
solver for generalization inP7 and P8. We see that the
specialized solver configuration appears to perform worse
with PG encoding. Also, adding a specialized solver for
generalization to the dynamic heuristic H4 doesn’t seem to
be as effective as it is when using the static heuristic H1.



Configuration Solved [#] New [#] Avg Time [s]
P0 (baseline) 64 137.00

P6 (PG) 59 3 208.85
P7 (Q4 spec) 58 1 111.59

P8 (PG+Q4 spec) 50 1 178.56

Table V: Tests on mixed strategies for cleanup heuristic H4.

This can be due to the fact that irrelevant clauses arising from
generalization calls are not taken into account to schedulethe
clean up of the main solver that, in turn, is cleaned up less
frequently.

C. Experiments with ABC

The70 selected circuits were also benchmarked with ABC,
with same pre-processing used in PdTRAV: Table VI report in
row A0 the default setting of ABC. RowA1 shows the variant
with PG encoding, rowA2 shows a run without dynamic TR
clause loading. RowA3 finally shows a different period for
solver cleanup (1000 variables instead of300).

Configuration Solved [#] New [#] Avg Time [s]
A0 64 138.66
A1 63 1 152.18
A2 63 2 158.75
A3 64 138.45

Table VI: Tests on ABC with different strategies.

Overall, results show little variance among different settings,
which could suggest lesser sensitivity of ABC to different
tunings. Nonetheless, a further experimentation with ABC on
the full set of310 benchmarks (with300 seconds time limit),
showed a 14% improvement in the number of solved problems
(from 71 to 81), which indicate a potential improvement for
a portfolio-based tool, able to concurrently exploit multiple
settings.

IX. CONCLUSIONS

The paper shows a detailed analysis and characterization of
SAT queries posed by IC3. We also discuss new ideas for
solver allocation/loading/restarting. The experimentalevalu-
ation done on two different state-of-the-art academic tools,
shows lights and shadows, as no breakthrough or clear winner
emerges from the new ideas.

PG encoding showed to be less effective than expected.
This is probably because the benefits introduced in terms of
loaded formula size will be overwhelmed by the supposed
worst propagation behaviour of that formula.

The use of specialized solvers seems to be effective when a
static cleanup heuristic is used, less effective when combined
with PG encoding or a dynamic heuristic.

Our experiments showed that, when a dynamic cleanup
heuristic is used, IC3’s performance can be improved by taking
into account both deactivated clauses and irrelevant portions of
previously loaded cones. Even if a parameter configuration for
H4 that is able to outperform the currently used, well-rounded

static heuristic H1 hasn’t been found yet, we believe that a
more extensive experimentation could lead to better results.

Nonetheless, the results are more interesting if we consider
them from the standpoint of a portfolio-based tool, since the
overall coverage (by the union of all setups) is definitely
higher.

So we believe that more effort in implementation, experi-
mentation, and detailed analysis of case sudies, needs to be
done. We also deem that this work contributes to the discussion
of new developments in the research related to IC3.

REFERENCES

[1] A. R. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, Austin, Texas, Jan. 2011, pp. 70–87.

[2] A. R. Bradley, “Understanding IC3,” inSAT, ser. Lecture Notes in
Computer Science, A. Cimatti and R. Sebastiani, Eds., vol. 7317.
Springer, 2012, pp. 1–14.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
Model Checking using SAT procedures instead of BDDs,” inProc. 36th
Design Automation Conf. New Orleans, Louisiana: IEEE Computer
Society, Jun. 1999, pp. 317–320.

[4] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT Solver,” inProc. Formal Methods in
Computer-Aided Design, ser. LNCS, W. A. Hunt and S. D. Johnson,
Eds., vol. 1954. Austin, Texas, USA: Springer, Nov. 2000, pp. 108–
125.

[5] P. Bjesse and K. Claessen, “SAT–Based Verification without State Space
Traversal,” in Proc. Formal Methods in Computer-Aided Design, ser.
LNCS, vol. 1954. Austin, TX, USA: Springer, 2000.

[6] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Proc. Computer Aided Verification, ser. LNCS, vol. 2725. Boulder,
CO, USA: Springer, 2003, pp. 1–13.

[7] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” inFMCAD, 2011, pp. 125–134.

[8] A. Mishchenko, “ABC: A System for Sequential Synthesis and Verifi-
cation, http://www.eecs.berkeley.edu/∼alanmi/abc/,” 2005.

[9] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model checker for
algorithmic improvements and tuning for performance,”Formal Methods
in System Design, vol. 39, no. 2, pp. 205–227, 2011.

[10] N. Eén and N. S̈orensson, “The Minisat SAT Solver, http://minisat.se,”
Apr. 2009.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver,” inProc. 38th Design Automation
Conf. Las Vegas, Nevada: IEEE Computer Society, Jun. 2001.

[12] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–560,
2003.

[13] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,”J. Symb. Comput., vol. 2, no. 3, pp. 293–304, 1986.

[14] M. Järvisalo, A. Biere, and M. Heule, “Simulating circuit-level simpli-
fications on CNF,”J. Autom. Reasoning, vol. 49, no. 4, pp. 583–619,
2012.

[15] N. Eén, “Practical SAT: a tutorial on applied satisfiability solving,” Slides
of invited talk at FMCAD, 2007.

[16] A. Biere and T. Jussila, “The Model Checking Competition Web Page,
http://fmv.jku.at/hwmcc.”


