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ABSTRACT

We deal with binary theta-joins in a MapReduce environ-
ment, and we make two contributions. First, we show that
the best known algorithm to date for this problem can reach
the optimal trade-off between the size of the input a reducer
can receive and the incurred communication cost when the
join selectivity is high. Second, when the join selectivity is
low, we present improvements upon the state-of-the-art with
a view to decreasing the communication cost and the max-
imum load a reducer can receive, taking also into account
the load imbalance across the reducers.

1. INTRODUCTION

Data analysis on voluminous data, such as clickstream
data or data derived from scientific experiments and simula-
tions, has given rise to the establishment of MapReduce as
the most popular framework for large-scale processing. An-
alytical database queries remain a useful tool for big data
analyses; however, such queries are being investigated in the
MapReduce context rather than within a traditional DBMS
environment. Analytical query processing in MapReduce
has attracted a lot of interest, and the relevant work has in-
vestigated several issues, including indexing, data placement
and layouts, optimizations, iterative processing, fair load al-
location and interactive processing to name some of them
[5]. In this work, we focus on improving the efficiency of join
queries executed in MapReduce, for which several proposals
already exist [7, 2, 9]. More specifically, we target binary
theta-joins, where the join condition between two datasets
is arbitrarily complex rather than a simple equation.

Nevertheless, most of the proposals to date tend to be
developed on a best-effort basis, without systematically an-
alyzing the inherent trade-offs. Two recent remedies to that
have been proposed in [1, 8]. [8] introduces the notion of
minimal MapReduce algorithms, which are algorithms ac-
companied by guarantees (up to a small constant) regarding
several aspects, such as memory consumption and commu-
nication cost. The MapReduce rounds may be bounded but
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they can be more than one. The work in [1] is complemen-
tary and presents a way to compute the lower bounds on
communication cost as a function of the maximum input a
reducer is allowed to receive for specific problems. This al-
lows to define the trade-off between the load on the reducer
side and the replication rate. The replication rate is defined
as the average ratio of output to input key-value pairs on
the map side, and is used as a metric of the communication
cost. Further, the work in [1] examines whether known al-
gorithms for those problems can match the lower bounds,
provided that they consist of a single MapReduce round.

The algorithms 1-Bucket-Theta and M-Bucket in [7] form
the basis of our work. Our first contribution is that we an-
alyze the lower bounds for the binary theta-join problem
and we show that the worst-case behaviour of 1-Bucket-
Theta matches those bounds. However, such behaviour is
expected only when the join selectivity is high. For low
selectivities, and with the help of histograms, the more effi-
cient M-Bucket-I and M-Bucket-O algorithms are presented
in [7], which aim at minimizing the maximum reducer input
and output, respectively. Our second contribution is that
we enhance those algorithms through the clustering of his-
togram buckets. In that way, we can achieve more efficient
partitioning of histogram buckets to reducers. The efficiency
is measured in terms of the replication rate, the maximum
reducer input, and the imbalance across reducers. We show
that we can improve the replication rate (i.e., reduce the
communication cost) and the maximum reducer input (i.e.,
reduce the longest running time and the space requirements
of reducers) with insignificant impact on load imbalance.

The remainder of this extended abstract is structured as
follows. In Sec. 2 we briefly present the 1-Bucket-Theta
and M-Bucket algorithms, which we analyze in Sec. 3 and
enhance in Sec. 4, respectively. In Sec. 5, we conclude and
describe next steps.

2. BACKGROUND

In [7] the problem of performing binary theta joins S <t T
on MapReduce is studied. The core of the approach lies in
how the workload is partitioned across reducers. To rep-
resent the workload, a join matriz (JM) is used. In JMs,
each cell corresponds to a pair of tuples, one from each in-
put dataset, to be processed. The JM is split into several
regions, where each region is mapped to a reducer. For each
region, we can compute the amount of tuples that belong to
it, which is the input cost of that region and is directly re-
lated to the computation and memory load of the associated
reducer. For perfect load balancing, we want these regions to
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Figure 1: Partitioning the JM in 1-Bucket-Theta (left) and
M-Bucket (right).

have equal input cost. In order to accomplish the latter ob-
jective, two main algorithms are presented: 1-Bucket-Theta
and M-Bucket-I (and its variation M-Bucket-O).

2.1 1-Bucket-Theta

1-Bucket-Theta is the most generic algorithm, since it ex-
amines all tuple pairs (as in the Cartesian product), and re-
quires minimal statistical information, namely just the car-
dinalities of the input. The strong point of the algorithm is
the principled way that it partitions the JM, in a way that
all JM cells are covered and, at the same time, the maxi-
mum reducer input is minimized. The algorithm is shown
to be more suitable for high join selectivities (e.g., above
50%). Fig. 1(left) shows an example partitioning across 3
reducers, where there are 6 tuples from S and T, and the
input cost of each reducer is 7 (4 tuples from S and 3 from
T), 7 (4 from S and 3 from T') and 8 (2 from S and 6 from
T'), respectively.

2.2 M-Bucket-I

In cases where there are histograms, so that we can safely
reason as to whether a specific combination of tuples can
satisfy the join condition, and the join selectivity is small,
M-Bucket-1 outperforms 1-Bucket-Theta. The histograms
are equi-depth ones and are produced in a separate MapRe-
duce phase, as explained in [7]. Then, the JM is constructed,
where each cell corresponds to a pair of histogram buckets
rather than a pair of tuples. As such, the size of a JM need
not grow as the size of the input data increases at the ex-
pense of histogram buckets of higher depth. From the JM
and the join condition, it is straightforward to identify pairs
that do not contribute to the result (depicted as white cells
in Fig. 1(right). During the partitioning step, a heuristic
method is followed, which is not accompanied by guarantees
as in 1-Bucket-Theta but yields better results, since it ben-
efits from the fact that most of the JM cells are not valid
candidate pairs.

The difference between M-Bucket-I and M-Bucket-O is
that the former targets the minimization of the maximum
reducer input, whereas the latter targets the minimization
of the maximum reducer output. Note that estimating the
reducer output based on histograms is prone to significant
errors, even when the histograms are accurate.

3. ON THE OPTIMALITY OF 1-BUCKET-
THETA

First we define the lower bound on the communication
cost of any 1-round MapReduce algorithm for binary theta-

joins. As already mentioned, the communication cost is
measured using the replication rate metric. Let us exam-
ine the steps of the short version of the generic recipe for
deriving such bounds from [1]. Given two relations S and T,
with sizes |S| and |T'|, respectively, we have:

e Size (Number) of Inputs and Outputs:

— Inputs: [S|+|T|

— Outputs: [S||T| (accounting for the worst case,
which is the cartesian product)

e Deriving g(q): The upper bound of outputs a reducer
can produce given ¢ inputs, denoted as g(g), occurs
when ¢ is equally divided into input from S and T, i.e.,
1 tuples from S and £ tuples from 7. The maximum
result of applying the theta join on these two quantities

is when we have a cartesian product, thus g(g) = %.
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The above formula illustrates the exact trade-off between
parallelism and communication cost in binary theta-joins.
By increasing the degree of parallelism in order to decrease
the input ¢ each reducer receives, the communication cost
increases, since, for the lower bound, ¢ and r are inversely
proportional to each other.

The next step is to find the upper bound on replication
rate of 1-Bucket-Theta. In [7], three partitioning cases are
presented, based on the sizes |S| and |T'| and the number of
available reducer processors p. Due to the limited space, we
will examine only the first case in detail.

The first case corresponds to the scenario, where the JM
can be exactly covered by cs X cr squares of side-length
VIS|IT|/p. This means that the following conditions hold:
|S| = es/|S||T|/p and |T'| = er+/|S||T|/p, where cs, cr are
positive integers. For example, if p = 4, then the JM in Fig.
1(left) can be exactly covered by 4 squares of side-length 3.
Then we have:

e Replication rate of 1-Bucket-Theta (ripr):
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So, the upper bound of the first case of 1-Bucket-Theta is
at most as high as the lower bound of the problem, which
means that, for that case, the algorithm is optimal.



Following the same reasoning, the other two cases (Theo-
rems 2 and 3 in [7], respectively), which correspond to dif-
ferent formulas for ¢s and cr, can be examined, for which
we have:

4 |T||S]
o ase 2: r <= =7
Case 2: ripr 7 ISTHIT] 1b
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Overall, the upper bound of the replication rate is at most
two times the lower bound, and as such is optimal up to a
constant factor. In [3], it is shown that the lower bound can
be met for self-joins, which is special case of binary joins.

4. REDUCING THE REPLICATION RATE
IN M-BUCKET

The partitioner of M-Bucket-I algorithm operates on a join
matrix (JM), where each cell corresponds to a pair of his-
togram buckets. It tries to fit the cells in rectangular regions;
each region is associated with a single reducer. The ratio-
nale of our approach is to permute JM’s rows and columns,
in order to improve the quality of the partitioning phase.

The problem of cell rearrangement can be addressed with
several algorithm families, such as clustering (e.g., hierar-
chical, array-based, and so on), combinatorial optimization
(e.g., bin packing, knapsack) and bandwidth reduction. Here,
we examine the impact of array-based clustering algorithms
and more specifically, we employ the Bond Energy cluster-
ing algorithm (BEA) [6], due to its efficiency [4]. The pur-
pose of BEA is to identify natural clusters that occur in
complex data arrays, such as JMs. This task is accom-
plished by permuting the rows and columns of the JM in
a way that the numerically larger array elements are clus-
tered together. As the JM of our interest comprises a two-
dimensional bitmap array, i.e. the cell values are either 0
or 1 to indicate whether the processing of the corresponding
pairs is meaningful or not, we expect all the non-zero values
to be grouped as close as possible. The intuition is that, if
the JM contains more empty sub-matrices, the mapping of
the remainder sub-matrices to reducers will improve.

Our work adds a step of beforehand analysis to the M-
Bucket-1/O algorithm, just after the histograms are built
and the initial JM is produced. It thus takes place before the
actual execution on a MapReduce platform. The quality of
a JM is assessed with the help of the following three metrics:

1. replication rate (rep), defined as in the Introduction
and [1];

2. mazimum reducer input (mri); and

3. input imbalance (imb), defined as the ratio of mri to
the average reducer input, considering only the non-
idle reducers.

Note that the metrics above can be accurately computed
from the JM, without requiring the real execution to be com-
pleted. Thus, if the JM rearrangement is considered as not
beneficial, the execution can switch back to the original JM.
That is, it is straightforward to add a post-processing phase,
in order to guarantee that we choose the best partitioning
between the one based on the original and the one based on
the re-arranged JM. Consequently, our proposal does never
lead to performance degradation; actually it can lead to sig-
nificant improvements according to our experiments.

Figure 2: Example JMs before (left) and after (right) apply-
ing BEA.

As an example, we extracted a sample of 64M tuples
from the Cloud dataset in http://cdiac.ornl.gov/ftp/
ndp026¢/ndp026c.pdf. Fig. 2(top) shows the initial and re-
arranged JM for a self-join query that retrieves record pairs,
for which the absolute difference of the sea level is between
0 and 2, or between 22 and 24, or between 50 and 52, or
between 80 and 82 to give an example of a complex range
query. The rearranged JM yields 21% lower rep and 19%
lower mbi at the expense of 4% higher imb. Next, we pro-
ceed to more systematic experiments on synthetic data.

4.1 Experimental Evaluation

We focus on band joins, which is a type of theta-joins
that can significantly benefit from M-Bucket. In band joins,
the condition is in the form of RA —e¢ < S.A < R.A+e.
The experimental setup is as follows. We randomly generate
synthetic JMs so that the produced JMs vary in the following
aspects: join selectivity, number of band conditions, and size
of JMs. Then, we compute the statistics of the resulting
partitioning to reducers both when we cluster the JM and
when we do not. In the first experiment, we assume that the
dimensions of the JM are 100 x 100. We vary the number of
available reducers from 10 to 40. Also, the numbers of band
conditions examined are 1, 3 and 5. For each band condition,
we examined selectivity values of 1%, 5% and 10%.

Fig. 2 shows two more examples of JM rearrangement.
From the left column of the middle and bottom row, we can
see the typical form of the original synthetic JMs. For each
band condition, there is a diagonal stripe of cells, for which
the join condition holds. The gaps between such stripes are
randomly shifted, so that the JMs are not symmetric; for
each condition the selectivity is set to 1%. As we can ob-
serve, the effect of the BEA algorithm is optically widely
different, but in both cases, there were significant improve-
ments, which we discuss below.

The average impact of BEA on the metrics examined are



[ [ rep | mri | imb | coverage |
Overall | 0.846 | 0.880 | 1.029 | 59.26%
Band Selectivity

1% 0.717 | 0.735 | 1.028 | 66.67%
5% 0.920 | 0.949 | 1.014 | 66.67%
10% 0.928 | 0.996 | 1.056 | 44.45%

Number of Band Conditions

1 0.987 [ 0.967 | 0.964 | 33.34%
3 0.821 | 0.835 | 1.010 | 44.45%
5 0.810 | 0.873 | 1.058 100%

Table 1: Average ratio of the BEA-produced JM metrics to
the original JM metrics.

rep mri imb
Overall | 0.634 | 0.649 | 1.023
Band Selectivity
1% 0.634 | 0.649 | 1.023
5% 0.833 | 0.875 | 1.050
10% 0.848 | 0.900 | 1.050
Number of Band Conditions

1 0.979 1 0.988
3 0.737 | 0.733 | 0.995
5 0.634 | 0.649 | 1.023

Table 2: Ratio of the BEA-produced JM metrics to the orig-
inal JM metrics for the maximum rep drop observed.

summarized in Table 1. The rightmost column of the table
shows the percentage of the times that the rearranged JM
has led to improvements in the replication rate. Table 2
refers to the maximum improvements regarding replication
observed. From these two tables, we can draw the following
conclusions. On average, our proposal improves the parti-
tioning in approximately 59% of the times. In those cases,
the average decrease in the replication rate is 15%, but it can
reach 37%. The improvements become more significant as
the number of the band conditions increase and the selectiv-
ity becomes lower. On average, when the band selectivity is
1%, the replication rate drops by 28%, while the maximum
reducer input decreases by 26%. There is a slight increase
in the relative imbalance though. Similarly, we can observe,
that, when the number of band conditions is 5, there are
improvements in all the cases examined.

We also investigated the impact of the number of reducers,
but this was not found to be significant. Finally, note that
we considered only the cases where the replication rate is
strictly less than that with the original JMs in order to com-
pute mri and imb. The average values of these two metrics
are slightly different if all the measurements are considered.

We conducted an additional experiment, where we in-
creased the dimensions of the JM to 1000 x 1000 and we
further decreased the minimum selectivity of each band con-
dition to 0.1%. The main purpose was to verify our hypoth-
esis that our proposal is more suitable for band joins with
multiple conditions, each having a low selectivity. Indeed, in
100% of the cases examined when the selectivity was 0.1%
and the number of band conditions was 3 and 5, there was
a significant decrease in the replication rate (28.1% on av-
erage). The maximum reducer input was also decreased by
the same amount, whereas the imbalance remained similar.
Overall, when the selectivity is low, there is more space for
BEA to yield empty sub-matrices; whereas, when there are
fewer band conditions, the differences from the original JMs
are less significant.

S.  CONCLUSIONS AND FURTHER WORK

We investigate the execution of binary theta-joins using
MapReduce. First we analyze the efficiency of the state-of-
the-art and second, we propose the usage of a pre-processing
clustering algorithm in order to help the partitioning of the
map output to reducers. Our proposal was shown to incur
significant reductions in the communication cost and the
maximum input received by each reducer when the theta
clause comprises several conditions, each of low selectivity.
A strong point of our approach is that it is not intrusive, in
the sense that it can be easily incorporated into the current
state-of-the-art proposal in [7], as a pre-processing phase
before the actual execution on a MapReduce platform be-
gins. In addition, it is straightforward to assess whether our
approach is beneficial for a specific setting, and thus our
proposal does not lead to overall performance degradation.

In the future, we plan to focus on more elaborate types of
array rearrangement algorithms. Scalability is also an issue,
since algorithms such as BEA do not scale to matrices with
very large dimensions. Another avenue for further work is to
investigate more sophisticated partitioning algorithms to be
coupled with JM rearrangement. Harder problems include
the investigation of provably optimal techniques for multi-
way theta-joins and efficient histogram construction when
there are multiple attributes participating in the theta-join
condition.
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