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ABSTRACT
In this paper we describe graph-based parallel algorithms for entity
resolution that improve over the map-reduce approach. We com-
pare two approaches to parallelize a Locality Sensitive Hashing
(LSH) accelerated, Iterative Match-Merge (IMM) entity resolution
technique: BCP, where records hashed together are compared at
a single node/reducer, vs an alternative mechanism (RCP) where
comparison load is better distributed across processors especially
in the presence of severely skewed bucket sizes. We analyze the
BCP and RCP approaches analytically as well as empirically using
a large synthetically generated dataset. We generalize the lessons
learned from our experience and submit that the RCP approach is
also applicable in many similar applications that rely on LSH or
related grouping strategies to minimize pair-wise comparisons.

1. MOTIVATION AND INTRODUCTION
The map-reduce (MR) parallel programming paradigm [9] and

its implementations such as Hadoop [24] have become popular
platforms for expressing and exploiting parallelism due to the ease
with which parallelism can be abstracted to a higher-level. How-
ever, it has become increasingly apparent that there are classes of
algorithms for which MR may not be well suited, such as those
involving iterative or recursive computation. Graph-based paral-
lelism via the Pregel programming paradigm [19] and its various
implementations such as Giraph [2], Graphlab [18], or GPS [22]
is an alternative approach that has been shown to perform better in
such scenarios, for example in sparse-matrix multiplications, page-
rank calculation, or shortest-paths in graphs etc.

In this paper we focus on the entity resolution (ER) problem and
submit that graph-based parallelism is better suited for it. We con-
sider the iterative match-merge (IMM) approach to ER [4], accel-
erated by locality-sensitive hashing (LSH) [1] to avoid unnecessary
comparisons. In this context we found that the strategy that is nat-
ural if using MR, i.e., where records hashed to the same bucket
are compared at a single reducer / node, need not be the most effi-
cient approach. Instead, the graph-parallel model offers an alterna-
tive mechanism that is better at distributing the computational load
across processors.

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

We introduce the IMM+LSH approach for ER later in this sec-
tion. Next, in Section 2, we discuss how this entity-resolution algo-
rithm should be parallelized, via MR as well as its natural transla-
tion to the graph-parallel model, which we call bucket-centric par-
allelization (BCP). We then describe our alternative technique for
record-centric parallelization (RCP). In Section 3, we analyze the
BCP and RCP approaches analytically as well as empirically using
a large synthetically generated dataset.

We believe the lessons learned from this exercise of parallelizing
ER are more general. The RCP approach appears better suited at
dealing with the skewed work-loads that naturally arise when items
need to be compared efficiently using probabilistic hashing or ex-
ecuting similarity joins. Further, when records containing large at-
tributes (such as documents or images) need to be matched, albeit
even exactly as in standard multi-way joins, our experience here
leads us to suggest mechanisms to avoid unnecessary communi-
cation of large attributes that do not figure in the final matching
result. We present these learnings in Section 5, after describing
related work in Section 4.

1.1 Entity Resolution via LSH and IMM
We assume that information about real-world entities is available

from disparate data sources in the form of records, with each record
(such as a passport, or driving license) belonging to a unique real-
world entity. Two records are said to match if a suitable match func-
tion returns ‘true’ indicating that the records belong to the same en-
tity. Match functions can be implemented in different ways, such
as rules, or even binary classifiers derived via machine learning.
Under certain conditions [4] matching records may be merged to
produce a new record that derives its attributes and values (e.g. via
a union) from the matching input records.

Given a collection of records where each record belongs to a
unique entity, ER seeks to determine disjoint subsets of records
where the records in a subset match under some match function
and form an entity by merging these records. For example, different
records belonging to the same person, such as voter card, passport,
and driving-licence should get merged to form one entity.

The R-Swoosh IMM algorithm as described in [4], performs ER
as follows: Initialise the set I to contain all records and the set I0

to be empty. R-Swoosh iterates over the records in set I, removing
a record r from I and comparing it to records in I0. As soon as a
matching record r0 is found in I0, it is removed from I0, and a new
record obtained by merging r and r0 is added to I. On the other
hand, if no matching record is found in I0, the record r is added to
I0. The procedure continues until the set I is empty and I0 contains
a set of merged records representing the resolved entities.

The time complexity of IMM is quadratic in the number of
records to be resolved, so it makes sense to attempt to pre-group
records so that records in different groups are highly unlikely to
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Figure 1: Sample Data and Corresponding Graph

match with each other. One way to achieve such grouping is via
LSH [1]. LSH hashes each record to one or more buckets so that
records that do not share a bucket are highy unlikely to match [20].
Therefore, instead of performing IMM on the entire set of records,
only records belonging to the same bucket are considered for IMM.

2. PARALLEL ENTITY RESOLUTION

2.1 Bucket-centric Approach

2.1.1 BCP using Map-Reduce
We use standard LSH via minhashing [5] to create buckets of

potentially similar records. A Match function implementation may
not use all the attributes in records to compare them. In other
words, not all attributes in records may be relevant for the pur-
pose of comparison of records. We use only the words occurring
in the values of the relevant attributes for the purpose of hashing
also. Each such relevant word occurring in any of the records is
mapped to a unique integer. For each record, we consider the set
of integers S corresponding to the set of relevant words it contains.
The minhash for the set S is calculated as the min((sxi + z) mod
Q), 8xi 2 S (where s and z are random integers, and Q is a large
prime). Different combinations of s and z determine different hash
functions. For each record, we compute a ⇥ b hash values using
a ⇥ b minhash functions. Out of these hash-values of a record, a
are concatenated to get a bucket-id, we therefore get a total of b
such bucket-ids for each record. Finally, a bucket consists of the
record-ids of all the records that get hashed to the corresponding
bucket-id.

A natural way to execute the above procedure in parallel using
MR is to generate b key-value pairs [bucket-id, record] for every
record in the map phase [8]. Records mapped to the same bucket-
id are sent to a common reducer where IMM is run for each bucket.
The result of IMM in each bucket is a set of ‘partially’ resolved en-
tities since the possibility remains for records belonging to a single
entity to get mapped to more than one bucket.

Consider the example shown in Figure 1, we have a collection
< of four records: < = {r

1

, r
2

, r
3

, r
4

} such that all the records
belong to the same entity r

1234

. The match function applied to any
pair of records in < gives true. Assuming a = 1 and b = 3, each
of the 4 records is hashed to 3 buckets using LSH. Of the buckets
generated by LSH on the records in <, only two buckets b

1

and
b
2

end up with more than one record being hashed to them. The
singleton buckets, i.e., the buckets having only one record hashed
to them are not shown in the Figure 1. Therefore, bucket to record
mapping becomes {b

1

, {r
1

, r
2

, r
4

}}, {b
2

, {r
2

, r
3

}}. As a result of
IMM on b

1

, we get a partial-entity eb1 consisting of {r
1

, r
2

, r
4

}.
Similarly, IMM on b

2

gives another partial-entity eb2 consisting of

{r
2

, r
3

}. The ‘partial-entities’ eb1 and eb2 belong to the same en-
tity since they contain an overlapping record r

2

. We consolidate the
partial-entities emerging from all the buckets by computing con-
nected components in a graph of records (similar to [23]), where an
edge exists between two records if they belong to the same partial-
entity, as shall be explained later. If a pair of partial-entities ea and
eb happen to share at least one of the original records ri, they end
up being in the same connected component and all the records in
them get merged.

The above approach using MR has two potential problems: First,
a large number of buckets are singletons, so many reduce keys get
only one record as a value. Such records do not need to be com-
pared with any other record, so sending them to the reducers is
unnecessary and causes significant communication overhead espe-
cially when records are large in size. Secondly, we need to find
connected components after the first MR phase, which is itself an
iterative procedure and is likely to perform better using the Pregel
model.

2.1.2 BCP using Pregel
Consider using MR to generate LSH buckets and discard sin-

gletons, and a graph-parallel approach using the Pregel paradigm
thereafter. A high-level block diagram of how this works is shown
in Figure 2. We perform LSH using MR as earlier except that in-
stead of passing the records themselves we ensure that mappers
only send record-ids, thus significantly reducing communication
costs. In the reduce phase, instead of running IMM we merely
generate the adjacency-list of a graph with two types of vertices, a
record-vertex for each record in the collection and a bucket-vertex
for each bucket obtained through LSH for collection of records,
along with edges between them as follows: A record-vertex has
outgoing edges to all the bucket-vertices corresponding to the buck-
ets it gets hashed to. A bucket-vertex has outgoing edges to all the
record-vertices which are hashed to it.

Note that since reducers know the size of every bucket they are
responsible for, singletons are easily removed at this stage itself,
i.e., no vertices are created for singleton buckets. As a result, only
buckets containing record-ids that need to be compared are passed
on to subsequent stages, eliminating the need to ship record con-
tents for records in singleton buckets.

Note also that edges in the resulting graph are bi-directional, i.e.,
if there is an edge from v to v0 then there is also an edge between
v0 and v. The adjacency-list files created by MR and also files
mapping record-ids to records are inputs to a graph-parallel Pregel-
based platform (such as Apache Giraph [2]), so that record-vertices
are initialised with both record-ids as well as the full content of
each record. Thereafter graph-parallel computations in the Pregel-
model proceed via a number of supersteps as follows:

SS1: Each bucket-vertex is to perform IMM on all records that
are hashed to it. Initially, only the IDs of the records hashed to a
bucket are available at bucket-vertex via its outgoing edge-list. So
in this superstep each record-vertex sends its value (which includes
the record’s content) to the bucket-vertices in its outgoing edge-
list (which is the list of all the non-singleton buckets the record is
hashed to). For example, for the graph in Figure 1, record-vertex
r
2

sends its value to b
1

and b
2

.
SS2: Bucket-vertices receive the contents of all the records

hashed to them, after which records at each bucket-vertex are com-
pared using IMM. The result is a set of merged records or partial-
entities at each bucket-vertex.

A bucket-vertex randomly selects one of the records in each
partial-entity (merged record) as a central record for that partial-
entity. Next the bucket-vertex sends a graph-mutation request so
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Figure 2: Overall flow across Map-reduce and Pregel

as to create a bi-directional edge between vertices corresponding to
the central record and each of the remaining records of the partial-
entity. As a result, all the record-vertices involved in a partial-entity
get connected to each other through the vertex corresponding to the
central record.

For the example in Figure 1, the records r
1

, r
2

, and r
4

are
merged to give a partial-entity r

124

at bucket-vertex b
1

. Assum-
ing r

1

to be the central record, graph-mutation requests are sent by
b
1

to create bi-directional edges between r
1

and r
2

, and r
1

and r
4

.
Similarly, at bucket-vertex b

2

, we get a partial-entity r
23

where a
graph-mutation request is sent to create edges between r

2

and r
3

.
SS3cc: As a result of the previous superstep we know that

there is a path connecting records belonging to a single entity even
though they may have been part of different partial-entities resolved
at different buckets. So we now find the connected components in
the part of the graph consisting only of the record-vertices and the
edges between them, ignoring the bucket-vertices and their edges.
Note that it may take more than one superstep to find connected-
components in this graph. Finding connected-components in a
graph using the Pregel model is straightforward, so we omit its de-
tails for brevity.

Finally every record-vertex gets a connected-component id
which corresponds to the entity it is resolved to. For the exam-
ple in Figure 1, we will get one connected-component containing
all the 4 records r

1

, r
2

, r
3

, and r
4

. It remains a simple matter to
exchange component information between record-vertices to com-
plete the resolution process: Record-vertices mutate the graph to
create entity-vertices corresponding to their component-id along
with edges to these; the platform ensures that only one instance of
each distinct entity-vertex is created, with the result that all records
for that entity are now connected to it. Records send themselves
to their entity-vertex where final merging takes place to produce a
resolved entity.

While the above approach using both MR and Pregel avoids ship-
ping the records mapped to singleton buckets, this approach poten-
tially suffers because of load imbalance: As we shall see in the next
section, LSH naturally results in buckets of widely varying size. As
a result, some bucket-vertices have to perform heavy IMM compu-
tations, which are of quadratic time complexity, whereas others are
lightly loaded. We shall see that even with careful distribution of
bucket-vertices to processors, this still results in significant load-
imbalance, or skew, causing inefficiency.

2.2 Record-centric Approach in Pregel (RCP)
The motivation for record-centric parallelization (RCP) is to

overcome the problems of skew by distributing the IMM compu-
tations for records mapped to the same bucket back to the record-
vertices themselves. The load for large IMM jobs at bucket-vertices

is thus further parallelized. Record-vertices end up with work as-
signed to them from at most b buckets where they are mapped to;
as a result the computations are better balanced even when record-
vertices are randomly distributed across processors. Of course, the
cost for such further re-distribution of load is increased communi-
cation cost. (A detailed cost analysis of both approaches is pre-
sented in the next section.)

RCP comprises of seven supersteps using the graph-parallel
Pregel paradigm as explained below and summarised in Figure 3.
Note however, that this sequence of seven supersteps will run iter-
atively many times until all vertices halt and no further messages
are generated. As before, we assume that the initial LSH phase is
performed using MR to instatiate a graph comprising of all records
but only non-singleton buckets.

SS1: Every bucket-vertex sends messages to the record-vertices
that are hashed to it in order to schedule their comparisons as per
the IMM algorithm: For each pair of record-ids {ri, rj} from the
set of record-ids hashed to the bucket-vertex, a message is sent to
one of the two record-vertices: Say {rj} is sent to ri if i < j,
otherwise the message {ri} is sent to rj . After sending all such
messages, the bucket-vertex votes to halt. Also, a record-vertex
does nothing in this superstep, and votes to halt. (Unless it is a
lone record that is not present in any non-singleton bucket, it will
get woken up via messages in the next step; in general, vertices
perform their work in a superstep and vote to halt, only to be woken
up via messages later.)

If the outgoing edge-list of a bucket-vertex consists of k records
{r

1

, r
2

, ..., rk}, then r
1

will be sent {r
2

, ..., rk} messages, r
2

will
be sent {r

3

, ...,rk} messages, and so on. This message-sending
scheme ensures that if a pair of records co-exists in more than one
bucket, then the same record-vertex (the record-vertex with lower
id) will receive the messages from all such buckets. For the graph
in Figure 1, bucket-vertex b

1

has {r
1

, r
2

, r
4

} in its neighborhood
and it sends messages to r

1

: {r
2

, r
4

}, and to r
2

: {r
4

}. Similarly,
b
2

sends a message r
3

to r
2

.
SS2: Before this superstep, every record-vertex is inactive, and

gets activated when it receives IDs of record-vertices that it needs to
be compared with. A record-vertex now sends its value (containing
the full record) to the record-vertices whose IDs were received in
messages.

Note that if two record-ids ri and rj (with i < j) co-occur in
edge-lists of k bucket-vertices, ri will receive k messages (one
from each of the k bucket-vertices), all containing the record-id
rj . The record-vertex ri will send its value to rj only once. For
the graph in Figure 1, record-vertex r

1

sends its value to r
2

and
r
4

based on the messages received from b
1

. Similarly, r
2

sends its
value to r

3

and r
4

, based on the messages received from bucket-
vertices b

2

and b
1

, respectively.
SS3: Now actual comparisons between records takes place via

the match function. A record-vertex r receives messages contain-
ing the values of the record-vertices it has to be compared with.
Note that the message sending scheme in SS2 ensures that even
if a pair of record-ids co-occur in more than one bucket they get
compared only once.

If the value of the record-vertex r matches the value of an in-
coming message r0, a message {r, r0} containing the IDs of the
two matched vertices is sent to r and r0. For the graph in Figure
1, in SS3, record-vertex r

2

receives the value of r
1

, r
3

receives the
value of r

2

, and r
4

receives the values of r
1

and r
2

. At vertex r
2

,
values of r

1

and r
2

are compared and are found to be matching, and
the message {r

1

, r
2

} (containing only the IDs of the two vertices)
is sent by r

2

to both r
1

and r
2

. Similarly the message {r
2

, r
3

} is
generated at r

3

, and is sent to both r
2

and r
3

. The messages {r
1

,
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Figure 3: RCP: Supersteps SS1 to SS7 for the example in Figure 1. Here, EL stands for outgoing edge-list.

r
4

} and {r
2

, r
4

} are generated at record-vertex r
4

. The message
{r

1

, r
4

} is sent to r
1

and r
4

, and the message {r
2

, r
4

} is sent to r
2

and r
4

.
SS4: If a record ri matched with any record rj in the previ-

ous superstep, it will receive a message {ri, rj}. If ri matched m
records in the previous superstep, it receives m messages in this su-
perstep: one from each of the m matches. Since ri matches all the
m records, all the m + 1 records (including ri) belong to the same
entity. The record-vertex consolidates all the pairs of IDs received
as messages into a set containing the m + 1 IDs all belonging to
the same entity. This set of IDs is sent to all the bucket-vertices in
the outgoing edge-list of the record-vertex ri.

For the graph in Figure 1, r
1

receives {r
1

, r
2

} and {r
1

, r
4

}, and
consolidates them to create a message {r

1

, r
2

, r
4

} which is sent to
b
1

. Record-vertex r
2

consolidates {r
1

, r
2

}, {r
2

, r
3

} and {r
2

, r
4

}
to get {r

1

, r
2

, r
3

, r
4

} which is sent to both b
1

and b
2

. Similarly, r
3

sends {r
2

, r
3

} to b
2

, and r
4

sends {r
1

, r
2

, r
4

} to b
1

.
SS5: Similar to the previous superstep, where a record-vertex

consolidates the matching information about itself, a bucket-vertex
consolidates all the sets received as messages and creates new
record-ids as follows: If any two sets si and sj received by
a bucket-vertex have an element (a record-id) in common, i.e.
si \ sj 6= ;, all the record-ids in the two sets belong to the same
entity. A new set sij = si [ sj is created, and the sets si and sj

are deleted. This is done iteratively till all the sets remaining are
disjoint.

Now new record-vertex needs to be created for each of the dis-
joint sets, so the bucket-vertex sends a graph-mutation request
to create these new vertices, which we shall call partial-entity-
vertices. Mutation requests are also sent to create bi-directional
edges between the partial-entity-vertex and the bucket-vertex. The
IDs of these vertices are based on the final consolidated sets sij , so
if the same partial-entity-vertex is created by multiple buckets, this
does not lead to duplicate vertices. The bucket-vertices also send a
message to each record-vertex they are connected with, informing
the record-vertices about their corresponding partial-entity-id.

For the graph in Figure 1, bucket-vertex b
1

receives 3 messages
{r

1

, r
2

, r
4

}, {r
1

, r
2

, r
3

, r
4

} and {r
1

, r
2

, r
4

} which are consoli-
dated to get a set {r

1

, r
2

, r
3

, r
4

}. Bucket-vertex b
1

sends a message
to create a partial-entity-vertex with id r

1234

. Similarly, bucket-
vertex b

2

receives 2 messages {r
1

, r
2

, r
3

, r
4

} and {r
2

, r
3

} which

are consolidated to get {r
1

, r
2

, r
3

, r
4

}, and a message is sent by
b
2

to create a new vertex r
1234

. Here, both the bucket-vertices b
1

and b
2

ask for the creation of the same vertex since both have com-
puted the same consolidated set: {r

1

, r
2

, r
3

, r
4

}. Also, b
1

sends a
message to create a bi-directional edge between b

1

and r
1234

. Sim-
ilarly, b

2

sends a message to create a bi-directional edge between b
2

and r
1234

. Also, b
1

and b
2

send a message containing the id r
1234

to all their record-vertices.
SS6: New partial-entity-vertices get created before start of this

superstep. A record-vertex r receives messages containing the id of
a new partial-entity-vertex r0. The record-vertex r sends its value
(i.e., record content) and its outgoing edge-list as a message of the
form {vi, ei} (where vi is the value of vertex ri and ei its outgo-
ing edge-list) to r0. For the graph in Figure 1, the record-vertices
r
1

, r
2

, r
3

and r
4

send {v
1

, e
1

}, {v
2

, e
2

}, {v
3

, e
3

}, and {v
4

, e
4

}
respectively to r

1234

.
SS7: In this superstep, a partial-entity-vertex r receives mes-

sages of the form {vi, ei}. The value (i.e., content) of r is ini-
tialised by merging all the record content values vis received. The
vertex r also sends messages to create outgoing edges with every
bucket-vertex whose ID is present in the outgoing edge-lists eis re-
ceived. For every bucket-vertex bi, to which a partial-entity-vertex
pi is added, pi needs to be compared with the other records and
partial-entities in bi’s edge-list. So a message is also sent to these
bucket-vertices to activate them before the beginning of next itera-
tion. The partial-entity-vertices are treated like record-vertices for
next iteration of supsersteps SS1 to SS7.

Finally, each partial-entity-vertex r sends graph-mutation re-
quests to delete every vertex ri (corresponding to {vi, ei}) that led
to r’s creation (also for deleting all incoming and outgoing edges of
ri). For the graph in Figure 1, r

1234

receives the values of record-
vertices r

1

, r
2

, r
3

, and r
4

as messages, and uses them to update
its value. Also, messages are sent to create bi-directional edges be-
tween r

1234

and b
1

, and r
1234

and b
2

. Messages are also sent to
delete r

1

, r
2

, r
3

, and r
4

, and activate b
1

and b
2

.
Iterations in RCP: In the first iteration of the algorithm, i.e., at

the beginning of SS1, all bucket-vertices are active. In the begin-
ning (i.e., SS1) of each subsequent iteration, only those bucket-
vertices are active that receive messages from SS7 of the previous
iteration. Iterations continue until no more messages are generated.

A bucket-vertex can have both old and new record-ids in its out-
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going edge-list at the end of any iteration of supersteps SS1 to SS7.
Record-id pairs for a bucket-vertex which have already been com-
pared need not be compared again. To avoid such comparisons, a
set P is maintained for each bucket-vertex which contains the pairs
which have already been compared in previous iterations. For ex-
ample, suppose a bucket b has 4 records {r

1

, r
2

, r
3

, r
4

} in its out-
going edge-list. After the first iteration of supersteps SS1 to SS7,
suppose r

1

and r
2

get merged to form a new record r
12

. Then the
outgoing edge-list of b will be {r

12

, r
3

, r
4

}, and the set P = {{r
1

,
r
2

}, {r
1

, r
3

}, {r
1

, r
4

}, {r
2

, r
4

}, {r
3

, r
4

}}. So, in the next iteration
only the following record pairs need to be compared: {{r

12

, r
3

},
{r

12

, r
4

}}. For the graph in Figure 1, buckets b
1

and b
2

will have
only one record-id {r

1234

} in their respective outgoing edge-lists.
So, no further comparisons are done and no further messages are
sent, terminating the algorithm.

3. COMPARISON OF BCP AND RCP
Some of the notations used for the analysis in this section have

been presented in Table 1. To compare the parallel execution times
of the two approaches presented in Section 2 we first note that total
execution time comprises of (a) total computation cost (Tn) and (b)
total communication cost (Tc) [10]. In an ideal situation, the par-
allel computation time on p processors should be Tn(p) = Tn/p.
Further, assuming a fully interconnected inter-processor network,
communication between two disjoint pairs of processors can take
place in parallel; if all communication is parallel in this manner
then the parallel communication time on p processors should be
Tc(p) = Tc/p.

Therefore, the ideal parallel execution time T (p) should be the
sum of Tn(p) and Tc(p). However, this is not the case in practice.
First, computation load is often unevenly distributed across proces-
sors; say the most heavily loaded processor having s

1

times more
work than the average processor, which we refer to as computation
skew. For example, in case of LSH, commonly used words lead
to high textual similarity between a lot of records, and all these
records may get hashed to the same bucket. So some buckets end
up with a very large number of records. Similarly, communication
need not be evenly balanced either: For example, a source proces-
sor sending a message to all other processors takes p � 1 steps in
spite of the fact that each receiving processor gets only a single
message; the source processor becomes the bottleneck. Communi-
cation skew s

2

is similarly defined as the ratio between the heaviest
and average communication time expended by processors. Taking
skew into account, we note that the parallel execution time on p
processors satisfies:

T (p) = (s
1

Tn + s
2

Tc)/p (1)

In the context of entity resolution via BCP and RCP, messages
between processors are of two types: a) messages containing only
vertex-ids, b) messages containing an entire record. In our analysis,
we assume that latter dominates and so in our analysis we ignore
messages carrying only ids. Also, we ignore the cost of sending the
values of record-vertices to the entity-vertices in the final merging
process (when values of entity-vertices are updated) in both BCP
and RCP, assuming it to be of the same order in both cases. Further,
assuming uniform distribution of vertices across processors, if a
message has to be sent from one vertex to another, the probability
that the message will be sent to another processor is (p�1)/p. For
large enough p we can assume that the message is almost always
sent to another processor.

We assume that computation cost is directly proportional to the
number of pairs of records to be compared. Therefore, total compu-
tation cost Tn = w.↵, assuming ↵ pairs of records were compared,

Parameter Description
n Total number of records
R Cost to send a record to another processor
w Cost of one comparison using Match function
b Number of buckets each record is hashed to
t Total number of pairs across all buckets
u Number of unique pairs of records
f Replication factor (t � u)/t
N Maximum number of records in a bucket
d Maximum number of records in an entity
p Total number of processors

Table 1: Parameters used

and w is the time taken for comparison of a pair of records. Simi-
larly, communication cost is assumed to be directly proportional to
the number of record-carrying messages exchanged between pro-
cessors. Therefore, Tc = R.�, assuming � messages were ex-
changed between various processors, and R is the time taken for
communication of one record between a pair of processors. Using
(1) the parallel execution cost with p processors is as in (2) below,
using which we proceed to compare the BCP and RCP approaches.

T (p) = (s
1

.w.↵ + s
2

.R.�)/p (2)

3.1 BCP: Parallel Analysis
The BCP approach distributes LSH buckets across processors

and runs IMM within each bucket. If a bucket has x records, in the
best case, IMM performs x � 1 comparisons: This happens when
all the records belong to the same entity and each successive match
operation succeeds. For example, if there are 4 records d

1

, d
2

, d
3

,
and d

4

in a bucket, then there will be a minimum of 3 match oper-
ations on (d

1

, d
2

), (d
12

, d
3

), and (d
123

, d
4

). However, according
to [4] the worst case computation cost of IMM on a block with x
records and x0 entities is (x � 1)2 � (x0

� 1)(x0

� 2)/2. This will
be maximum when x0 = 1. Therefore, in the worst case a bucket
with x records will execute (x � 1)2 comparisons.

For the average-case analysis, we assume
�

x
2

�
comparisons in a

bucket of size x, i.e., the number of pairs in the block. So, the total
number of comparisons is just t, the number of pairs of records
across all blocks, i.e., ↵BCP = t.

The maximum total communication is n.b since every record is
sent to at most b buckets. However, a record need not be sent to a
singleton bucket containing only itself. If k

1

is the expected frac-
tion of non-singleton buckets per record, with 0 < k

1

6 1, the total
communication cost for BCP is �BCP = k

1

.n.b. Using the above
in (2) the total computation and communication costs for BCP are
summarized in Table 2.

3.2 RCP: Parallel Analysis
In RCP a bucket with x records schedules

�
x
2

�
comparisons that

are executed at processors holding records, rather than at the pro-
cessors holding the bucket itself. Further, unlike BCP, RCP in-
volves multiple iterations: Nevertheless, RCP will involve at most
d � 1 iterations, if d is the maximum number of records an entity
can have.

For an average-case analysis we assume that if there are xi

records in a bucket in the ith iteration, then xi+1

= dxi/2e. Conse-
quently, if there are ti comparisons in the ith iteration, ti+1

⇡ ti/4.
Therefore, the total number of comparisons across d � 1 iterations
will be [t + t/4 + t/42 + ... + t/4(d�2)] = 4

3

t(1 � 4�(d�1)).
Further, in RCP, a pair of records is compared only once (see

SS3 in Section 2.2) even though it may occur in multiple buckets,
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Approach pT(p)
BCP s

1

.w.t + s
2

.k
1

.R.n.b
RCP s0

1

.(1 � f).k
2

.w.t + s0

2

.(1 � f).k
2

.R.t

Table 2: Average-case parallel execution times

with replication factor f (see Table 1). Therefore, the total number
of comparisons (in first iteration) is (1 � f)t rather than t. As a
result, ↵RCP = (1 � f).k

2

.t, where k
2

= 4

3

(1 � 4�(d�1)).
Further, for each pair of records that need to be compared, one

of the records in the pair is sent to the other’s processor. Therefore,
the number of messages is same as the number of comparisons, so
�RCP = (1�f).k

2

.t . Using the above in (2) the parallel execution
time for RCP is also summarized in Table 2.

3.3 Skew Analysis and Inferences
Computation skew s

1

and communication skew s
2

depend on
the distribution of records to the buckets. Let the number of buckets
having x records be f(x). We analyze the case when f(x) follows
a power-law distribution (which is what we observed empirically
as shown in the next section), i.e., f(x) = c/xr , where c and r are
positive constants.

Further,
�

x
2

�
> x, for x > 3; and

�
x
2

�
.f(x) > x.f(x),

for f(x) > 0. Therefore, the total number of pairs t =PN
x=2

�
x
2

�
.f(x) is much more than nb =

PN
x=1

xf(x), the total
number of records in all buckets. As a result, we can assume that
t >> n.b. So when the computation and communication skews
for BCP and RCP are comparable, i.e., s

1

= s0

1

, and s
2

= s0

2

, and
the replication factor f is small, we observe from Table 2 that the
computation cost of both approaches is of the same order, whereas
the communication cost of BCP (s

2

.k
1

.R.n.b) is clearly lower than
that of RCP (s0

2

.k
2

.R.t). As a results, it appears that BCP will per-
form much better than RCP.

However, in most of the situations, computation skew s
1

of BCP,
will be so high that it will become the dominant component of the
parallel execution cost. To explain this, let us compare the effect of
a large bucket in the two approaches. In BCP, a large bucket with
size x, will result in

�
x
2

�
computations at the processor responsible

for this bucket; this processor can become slow and can increase
the parallel execution cost. However, in RCP, a large bucket results
in less computation skew, since the

�
x
2

�
comparisons are distributed

to x � 1 record-vertices that, on the average, will reside on differ-
ent processors for large enough p. Thus the computation load gets
distributed.

Further, even though the large bucket causes
�

x
2

�
messages to

schedule comparisons across processors in case of RCP, these mes-
sages only contain the IDs of the record-vertices and as we have
assumed earlier, this cost is small enough to be ignored. With this
assumption, the number of record-bearing communications arising
from a bucket of size x are those where the records send themselves
to each other, i.e., at most x � 1 messages for one of the records in
the bucket and x/2 on the average. This is comparable to the com-
munications required in BCP where x records need to be received
at the bucket of size x. Therefore, the communication skews in
both BCP and RCP are comparable whereas the computation skew
caused by the largest bucket in case of RCP is likely to be less than
the computation skew caused in case of BCP. In the next section we
demonstrate this empirically with realistic data.

3.4 Empirical Comparison of BCP and RCP
We generated synthetic data of 1.2 million ‘residents’ ( n =

1.2M) as follows: We began with 100,000 seed records, where a

Figure 4: Average-case Computation Load for BCP

Figure 5: Average-Case Communication Load for BCP

seed record has all the information about an entity. For each such
entity, a maximum of 5 records (d = 5) are created corresponding
to the following 5 domains: ‘Election Card’, ‘Income-Tax Card’,
‘Driving-Licence’, ‘Bank Account Details’, and ‘Phone Connec-
tions’. An entity can have a maximum of one record per domain.
We control the creation of a record of a particular type for an en-
tity using a random-number generator. To create a record from
the seed record, values of some of the attributes of the person are
omitted. For example, e-mail id of a person may be present in 2
of his records and absent in others. The values of the attributes
of an entity across records are varied by using different methods.
For example, the address of the different records for the same en-
tity need not be same. Variation in values of attributes for different
records for an entity are inserted by introducing typographical er-
rors, swapping the first and last name, or omitting the middle name.
To add further ambiguity after creation of the records for an entity,
additional records which share considerable textual similarity with
each other are generated for related entities, such as parent, child,
spouse, neighbour, etc.

We applied 90 hash functions on each record and used a = 3
and b = 30 in the LSH formulation (refer Section 2.1.1). We get ⇡

17.29M buckets, 59.34% of the buckets (10.26M) were singletons,
99.89% (17.27M) of the buckets had 6 30 records, 0.02% (696)
buckets had > 100 records, and 0.00092% (163) buckets had >
1, 000 records. (With this generated data, the value of r in power
law distribution of records to buckets, i.e., f(x) as defined earlier
in Section 3.3 was found to be ⇡ 2.8.) The distribution of f(x) vs
x is shown in Figure 7. The 163 (0.00092%) large buckets are the
bottlenecks in terms of the execution-time taken by the processors
which have them. The size of the largest and second largest buckets
are 17, 668 and 9, 662, respectively.

To estimate the values of skew factors, s
1

, s
2

, s0

1

, and s0

2

, we
assume the number of processors p = 160 (corresponding to our
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Figure 6: Average-Case Computation Load for RCP

Approach Comparisons (millions) Communications (millions)
Max. Avg. s

1

Max. Avg. s
2

BCP 158.039 6.864 23.02 0.171 0.154 1.11
RCP 7.629 6.864 1.11 7.612 6.864 1.11

Table 3: Skew factors for BCP and RCP (average-case)

physical cluster of five 4 CPU nodes with 4 cores and two virtual
processors per core). The records and buckets (1.2M+17.29M ver-
tices) were randomly distributed to these 160 processors. Assum-
ing w = R = 1, the computation and communication loads per
processor are shown in Figures 4, 5, and 6.

The skew factors as estimated from the above distributions are
shown in the Table 3: It can be observed that the computation skew
s
2

in BCP is 23.02, whereas the communication skew of BCP s
1

and the computation and communication skews s0

1

and s0

2

are al-
most the same (= 1.11). Based on the formulations in Table 2,
it is clear that assuming w = R = 1, replication factor f = 0,
d = 5 so that k

2

= 4

3

(1 � 4�(d�1)) ⇡

4

3

, k
1

= 1, the parallel
execution-time of BCP,

p.T b(p) = s
1

.w.t + s
2

.k
1

.R.n.b

= 23.02 ⇥ t + 1.11 ⇥ n.b

> 23.02 ⇥ t

will be much larger than that of RCP,

p.T r(p) = s0

1

.(1 � f).k
2

.w.t + s0

2

.(1 � f).k
2

.R.t

= 2 ⇥ 1.11 ⇥

4
3
t

= 2.96 ⇥ t

since s
1

is much higher than both s0

1

and s0

2

.
It may appear surprising that computation skew in BCP is so

much higher that communication skew; after all the number of
pairs at a bucket (which determines computation cost) is at most

Figure 7: Number of Buckets (f(x)) vs. Number of Records (x)

the square of the bucket’s size (which determines communication
cost). Computation skew, on the other hand, is much worse than
the square of communication skew.

However, consider the following example taken from our syn-
thetic data: Suppose we have 100 processors, and 150 buckets have
size > 1000. Assuming uniform distribution, each processor gets
0.16M (16M total buckets / 100 processors). Suppose the sizes of
the largest buckets b

1

and b
2

at processors P
1

and P
2

be 18, 000
and 300 respectively. There are 0.16M - 1 other buckets each at
P

1

and P
2

. Assuming uniform distribution of load on these two
processors based on the 0.16M - 1 buckets (not considering the
two buckets b

1

and b
2

), the ratio of execution-times on P
1

and P
2

would be close to 1. Suppose the execution-time of these 0.16M
- 1 buckets (all buckets except b

1

in case of P
1

and b
2

in case
of P

2

) is T on both the processors. Then the execution-time T
1

on processor P
1

is T +
�
18,000

2

�
= T + 161, 991, 000, and T

2

on
processor P

2

is T +
�
300

2

�
= T + 44, 850. To compute T , sup-

pose the 60% of the singleton buckets get uniformly distributed.
So, 96k (60% of 0.16M) of the buckets at P

1

and P
2

each have
no contribution to T . Suppose the remaining 64k buckets get 30
records each (which gives an approximate upper bound on T as-
suming 99.9% of the buckets have less than 30 records). Then,
T = 64, 000 ⇥

�
30

2

�
, i.e., 27, 840, 000, so that T

1

= 189, 831, 000

and T
2

= 27, 884, 850. So the computation skew T
1

T
2

⇡ 6.8. Em-
pirically, even with uniform distribution of buckets across proces-
sors, we still find sb

1

⇡ 20.
Thus, even if the distribution of 150 large-sized buckets is uni-

form across the 100 processors, still any processor getting two
large-sized buckets results in significant computation skew for
BCP. On the other hand, since RCP distributes computations by
records, with the number of computations at a record directly pro-
portional to the sum of its bucket sizes (rather than the square of
bucket size as in BCP), the resulting computation skew is relatively
small.

4. RELATED WORK
Parallel entity resolution (ER) using three distributed computing

paradigms has been described in [23]: distributed key-value stores,
MR, and bulk synchronous parallellism. Their strategy is to per-
form pair-wise comparisons followed by connected components.
The bulk synchronous parallel (BSP) algorithm in [23] is related
to the graph-parallel model. However, they do not use any accel-
eration strategy (such as LSH) to group candidate pairs; neither do
they deal with the issue of load-imbalance (skew).

Other parallel implementations for entity resolution have been
proposed in [3, 11, 7, 13], but none of these address the issue
of skew. The D-Swoosh family of algorithms in [3] implements
R-Swoosh based IMM [4] by distributing the task of comparing
records to multiple processors by using scope and responsibility
functions, where the scope function decides the processors where a
record will be sent to, and the responsibility function decides which
processor will compare a given pair of records. In one particular
domain-dependent strategy called Groups, records are assigned to
groups, and two records are compared only when they belong to the
same group. This is similar to the idea of buckets in the context of
BCP algorithm. However, in Groups-based D-Swoosh, each group
is assigned to one processor, whereas in BCP, multiple buckets end
up being assigned to the same processor.

The Dedoop tool described in [14] borrowing ideas from another
work by the same authors in [15], is a MR-based entity resolution
tool that includes different blocking techniques, provides strategies
to achieve balanced workloads, and also provides redundant-free
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comparisons when multiple blocking keys are used. Load balanc-
ing in Dedoop is achieved through an additional MR step before
the actual matching job to analyze the input data and create a block
distribution matrix (BDM). This BDM is then used by, for exam-
ple, the BlockSplit strategy to split the match tasks for large-sized
blocks into smaller match tasks for sub-blocks, ensuring all com-
parisons for the large-sized block gets done. Dedoop considers
only pair-wise comparisons and does not perform IMM for which
their load-balancing strategy may not work. Similar to our RCP
approach, where a pair of records co-occurring in multiple buck-
ets is compared only once, Dedoop also has provision for avoiding
redundant comparisons when multiple blocking keys are used by
comparing record-pairs only for their smallest common blocking
key.

The stragglers problem in the context of MR, in general, has
been discussed in [17, 21, 16]. The basic idea to avoid load imbal-
ance, due to large number of values for a particular reduce-key, is to
somehow split the keys with large loads into multiple sub-keys that
can then be assigned to different reducers. Using such solutions in
the context of Iterative Match-Merge for the values (records) at a
reduce-key is not straight-forward and can be a direction for future
research.

In [17], it is shown that when the distribution f(x) of the number
of reduce-keys receiving x values follows a Zipf distribution, i.e
f(x) /

1

x
, and each reduce task performs O(x) work, then the

maximum speedup is around 14. This suggests that the situation
will be worse in our case when the amount of work done for the task
with x elements is O(x2), thereby justifying our RCP approach
further.

Various grouping techniques such as sorted-neighborhood index-
ing and Q-gram-based indexing have been proposed to reduce the
set of candidate pairs, as surveyed in [6]. Locality Sensitive Hash-
ing (LSH) for entity resolution has been discussed in [12].

5. CONCLUSIONS AND LEARNINGS
We set out to develop a parallel implementation of entity res-

olution so as to handle with cases involving billions of records
and hundreds of millions of entities. The bucket-parallel approach,
which is natural using MR, results in significant skew. The record-
parallel approach emerged as a natural alternative and turned out to
have better load-balancing properties especially in the presence of
severe skew, which arises naturally in hashing where some buckets
corresponding, say, to very common names, end up with a large
number of records.

Many problems involving evaluating pair-wise similarity of large
collections of objects can be efficiently accelerated using proba-
bilistic hashing techniques such as LSH, in much the same manner
as we have accelerated IMM-based entity resolution. Clustering
using canopies, similarity joins, feature-based object search as well
as duplicate-detection in object databases (such as for biometric
applications) are some such examples. In all such cases parallel
implementation can be done bucket-wise or record-wise, and the
advantages of the record-parallel approach can be derived when-
ever hashing is expected to result in skew due to some features
being much more heavily shared across objects than others.

Last but not least, note that even in the BCP approach, we avoid
sending records to singleton buckets; i.e., we first form buckets
using just record-ids and then send the more voluminous actual
records only to non-singleton buckets. Since we find that over 60%
buckets are singletons in our sample data, this optimisation is fruit-
ful even though it costs an additional communication step. Upon
reflection we realised that other scenarios present a similar oppor-
tunity for optimisation: Consider a multi-way join implemented in

MR, but where some attributes are large objects such as images or
videos. Even for normal joins (on say, object-id, i.e., not similarity
joins), traditional MR implementations would ship entire records
to reducers, including those that never match with others and are
therefore absent in the final result. In such cases, eliminating sin-
gletons via an initial phase is an important optimisation that applies
both for MR as well as graph-based parallelization.
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