
Implementing a Bidirectional Model Transformation
Language as an Internal DSL in Scala

Arif Wider
Humboldt-Universität zu Berlin

Unter den Linden 6
Berlin, Germany

wider@informatik.hu-berlin.de

Beuth Hochschule für Technik Berlin
Luxemburger Strasse 10

Berlin, Germany
awider@beuth-hochschule.de

ABSTRACT
Despite advantages in terms of comprehensibility, verifica-
tion, and maintainability, bidirectional transformation (bx)
languages lack wide-spread adoption. Possible reasons are
that tool support for bx languages is sometimes weak or out-
dated, that many bx languages are hard to integrate with ex-
isting software technologies, or that bx languages often can-
not be mixed with unidirectional transformation languages
and general-purpose programming languages.
We present an approach to implement existing bx languages
as internal domain-specific languages (iDSLs) in the Scala
programming language and demonstrate the approach by
implementing state-based tree lenses as a statically typed
iDSL in Scala. We show that this approach allows for rich
tool-support based on static analysis and for achieving tech-
nological integration with the Java platform in general and
with the Eclipse Modeling Framework (EMF) in particular.
At the same time, the iDSL is independent from DSL-specific
tool-support and can be mixed with Scala, Java, or unidi-
rectional transformation languages.

1. INTRODUCTION
Most bidirectional transformation (bx) languages are ex-

ternal domain-specific languages (DSLs), i.e., they come with
their own tools – e.g., for parsing, editing, or verification –
which were specially developed for them. Creating good tool-
ing for a bx language takes a lot of e↵ort. Furthermore, the
tooling has to be maintained, e.g., in order to stay compati-
ble with other software development tools. For bx languages,
this is especially a problem, because they have (so far) only
a limited user base, and thus, it is hard to justify (or fi-
nance) putting lots of e↵orts into their tooling. However,
if the tooling is not good or kept up-to-date, bx users will
fall back to use better supported unidirectional transforma-
tion languages or even general-purpose languages (GPLs)
like Java for implementing their synchronizations (despite
disadvantages concerning verification, comprehensibility, or
maintenance).

An alternative approach are internal DSLs (iDSLs): An iDSL
is basically a library, written in a host language which is usu-
ally a GPL. However, in host languages that provide pow-
erful abstraction concepts and/or a flexible syntax, one can
create libraries whose look and feel get close to that of an
external DSL. The main advantage of an iDSL is that, natu-
rally, the tooling of the host language can be reused without
modification. Of course, the tool support of an external DSL
is potentially more powerful, as it can be tailored to the DSL.
E.g., error messages of iDSLs are often hard to understand.
However, good generic tool support especially of statically-
typed GPLs (e.g., debugging, static analysis, etc.) can go a
long way for using an iDSL comfortably.
In this paper, we show how an existing bx language – state-
based tree-lenses as presented by Foster, Pierce, et al. in [3] –
can be implemented as an iDSL in Scala. We show how this
way, tree lenses (a combinator-based, asymmetric bx lan-
guage) can be adapted to work in an object-oriented con-
text and how they can be integrated with existing Java-
based technologies like EMF. Our approach mainly relies
on the pre-assumption that models are graphs which al-
ways have a spanning containment tree; an assumption that
is true for many modeling technologies in general, and for
EMF in particular. The technological integration mainly
relies on Scala being a JVM-language that supports both
object-oriented and functional programming. Thus, Scala
is well-suited for integrating functional programming tech-
niques with object-oriented concepts and with Java-based
technologies. Lenses defined with our iDSL can directly pro-
cess the Java-instances that represent an EMF model at run-
time. Furthermore, we use the Scala compiler to perform ex-
tensive static type-analysis using the type information pro-
vided by the Java classes which are generated from an EMF
metamodel. This way, the corresponding error highlighting,
syntax checks, and code completion features can be provided
by any Scala IDE plug-in and no further tooling is needed.
The paper is structured as follows: The next section in-
troduces Scala concepts which are important for our iDSL.
Sec. 3 presents the data model that our iDSL uses and Sec. 4
explains how we convert models accordingly. Sec. 5 shows
how we achieve type-safety and Sec. 6 demonstrates the
iDSL with an example. Related work concludes the paper.

2. IMPORTANT SCALA CONCEPTS
Scala programs are compiled to regular JVM bytecode.

Therefore, one can access Java code from a Scala program
and vice versa. Also, Scala’s syntax is intentionally close to
that of Java. Notable exceptions are that (1) type anno-

63

tations follow identifiers, separated by a colon, (2) type pa-
rameters are enclosed in square brackets, and (3) line-ending
semicolons as well as dots and parentheses for method invo-
cation are often optional. Furthermore, because Scala sup-
ports type-inference, type annotations can often be omitted
as shown in the following listing:

val x:Int = "1234".length(); is similar to val x = "1234" length

An important concept that we make extensive use of in
our iDSL are implicit conversions: When marking a function
as implicit, the Scala compiler will automatically insert calls
to that function if this can solve a compile-error:

class RichString(str: String){ // a class that wraps a string
def mylength = str.length //...and provides additional methods

}
implicit def string2richString(str:String) = new RichString(str)
//because of the above implicit conversion this code compiles:
val x = "1234".mylength // ...as it is implicitly augmented to:
val x = string2richString("1234").mylength

The other Scala concept that we make extensive use of,
are type members: In Scala, a class can have types as mem-
bers, too. The following listing shows a class with a (1) type
parameter T – which must be a subtype (denoted by <:) of
type AnyVal, i.e., a primitive or value type like Boolean, Int,
etc. – and (2) a type member ElementType.

class ValueList[T <: AnyVal](lst: List[T]) {
type ElementType = T

}

Here, type member ElementType holds the type with which
the class is parameterized. It can either be accessed via an in-
stance, e.g., myvaluelist.ElementType, or via a parameter-
ized type, e.g., ValueList[Int]#ElementType. Now, because
type members can have type parameters themselves, one can
define type functions which are evaluated at compile-time.
As type members can also be abstract, they can be declared
in supertypes and implemented in subtypes. The declaration
of an abstract type function equivalent to def f(x: Dom): Cod
would be type F[X <: Dom] <: Cod.

3. A DATA MODEL FOR LENSES IN SCALA
For implementing tree lenses in Scala, we need to adapt

the data model of the original state-based tree lenses – edge-
labeled trees – in order to successfully apply the lens combi-
nator concept to an object-oriented, JVM-based setting: An
object is a triple of a unique identity by which it can be ref-
erenced, a state, and a class that defines valid operations on
that object. The state of an object consists of the values of
a fixed number of fields. In a Java-based context, fields have
a unique name and a static type. Fields containing multiple
values can be expressed as a homogeneously typed collec-
tion, e.g., an indexed list or a key-value map. In contrast,
figure 1 shows how data is represented in the edge-labeled
tree data model of the original tree lenses.

Figure 1: An address book as an edge-labeled tree

In the edge-labeled tree, labels are used to access the chil-
dren of a tree node. The counterparts in objects are either
field names or the index (or key) by which one can access a

specific element in a collection. Now, whereas in the edge-
labeled tree data is stored as labels – e.g., the phone num-
ber in the example – we cannot save data as a field name
in Java or Scala. This reveals one of the main di↵erences
between the original data model and the needed one: With
the edge-labeled tree, we have no meta-layer but only an in-
stance layer, i.e., both meta-information (e.g., description of
the contents of a field) and value information is mixed (both
”phone”and ”3334444”are labels). So, what is always a label
in the edge-labeled tree, is in object-oriented terms some-
times meta-information and sometimes value-information.
This means, we need both lenses that work on the meta-
level and lenses that work on the instance/value level.
Another di↵erence is that objects can reference other ob-
jects which are not considered their children, i.e., they can
have non-containment references, and thus, object struc-
tures (and models) are graphs. However, if we look at Java-
based application frameworks like EMF, it is characteristic
that a spanning containment tree is enforced, i.e., object
structures must have an explicitly marked root-object and
objects can have at most one container. This constraint has
been shown to be very useful, e.g., for fast graph traversal
and persistency management. Thus, in practice, many object
structures are graphs with an underlying spanning contain-
ment tree. We rely on this constraint to pragmatically apply
tree lenses to an object-oriented context.
Finally, the children of a tree node in an edge-labeled tree
are unordered and can be non-unique. Now, as we defined
field names or collection indices/keys, respectively, as the
counterparts to labels for accessing child elements, children
are unique: indices or keys are unique by definition and field
names in Java/Scala are also required to be unique in one
class. Concerning order the situation is more diverse: in-
dices are obviously ordered but class fields and dictionary
keys are generally considered unordered. However, EMF for
instance, represents children of a tree node as an ordered
list for XML persistence reasons. Furthermore, the fields of
Scala case classes coincide with the parameter list of the
class’ constructor which is ordered. Thus, for uniformity, we
define the ’labels’ to access the children of a tree node as
an ordered list without duplicates. Note that the uniqueness
constraint only applies to the labels to access the children,
thus, there can be duplicate elements in a list as the indices
are unique. Furthermore, we do not represent tree leafs using
empty child lists, but by special value tree node types. We
call this data model, which we designed as a pragmatic adap-
tation of an edge-labeled tree for an object-oriented context,
an object tree:

Definition 1. An object tree T = h t, id, [v | l] i is a triple
of a type-annotation t, a unique identity id, and either a
single value v or an ordered list l referring to either a fixed
number of subtrees (the fields) or an arbitrary number of
subtrees of the same type (the elements of a collection). Sin-
gle value tree nodes can represent a non-containment refer-
ence by holding the id of another tree node.

We implemented this data model as a Scala class type
hierarchy with an abstract root type Term (any tree node)
and several subtypes, e.g., for list terms, tuple terms, con-
structor terms, value terms, and reference terms. Together
with type annotations, this allows us to express type con-
straints on the data that a lens can handle. Comparing this
data model with the one of tree lenses, type-annotations and
object-ids were added, and order of subterms now matters.

64

Edge-labels are replaced by indices which – in the case of a
constructor term – can be mapped to field names (using the
type annotation). This data model allows us to implement
most of the original tree lenses with similar semantics for
model transformations but also allows for defining special
lenses for an object-oriented setting.

4. IMPLICIT CONVERSION BETWEEN
MODELS AND TYPED TERM TREES

In the following three subsections, we show (1) how to con-
vert a domain object (i.e., a model element) to a typed term,
(2) how to convert a model to a tree with cross-references,
and (3) how to ensure referential integrity in this conversion.

4.1 Converting Domain Objects to Typed Terms
In order to be able to implement a set of pre-defined lenses

(i.e., a lens library / lens language) independently from spe-
cific domain classes, lenses need to be defined against general
term types. However, to apply these lenses directly on do-
main objects, domain objects have to be converted to terms.
We use Scala’s implicit conversions for transparently con-
verting domain objects to terms and vice versa. We want
to preserve static type-safety throughout the whole trans-
formation process. Therefore, we have to keep track of the
types of all of a term’s subterms. This cannot be achieved
by annotating terms with a corresponding class type, be-
cause in the transformation process intermediate structures
can emerge that do not correspond to any source or target
domain class (e.g., when splitting up a source domain ob-
ject, the results of this splitting need to get a type, before
putting them together to a target domain object).
Because Scala’s type system – and other common type sys-
tems – only provide either a heterogeneously typed tuple
construct with a fixed arity (e.g., Tuple3[A,B,C]) or a ho-
mogeneously typed collection (e.g., List[A]), we use hetero-
geneously typed lists (HLists), as introduced for Haskell by
Kiselyov et al. [6], as the underlying data structure. HLists
are based on type-parameterized, nested Cons-cells. This
way, heterogeneously typed list instances can be defined with
static type-safety. However, in code both nested type anno-
tations and nested list instantiations are verbose and error-
prone. Therefore, some Scala implementations of HList1 de-
fine a typelist type (TList) correspondingly and define a
type-level prepend operator ::. This way, using a TList as
the type parameter of HList allows for concisely defining
a list instance that contains objects of type A, B, and C
as HList[A :: B :: C :: TNil](a,b,c). Together with a type-
inferring instance-level prepend operator ::, we can simply
write val x = 123::"str"::HNil and the type of x will au-
tomatically be inferred as HList[Int::String::TNil].
Based on such an HList Sclala implementation, we defined a
heterogeneous term type TupleTerm which wraps an HList
and thus can contain subterms of di↵erent types. A construc-
tor term is a specialization of a tuple term that additionally
contains a constructor tag, i.e., a class type. Consequently,
class CtorTerm has two type parameters: the corresponding
class type C, and TL, the typelist of its inner HList. Do-
main objects can now be converted back and forth implic-
itly as long as pairs of appropriate implicit conversions are
provided. The e↵ect is that a domain object can be passed

1

e.g., J. Nordenberg’s: http://jnordenberg.blogspot.com/2009/09/
type-lists-and-heterogeneously-typed.html

to any function that expects a term (and vice versa), with-
out having to trigger the conversion explicitly. The implicit
conversion definitions can be generated automatically by an-
alyzing the involved EMF metamodels. We provide a Scala
script as well as an IDE plug-in together with our iDSL that
generates implicit conversions from a given metamodel.
The following listing shows the definition of such an HList-
wrapping constructor term type as well as (simplified) def-
initions of the two implicit conversion functions that are
needed to implicitly convert a ContactInfo domain object
containing a number and a string to a correspondingly type-
parameterized CtorTerm object and vice versa.

class CtorTerm[C, TL <: TList](c: Class[C], subterms: HList[TL])
// domain class ContactInfo and its two implicit conversions:
class ContactInfo(phone: Int, url: String)
implicit def ci2term(ci: ContactInfo): // ContactInfo to Term
CtorTerm[ContactInfo,ValueTerm[Int]::ValueTerm[String]::TNil]
= CtorTerm(classOf[ContactInfo], ci.phone :: ci.url :: HNil)

implicit def term2ci(t: CtorTerm[ContactInfo, ValueTerm[Int] ::
ValueTerm[String]::TNil])=new ContactInfo(t.nth(_0),t.nth(_1))

Fig. 2 visualizes how – at runtime – a ContactInfo object
(from the example in Fig. 1) is converted to a corresponding
constructor term object (omitting that values are actually
converted to value terms, too).

Figure 2: Converting between objects and terms

4.2 From Models to Trees with References
Besides the containment tree, an EMF model can contain

non-containment references which have to be represented
in a corresponding term tree. Therefore, for converting be-
tween models and term trees, we traverse the containment
hierarchy of the model, create a constructor term for every
model element, and keep a trace of every conversion. Then,
whenever during traversal we encounter a non-containment
reference (which can be easily checked in EMF models), we
create an unresolved reference term that holds, for now, a
reference to the model element that the non-containment
reference is pointing to (not the corresponding constructor
term). We then add the reference term to a list of unresolved
reference terms, and after traversal, we iterate over the list
and – using the implicit conversion traces we recorded – we
look up which constructor term has been created from which
model element, and set the reference in each reference term
accordingly. We refer to this process as resolving references.
In the other direction however, i.e., when creating models
from term trees with non-containment references, resolving
references is more tricky: When creating domain objects, we
cannot pass a reference term which later gets resolved. We
solve this as follows: Whenever a non-containment reference
is expected, we call a helper function that defers setting the
reference and returns null instead. To this function, we pass
the referenced constructor term and a pointer to the setter
method of the non-containment reference attribute of the
created domain object. The null-returning helper function
creates a deferred reference object which holds the refer-
enced term and the setter method, and adds it to a list of
deferred references. After tree traversal, when all domain
objects have been created, we resolve references by iterating
this list of deferred references and again use traces to find
out what domain object has been created from what con-

65

x

R

y x

R

y x

R

y x

R

x

R

x

R

z

R

y z

R

y z

R

y z

R

z

R

z

R

Source
Domain
Objects

Target
Domain
Objects

C-Side
Constructor

Terms

A-Side
Constructor

Terms

C-Side
Tuple
Terms

A-Side
Tuple
Terms

RmvCtor Lens AddCtor Lens
Wrapped Filter(x)

Tuple Lens

impl. conversion trace

vertical delta trace

containment reference

non-containment reference

transformation

implicit conversion

Legend:

x x

x z

term containment

domain object

ctor/tuple term

reference term untraced change

wrong
 reference!

x -> z

corrected
reference

Figure 3: Implicit model to term tree conversion & reference handling with vertical traces

structor term, and use the saved setter methods to replace
the nulls in the domain objects with the correct references.

4.3 Referential Integrity with Vertical Traces
The strategy to convert between models and term trees

with references that we presented so far works well as long
as in the forward (abstracting) direction of a lens either
no references are abstracted away or as long as they are
discarded together with the referenced model elements. If
however, the get function of a lens discards a reference but
keeps the referenced element, this element might be changed
on the abstract view side (A-side) which leads to referential
corruption when propagating the change back to the con-
crete source side (C-side): normally, the put function of an
element-discarding lens (e.g., filter) restores the discarded
elements by looking them up in the original C-side tree, so
it will restore the original references from the concrete source
model which might refer to elements that have changed or
have been deleted. This problem can be solved when we keep
track of what happened to updated model elements on the
source side, i.e., when we have a trace of a model element
before it is passed to get and after it is returned from put. Be-
cause we implement state-based lenses (and not delta-based
lenses [2]), we have no vertical A-side traces which we could
translate to such vertical C-side traces.
However, because the asymmetric state-based lens frame-
work defines an incremental binary put function which also
takes the original C-side model as an additional input, we
can create at least C-side vertical traces in the put func-
tion of a lens: we just have to connect the original C-side
model element that is passed as an argument to put with

the updated source side element that is created by put, be-
fore returning it. However, we only have to keep vertical
traces of constructor terms, because only their correspond-
ing model elements can actually be referenced. We do not
need to keep traces of what happened to potential intermedi-
ate structures which have no corresponding model elements.
Therefore, we use the following approach: we wrap every lens
that translates between constructor terms into a bracket of
two semantically transparent helper lenses: the C-side helper
lens RmvCtor removes the constructor tag of a constructor
term (i.e., yielding a tuple term) in the get direction (and
re-establishes it in the put direction) and takes care of the
vertical traces, whereas the A-side helper lens AddCtor adds
a constructor tag in get direction (and removes it in the
put direction). This way, the wrapped lens does not need
to know anything about constructor terms and can simply
translate between tuple terms and therefore focus on en-
coding the transformation logic. Furthermore, by wrapping
a lens, we mark it as ’finished’, i.e., we separate detailed
transformation of intermediate structures from ’translation
rules’ between model elements. This also helps when mixing
our bx iDSL with other ways to describe transformations,
e.g., with our rule-based unidirectional iDSL [4].
Fig. 3 shows how a model (i.e., a graph of domain objects;
the containment tree root is marked with R) is implicitly
converted to a tree of terms, and how a non-containment
reference becomes a reference term. This tree of terms then
goes through the forward transformation get of a wrapped
filter lens (parameterized to filter away every child except x).
The term tree directly before and after filter consists of tu-
ple terms, whereas before RmvCtor and after AddCtor, the

66

term tree consists of constructor terms. However, apart from
adding or removing constructor tags, the two helper lenses
are semantically transparent as they do not change the struc-
ture of the tree. As can be seen, the filter lens filters away
child y which contains a non-containment reference to x.
However, after the resulting term tree is implicitly converted
back to a graph of target domain objects, x is replaced by
z on the A-side, and (because of the state-based lens frame-
work) we have no trace of this change. Therefore, the back-
ward transformation put of filter simply restores the part
of the tree that was filtered away with terms of the original
C-side tree including the discarded non-containment refer-
ence term that points to x. Thus, the restored reference term
references term x which does not exist anymore so that refer-
ential integrity is violated. However now, because RmvCtor
creates vertical C-side traces (finely dotted), we can resolve
wrong references after the tree has passed RmvCtor ’s put
function by looking up what has become of the referenced
term and correct wrong reference terms before the tree is
converted back to a source model with correct references.

5. A TYPE-SAFE LENS LANGUAGE
Now that we have term types that preserve the static type

information of their domain class counterparts, and can con-
vert between models and term trees, we can start to imple-
ment a reusable library of pre-defined lenses which are de-
fined against those term types. The goal of this approach is
the following: In spite of the lens library being defined inde-
pendently from actual domain classes, we want to use static
type information to check at compile-time whether a lens
(that may be composed out of many small lenses) conforms
to the structures it is meant to synchronize, i.e., whether the
input/output types of the lens functions match types in the
source and target metamodel.

5.1 Type-Parameterized Lenses
With a lens that is not parameterized with an edge la-

bel – like the hoist lens which always performs the same
structural modification: lifting a single child out of a tuple
term – the two types C and A, between which a lens trans-
lates, only depend on each other: hoist’s C is always a term
with one single edge at the root (this is the C-side contraint
of the hoist lens) and A is always the type of the single
child that this edge refers to. Thus, the typelist of term
type C is a list of length 1 with type A as the only compo-
nent at position 0, written as A::TNil. Type C can be de-
scribed as TupleTerm[A::TNil]. Thus, the type of the hoist
lens is Lens[TupleTerm[A::TNil], A] extending the generic
lens type Lens[C <: Term, A <: Term]. So the only free type-
variable of hoist is A. The following listing shows the com-
plete Scala definition of a type-safe hoist lens. Now, when
class Hoist is type-parameterized with a specific term type,
calls to Hoist’s lens functions are statically type-checked.

class Hoist[A <: Term]() extends Lens[TupleTerm[A::TNil], A] {
type C = TupleTerm[A::TNil] // constrains terms to this shape
def get(c: C): A = c.subterms.head //simply returns only child
def put(a: A, c: C): C = this.create(a)//oblivious: put=create
def create(a: A) = TupleTerm(a::HNil) // adds edge ’_0 -> a’

}

As the tree lenses that we are implementing primarily use
edge labels (or sets of them) as parameters, and as edge
labels in our term data model are translated to indices, we
need to encode indices, i.e., natural numbers, as Scala types.

Such type-level numbers can be implemented as Peano num-
bers, i.e., as recursively nested successors of a bottom type
which in this case obviously represents the number 0. In a
Scala implementation of such type-level numbers, we can de-
fine a supertype Nat, from which all number types have to
inherit, together with type-level number literals like type _1,
type _2 etc. and corresponding instance-level literals that al-
low for type-inference. With these number types and num-
ber literals, we can define type-safe methods of HList, e.g.,
a type-safe indexed accessor called nth by defining a type
function Nth[N <: Nat] <: Term of TList. This type function
is used by HList’s nth-method to determine the result type
of accessing the nth element of the list. Now, our tuple term
class exposes the type function Nth of its typelist and the
nth method of its inner heterogeneous list of subterms.
With this framework of implicit conversions, term types,
number types, and type-safe operations on HLists, we can
define more interesting, parameterized lenses. As an exam-
ple, we define an atomic filter lens that is parameterized
with a single index. To distinguish it from the original tree
lens which takes a set of labels, we call our variation Fil-
terN as it takes a single index n. In the get direction, all
direct children except the specified one are filtered away, so
FilterN.get returns a tuple term with a single child. The
following listing shows the complete definition of FilterN
and shows how the focus lens can be defined by sequentially
composing FilterN with the Hoist lens we defined earlier.

1 class FilterN[N <: Nat, C <: Term](n:N, d:C)
2 extends Lens[C, TupleTerm[C#Nth[N]::TNil]]{
3 type A = TupleTerm[C#Nth[N]::TNil]
4 def get(c: C): A = TupleTerm(c.nth(n) :: HNil)
5 def put(a: A, c: C): C = c.replace(n, a.nth(_0))
6 def create(a: A) = d.replace(n, a.nth(_0)) // using default d
7 }
8 // composing a focus lens using the sequential composition lens:
9 def Focus[N <: Nat, C <: Term](n: N, d: C)

10 = Comp(FilterN(n, d), Hoist[C#Nth[N]]())

FilterN has two type parameters: the number type N for
the specified index, and type C of the concrete term. Type A
does not need to be specified because in this lens, A is deter-
mined by C: A is a tuple term with C’s nth subterm type as
the type of the only child. This type is expressed by the help
of the Nth type function we introduced previously. Thus, the
type of FilterN is Lens[C, TupleTerm[C#Nth[N]::TNil]]
(line 2). FilterN expects two instance-level parameter: in-
dex parameter n and a default C-side term d. From these
instance-level parameters, the type-parameters can be in-
ferred. Now, when composing the focus lens (line 9), note
that the inferred type A of FilterN has to match type C of
Hoist in order to satisfy the typing constraint of the Comp
lens. This way, also lens composition is completely type-safe.
However, here the type parameter A of Hoist still has to be
specified explicitly in the composition (line 10) which is a
problem when composing more complex lenses.

5.2 Type-Inferring Lens Combinators
Sometimes explicit type parameterization can be avoided

by inferring the type from a passed default term. However,
often we cannot use domain objects to infer the type from:
with lenses that process intermediate terms which have no
corresponding domain class, the term type still needs to be
specified explicitly which is tedious and error-prone. Imag-
ine a lens that extracts several pieces of information from
a source model, and then subsequent lenses rearrange these
pieces so that their structure finally matches types of the

67

target domain. The subsequent lenses need to be parame-
terized explicitly with the potentially complicated term type
which is the output of the first information-extracting lens.
To help with this issue, we provide type-inferring lens combi-
nators in our lens iDSL: Most importantly, a type-inferring
operator for sequential composition allows for only type-
parameterizing the first lens in a chain of lenses explicitly,
and let the rest of the chain be parameterized automati-
cally by type inference. We implemented this operator as
a right-binding instance- and class-method named &:. This
way, in a composed lens l = lens1 &: lens2 &: lens3, only
lens lens1 needs to be type-parameterized explicitly: the
statement is desugared to l = lens3.&:(lens2.&:(lens1)),
where each call of the &:-method infers type A of the passed
lens and creates a correctly typed sequential composition.
Furthermore, in order to make the still needed explicit typ-
ing of the first lens more comfortable, we provide an operator
$[T] that is parameterized with a domain type, and infers
the (possibly complicated) type of the corresponding con-
structor term by injecting an appropriate implicit conversion
function and inspecting its signature (all at compile-time).
This way, one does rarely need to deal with typelists and
term types when composing lenses with our iDSL. For also
reducing explicit type-parameterizing in parallel lens com-
position, we provide lens lists: Similarly to HLists, there
is a end-of-list type called LLNil (lens-list-nil) and a type-
inferring prepend operator ::, so that a lens list can be speci-
fied as llist = lens1 :: lens2 :: lens3 :: LLNil. The result-
ing lens list maintains types C and A of each lens and can
then be used, for instance, to parameterize the WMap lens
combinator which results in a lens that applies a di↵erent
lens to each subterm of a given tuple term. The WMap lens
can infer the types of the lens list and therefore also does
not need to be type-parameterized explicitly.

5.3 Special Lenses for Typed Terms
So far we only presented lenses that were already defined

in the original tree lens library (except the two semantically
transparent wrapper lenses). Because models which have a
containment hierarchy can be converted to term trees with
reference terms, these existing tree lenses can be used for de-
scribing model transformations. However, because of the dif-
ferent data model of our Scala-based lenses, a few new lenses
can be defined. E.g., an important di↵erence from the edge-
labeled tree data model of the original state-based tree lenses
is that our tree nodes have a type annotation. Therefore, we
can describe lenses where this type-annotation determines
the behaviour. For instance, we can define a filter lens that,
instead of a label (i.e., an index), is parameterized with a
type. Such a FilterByType lens can, for instance, filter for
all Integer fields of a model element. Of course, in contrast
to filtering for an index which is by definition unique, the
same type-annotation can occur multiple times in one term.
Therefore, type C of this lens is a heterogeneously typed
tuple term and type A is a homogeneously typed list term;
thus, the lens type is Lens[TupleTerm[TL], ListTerm[T]].
The semantics of this lens is actually not di↵erent from that
of the original tree filter lens because the type-annotation is
simply an alternative choice of what a label in the original
data model can be translated to in our data model.

6. FAMILY2PERSONS BIDIRECTIONALLY
In this section we demonstrate the usage of our iDSL by

Persons

+adults: List<Person>
+juveniles: List<Person>

Person

+firstName: String
+lastName: String

2adults 1..* juveniles

Male

Female

Family

+lastName: String
+father: Member
+mother: Member
+sons: List<Member>
+daughters: List<Member>

Member

+firstName: String
+familyFather: Family
+familyMother: Family
+familySon: Family
+familyDaughter: Family

father

mother

1..*

sons

1..*

daughters

familyFather

familyMother

familySon

familyDaughter

{ forall x,y ϵ adults U juveniles

| x.lastName == y.lastName }

Figure 4: Family2Persons metamodels (bx-version)

presenting a bx version of the Families2Persons2 example.
The modified metamodels are shown in Fig. 4. The Fam-
ily metamodel stays largely untouched: A family object (the
root) contains a last name, two member fields (father and
mother), and two list-of-member fields (sons and daughters).
A Member object contains the member’s first name and
four back-references (i.e., non-containment references) to the
family the member belongs to. Note that of those four back-
references, three are always null-references, and only that
reference which matches the role of the member in the fam-
ily is set. In the unidirectional version of the example, it is
checked which reference is not null to determine the gender
of a member. In the Persons metamodel, we added a Per-
sons class which is the root of the containment hierarchy and
contains two lists of persons: adults and juveniles. Without
the Persons class, the Persons metamodel would not fulfill
our requirement that every model must have a containment
root object. The distinction between adults and juveniles
allows us to implement the example in a state-based fash-
ion (i.e., without horizontal inter-model traces) and with-
out having to deal with heuristics-based name matching etc.
which would distract from the actual synchronization logic.
Also, in the Person class, first name and last name are two
separate fields instead of one full name field to avoid clut-
tering the example with string analysis specifics.
Furthermore, and importantly, we added an equality con-
straint that says that every person in a Persons object has
to have the same last name. This constraint is restrictive
and might seem to render the synchronization example triv-
ial but it cannot be avoided when trying to stay close to
the original unidirectional example, i.e., when describing
the transformation in the direction from Family to Persons:
In asymmetric lenses the forward direction is the abstract-
ing one; thus, a persons model cannot contain multiple last
names because otherwise it would not be fully determined by
a C-side family model and therefore no abstraction3. How-
ever, one can change all last names in a persons model and
propagate this change back to the family model. Also adding
and deleting children is a supported A-side modification.
In order to show how a composed family2persons lens works,

2

http://wiki.eclipse.org/ATL/Tutorials - Create a simple ATL
transformation
3

one could imagine a persons model as the result of a last-name-query
to a bigger persons database to render the bx version more useful

68

we demonstrate how a term that represents a family model
is stepwise rewritten so that it finally has a structure that
matches a persons model. Because list handling is a bit in-
volved, we omit the children lists in this demonstration, and
suppose that a family only has a father and a mother, i.e.,
a family term only consists of three subterms: a value term
of type String for the last name and two constructor terms
of type Member. Correspondingly, suppose for now that a
persons term only consists of two subterms: a constructor
term of type Male and a constructor term of type Female.
In the following sequence of term rewritings, we denote a
tuple term by (subterm1,subterm2,...) with an optional con-
structor prefix, and a string value term by ‘value’. We denote
a null-valued non-containment reference term by ?, and a
non-null non-containment reference term by 7!. Next to the
current term structure, we show the (parameterized) lens
whose forward transformation get (denoted by %) is ap-
plied to yield the next term in the rewriting sequence, i.e.,
the term rewriting rule that is applied to that term. Re-
member that the WMap lens is parameterized with as many
lenses as the number of subterms of the tuple term it is
applied to, and then applies each lens to one subterm. For
brevity, we start the term rewriting with all constructor tags
already removed.

(‘Simpson’, (‘Homer’, 7!, ?, ?, ?), (‘Marge’, ?, 7!, ?, ?))
(%WMap(Id, Focus(0), Focus(0)))

(‘Simpson’, ‘Homer’, ‘Marge’) (%Duplicate(0))

(‘Simpson’, ‘Simpson’, ‘Homer’, ‘Marge’) (%Split(2))

((‘Simpson’, ‘Simpson’), (‘Homer’, ‘Marge’))
(%Reverse)

((‘Homer’, ‘Marge’), (‘Simpson’, ‘Simpson’)) (%Zip)

((‘Homer’, ‘Simpson’), (‘Marge’, ‘Simpson’))
(%WMap(AddCtor(Male),AddCtor(Female)))

(Male(‘Homer’, ‘Simpson’), F emale(‘Marge’, ‘Simpson’))
(%AddCtor(Persons))

Next, we show how a complete family2persons lens can
be constructed, including all list handling and constructor
handling. First, we use an idealized syntax of our lens DSL
and denote sequential lens composition with &.

adultName = RmvCtor(Member) & Focus(0)

childNames = ListMap(Split(1) & Reverse) & Factor-
ize & Focus(1) & ListMap(Hoist)

distribute = Split(1) & TupleDistribute & WMap(Id,
Id, Distribute, Distribute)

reverse = Wmap(Reverse, Reverse, ListMap(Reverse),
ListMap(Reverse))

addCtors = Wmap(AddCtor(Male), AddCtor(Female),
ListMap(AddCtor(Male), ListMap(AddCtor(Female))

sort = Split(2) & Map(SupertypeListConcat(Person,
Male, Female))

families2persons = WMap(Id, adultName, adultName, child-
Names, childNames) & distribute & reverse & addCtors &
sort & AddCtor(Persons)

The presented composition contains a few lenses which
were not defined in the original tree lenses. E.g., the Dis-
tribute and Factorize lenses mimic the application of the
distributive property from basic algebra. Because they du-

plicate values (in either the one or the other direction), they
rely on equality constraints in the involved metamodels. Su-
pertypeListConcat is a special lens that works with type-
annotations: it concatenates two lists of di↵erent types to
one list of a common supertype. In the backwards direction,
it splits a list depending on the specific subtypes of the el-
ments. The type of SupertypeListConcat is Lens[TupleTerm[
ListTerm[SUB1],ListTerm[SUB2],ListTerm[SUP]], where
SUP <: Term, SUB1 <: SUP, and SUB2 <: SUP.
Now, let us see how the lens construction looks in our Scala
iDSL. The following listing shows a very similar lens def-
inition as the one before (only decomposed slightly di↵er-
ently). Obviously, type annotations make the description in
our iDSL more noisy than the clean description in the ide-
alized syntax before4. We could easily achieve a similarly
clean iDSL syntax in Scala, however, not while at the same
time getting automatic (and extensive) static type-checking.
Now, as one can imagine, when constructing a lens as com-
plex as this one (or even much more complex), automatic
static type-checking can be tremendously helpful, as there
are plenty of possibilities to make mistakes when compos-
ing many small lens combinators. Because we keep track of
most types, most of such mistakes are detected automati-
cally at compile-time and highlighted with standard Scala
tooling. Note that in our iDSL we provide the language
construct wrap(...) as[SourceType, TargetType] to wrap
a tuple lens in between a RmvCtor and AddCtor lens (to be
precise: if type A is a value term, only RmvCtor is used).

1 // constructing a type-safe families2persons lens:
2 val adultName = wrap(Focus(_0, Member(""))) as[Member,String]
3

4 val childNames = wrap(ListMap(Split(_1, $[Member]) &: Reverse)
5 &: Factorize &: Focus(_1,Term(Term(NullRef::NullRef::NullRef::
6 NullRef::HNil)::List("")::HNil)) as[List[Member],List[String]]
7

8 val distribute1 = Split(_1, $[Family]) &: TupleDistribute
9

10 val distribute2 = WMap(Id[String]::Id[String]::
11 Distribute[String,String])::Distribute[String,String])::LLNil)
12

13 val strrev = Reverse[String::String::TNil]
14

15 val reverse = WMap(strrev :: strrev :: ListMap(strrev) ::
16 ListMap(strrev) :: LLNil)
17

18 val addCtors = WMap(AddCtor($[Male])) :: AddCtor($[Female]) ::
19 ListMap(AddCtor($[Male))::ListMap(AddCtor($[Female))::LLNil)
20 &: Split(_2)
21

22 val sort = Map(SupertypeListConcat($[Person],$[Male],$[Female]))
23

24 val extractNames = WMap(Id[String] :: adultName :: adultName ::
25 childNames :: childNames :: LLNil)
26

27 val rearrange = extractNames &: distribute1 &: distribute2 &:
28 addCtors &: sort
29

30 val families2persons = wrap(rearrange) as[Family,Persons]

The above is valid Scala code and fully type-checked. Note
that, by using type-inferring operators, only a few lenses
need to be typed explicitly. The final lens can directly be
used to synchronize family and persons models which will be
automatically converted to (and from) corresponding term
trees. The availability of all required (possibly generated)
implicit conversions is checked automatically at compile-
time when wrapping the lens.
4

Also, the need to provide a default term for the unary create function
is sometimes distracting (e.g., in line 5-6 for the focus lens). If we did
not allow for initialization from the abstract side – i.e., define a lens
only as a tuple of get and put – lens descriptions would look cleaner.

69

7. RELATED WORK & CONCLUSIONS
To the best of our knowledge, we are the first to present

a bx language for model transformations as an iDSL in a
statically typed JVM-language. Originally, our approach to
embed a compositional, term-rewriting-based language as an
iDSL in Scala was inspired by the work of Sloane [9], who im-
plemented the unidirectional term-rewriting language Strat-
ego as an iDSL in Scala. However, this iDSL allows for little
static verification because Scala’s type system is not used
to the same extent as in our approach. Cuadrado et al. pre-
sented RubyTL [1], a unidirectional transformation language
implemented as an iDSL in Ruby. However, because Ruby is
dynamically typed and is no JVM-language, possibilities for
static verification are very limited. Therefore, we presented a
similar, ATL-inspired transformation language implemented
in Scala that allows for more EMF-integration, tool-support,
and static verification [4]. We think that for bx, static veri-
fication and tool-support are even more important. Regard-
ing statically type-checked bx, Pacheco & Cunha presented
a tree lenses iDSL in Haskell [7]. However, besides providing
no JVM-integration this way, their work also does not aim
for adapting tree lenses to model transformations.
Regarding bx languages for model transformations, there are
many promising approaches but, as far as we know, none has
been implemented as an iDSL, yet. They can be roughly di-
vided into asymmetric, symmetric, and bijective approaches.
For the asymmetric case, GRoundTram, developed by Hi-
daka et al. [5], is one of the most mature bx tools which pro-
vides a graph-query language called UnQL+ for specifying
asymmetric bx. Such a query language is a clear advantage
over our lens iDSL in terms of usability, because it allows
for defining graph-traversals relatively comfortably (which is
cumbersome with our root-oriented combinator approach).
This is partly due to the fact that GRoundTram is from the
ground up graph-based – and not as our approach essentially
tree-based – but also partly because it provides less static
type analysis which makes graph traversals easier. There
are attempts to integrate GRoundTram with EMF and with
ATL, but until now both is limited and not seamless.
For the symmetric case, there are the QVT standard, with
its QVT-Relations bx language, and Triple Graph Gram-
mars (TGG) by Schürr et al. [8]. Both are rule-based ap-
proaches. However, QVT-R has semantic issues concern-
ing non-bijective bx [10] which might be the reason why
there is no QVT-R tool anymore which is actively developed.
TGGs have a solid semantic foundation. However, TGG-
based tools that support bx and integrate seamless with
EMF only emerged recently. Because TGGs are also graph-
based, they do not require an underlying spanning contain-
ment tree, and are in general more expressive concerning
changes of non-containment references. Furthermore, there
are delta-based lenses [2] which can be either symmetric
or asymmetric. Because delta-based lenses separate update-
alignment from update-propagation, they can synchronize
graph-based models as long as a correct alignment (i.e., ver-
tical traces) of the involved models can be provided.
Many of the aforementioned bx approaches are more power-
ful or allow for synchronizations to be described more com-
fortably. However, because none of these approaches is im-
plemented as an iDSL in a JVM-based GPL, none of them
is as tool-independent as our approach: transformation de-
scription with intelliSense-like code-completion, transforma-
tion execution, debugging, and technological integration can

all be provided by any of several available Scala IDE plug-
ins. Therefore, one does not rely on the ongoing development
and maintenance of bx tooling. All that is needed, is to in-
stall a Scala tool-set and import the iDSL library in an exist-
ing EMF- or Java-based project. Furthermore, as far as we
know, with none of the presented approaches, it is possible to
mix bx both with unidirectional transformations (e.g., using
our iDSL from [4]) and with GPL-coded transformations.
In practice, this can be an important advantage concerning
developer acceptance because it allows for gradual migra-
tion from unidirectional transformation descriptions to bx:
Developers who do not immediately see how to solve a syn-
chronization task using a special transformation language
can first use Java or Scala as a GPL and can later gradually
migrate to a bx implementation for reducing the long-term
maintenance overhead of pairs of unidirectional transforma-
tions or GPL-coded synchronizations.
However, because the advantages of our approach mainly
stem from the Scala-based iDSL approach, we rather want to
promote the general approach of implementing bx languages
as iDSLs in Scala than the specific state-based tree-lens iDSL
that we presented. Its implementation allowed us to demon-
strate how much expressiveness and static analysis can be
achieved by implementing a bx language in Scala. Scala’s
type system is capable of unrestricted compile-time recur-
sion which allowed for extensive static guarantees even for
complicated lenses. Therefore, it would be highly interesting
to apply the approach to other bx languages, e.g., GRound-
Tram, delta-based lenses, or TGGs. Concerning the latter,
we already showed that the implicit conversion mechanism
is particularly suited for implementing rule-based iDSLs [4].

Acknowledgements
We like to thank the anonymous reviewers for comments on
a preliminary version of this paper. This work was supported
by the BMBF, FHprofUnt grant 17075A10 (MOSES).

8. REFERENCES
[1] J. Cuadrado, J. Molina, and M. Tortosa. RubyTL: A Practi-

cal, Extensible TransformationLanguage. In MDA-Founda-
tions and Applications, pages 158–172. Springer, 2006.

[2] Z. Diskin, Y. Xiong, andK. Czarnecki. FromState- toDelta-
Based Bidirectional Model Transformations: the Asymmet-
ric Case. Journal of Object Technology, 10:6: 1–25, 2011.

[3] J. N. Foster, M. Greenwald, J. Moore, B. Pierce, and
A. Schmitt. Combinators for Bidirectional Tree Transforma-
tions: A Linguistic Approach to the View-Update Problem.
ACM Trans. Program. Lang. Syst., 29(3), 2007.

[4] L. George, A. Wider, and M. Scheidgen. Type-Safe Model
Transformation Languages as Internal DSLs in Scala. In
Int’l Conf. on Model Transformation (ICMT’12), Prague,
volume 7307 of LNCS, pages 160–175. Springer, 2012.

[5] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano.
GRoundTram: An Integrated Framework for Developing
Well-behaved Bidirectional Model Transformations. In Int’l
Conf. on Automated Software Engineering (ASE 2011),
Oread, Kansas, USA, pages 480–483. IEEE, 2011.

[6] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly Typed
Heterogeneous Collections. In Haskell ’04: ACM SIGPLAN
Workshop on Haskell, pages 96–107. ACM, 2004.

[7] H. Pacheco and A. Cunha. Generic Point-Free Lenses. In
10th Int’l Conf. on Mathematics of Program Construction
(MPC’10), LNCS 6120, pages 331–352. Springer, 2010.

[8] A. Schürr and F. Klar. 15 Years of Triple Graph
Grammars. In ICGT, pages 411–425, 2008.

[9] A. M. Sloane. Experiences with Domain-Specific Language
Embedding in Scala. In Int’l Workshop on Domain-Specific
Program Development, 2008.

[10] P. Stevens. Bidirectional Model Transformations in QVT:
Semantic Issues and Open Questions. Software and
Systems Modeling, 9(1):7–20, 2010.

70

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

