
Bidirectional Transformations in Database Evolution:
A Case Study "At Scale"

Mathieu Beine
University of Namur

Namur, Belgium
math.beine@gmail.com

Nicolas Hames
University of Namur

Namur, Belgium
nicolas.hames@gmail.com

Jens H. Weber
University of Victoria

Victoria, Canada
jens@acm.org

Anthony Cleve
University of Namur

Namur, Belgium
anthony.cleve@unamur.be

ABSTRACT
Bidirectional transformations (BX) play an important role
in database schema/application co-evolution. In earlier work,
Terwilliger introduced the theoretical concept of a Channel
as a BX-based mechanism to de-couple “virtual databases”
used by the application code from the actual representation
of the data maintained within the DBMS. In this paper, we
report on considerations and experiences implementing such
Channels in practice in the context of a complex real-world
application, and with generative tool support. We focus on
Channels implementing Pivot/Unpivot transformations. We
present di↵erent alternatives for generating such Channels
and discuss their performance characteristics at scale. We
also present a transformational tool to generate these Chan-
nels.

Keywords
Bidirectional transformations, database evolution, schema-
code co-evolution, performance

1. INTRODUCTION
Many of today’s software applications are backed by data

base management systems (DBMS), most of them using a re-
lational data model. With increasing system complexity and
changing requirements arises the need to adapt and evolve
software applications to meet new objectives. In the context
of database applications, adaptations may be performed at
the database level (i.e., schema changes, data migration) or
at the level of the software application (i.e., program code).
Changes made at either level often necessitate changes at
the other level in order for the overall system to keep func-
tioning. The synchronization of adaptation at di↵erent lev-
els is often referred to as the schema/program co-evolution
challenge.
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Figure 1: BX in DB/program co-evolution

Bidirectional transformations (BX) can be used as one
way of addressing this co-evolution challenge. BX can be
used to decouple the evolution of the database schema from
the evolution of the program code, for example, by allow-
ing changes to the database structure to be implemented
while some programs can remain unchanged. In this case,
any database access of the program code that uses the “old”
schema is transformed to an equivalent database access us-
ing the new schema structure. Terwilliger [12] introduced
the theoretical concept of a Channel to formalize this notion
of transformations that translate application code queries to
a “virtual database” structure to equivalent queries into the
actual database implementation structure, cf. Figure 1.

From an engineering perspective, implementation of Chan-
nels in practice and at scale raises a range of design deci-
sions and trade-o↵s. While previous authors have reported
on experiences with implementing Channels (also referred
to as wrappers) [3], such reports remain rare and often con-
sider only small-scale applications and simple transforma-
tions only.

This paper presents empirical results from a large-scale in-
dustrial case study of engineering Channels to support the
evolution of a complex medical information system. We fo-
cus on a couple of complex transformations, including Pivot
and Unpivot and discuss their e�cient implementation in
practice. The Pivot and Unpivot operations can be de-
scribed as rotation a table from a 1-column-per-attribute to a
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1-row-per-attribute representation and vice-versa. The rea-
son why these operations are of particular interest from a
software evolution point of view is that it is often beneficial
to transform complex, sparsely populated table structures
to a generic, more concise Entity-Attribute-Value (EAV)
model. This reduces the complexity of the database schema
as well as the programs accessing such data. The following
case study will provide an example for such a transforma-
tion.

1.1 Case Study: OSCAR EMR Software
The application case study used in our work is a real-

world medical information system called OSCAR used in
primary health care in hundreds of clinics in Canada [8].
OSCAR has evolved over more than a decade and its cur-
rent database includes more than 450 tables. The OSCAR
database consists of well-populated “core” table structures
that store information about patient demographics, aller-
gies, medications, active problems etc., as well as more spe-
cialized, “satellite” table structures that store information
for specific types of encounters and patient situations in pri-
mary care. These more specialized table structures are often
associated with elaborate electronic forms that are filled out
by the clinician on certain types of patient encounters. Due
to the broad spectrum of di↵erent conditions that patients
may have, these tables may have thousands of columns but
any given data record (the actual data in each row) may
only be populated sparsely (i.e., many null values).

The data in these large, sparsely populated tables are
more adequately represented in a 1-row-per attribute format,
also called Entit-Attribute-Value (EAV) format, in order to
save space and simplify program access. To see how the EAV
representation might simiplify program access, consider a
program that exports all encounter information, including
all forms that may exist for a given patient. Using the EAV
model, such a program will not need to query a large set
of di↵erent tables and probe the existence of values in each
column.

OSCAR’s schema includes more than 60 form tables that
can be transformed to a generic model in this way. This
situation is by no means unique to our case study systems.
Other systems and vendor products we have been working
with show a similar structure and are expected to benefit
from similar schema transformations.

1.2 Contributions and overview
This paper makes two main contributions. Firstly, we

discuss implementation decisions and trade-o↵s related to
the implementation of pivoting and unpivoting Channels at
scale in the context of a real-world, industrial application.
Secondly, we present a transformational tool for generat-
ing such Channel implementations in support of database
schema evolution.

The rest of this paper is structured as follows. The follow-
ing section provides an overview over research work related
to our topic. Section 3 defines the transformations used in
our work in more detail. Section 4 discusses implementa-
tion alternatives and trade-o↵s realizing the pivoting Chan-
nel. Section 5 presents the transformational tool we imple-
mented for generating Channel implementations. Section 6
presents quantitative results from studying the performance
of Channel implementations. Finally, Section 7 o↵ers con-
clusions and directions for current and future work.

2. RELATED WORK
Most software must continue to adapt to fit changing re-

quirements to remain useful. Database applications are no
exception. In the context of database evolution, we are
primarily interested in changes that involve the database
schema definition. Evolution of program code that does not
impact the database is out of scope for this paper and sub-
ject to a broad spectrum of research on di↵erent aspects of
software evolution and reengineering. The reader may refer
to [10] for a general overview.

Changes to the schema definition of a database application
usually (but not always) require updates to application code
(programs) that use the database as well as updates to the
actual data instances. These two kinds of updates are com-
monly referred to as application migration and data migra-
tion, respectively [9]. A common strategy for adapting appli-
cation programs to database changes is to use so-called wrap-
pers, i.e., programs that “hide” the database changes from
the application program by e↵ectively translating queries
(and updates) of the “old” database to equivalent accesses
to the “new” (changed) database [13]. Application programs
adapted in such a way can remain unchanged. Conversely,
wrappers can also be used to accommodate evolution in ap-
plication programs, while leaving the database implementa-
tion unchanged. In that case, the wrapper will transform
queries (and updates) from newly developed or evolved pro-
grams (requiring a modified database structure) to accesses
on the “old” database implementation.

In practice, large-scale database applications that have
evolved over longer periods of time often have to support
a combination of wrappers for forward as well as backward
compatibility of di↵erent versions of programs with di↵erent
versions of databases.

Of course, the question as to whether or not it is possi-
ble to create a wrapper that adapts a particular program
(version) to a particular version of a schema depends on the
nature of changes made in the schema (or the program).
Schema changes are usually formalized in terms of transfor-
mation functions and categorized as information capacity
preserving, -augmenting, -reducing. Thiran et al. [13] have
proposed a semi-automatic approach for generating wrap-
pers from composition of well-defined schema transforma-
tions. They report experiences with wrapping a small and a
medium size system, but do not consider performance char-
acteristics or more complex transformations, such as the
ones discussed in this paper.

In later work, Terwilliger extends the concept of database
wrappers to that of so-called Channels [12]. The latter not
only transforms data queries and manipulations (queries /
inserts / updates) from a “virtual” database to the real
datatabase, but also transforms schema manipulations in a
similar manner. In other words, from the point of view of an
application program, a Channel should be indistinguishable
from a “real” database. While Terwilliger discusses many of
the same transformations as Thiran et al. (e.g., table par-
titioning and merging), he also discusses Pivot and Unpivot
transformations. These two tranformations are of particular
importance for database evolution and studies of their e�-
cient implementation in auto-generated wrappers (or chan-
nels) with “at-scale” systems are scarce. We therefore con-
centrate on these transformations in this paper.

Research on BX has not been confined to the domain
of databases, but other communities such as software engi-
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neering, programming languages and graph transformations
have studied BX based on di↵erent theoretical frameworks.
Czarnecki et al. [4] provide an overview and comparison of
BX theories accross disciplines. A theoretical framework
of particular influence on the BX community has emerged
from programming language domain, namely the lens frame-
work [6]. In its most basic form, BX are considered as pairs
of functions commonly referred to as get : S ! V and
put : S ! V ! S, where the first one produces a view V on
a source data structure S and the second one updates the
source data structure S according to any changes made to V .
The special case of applying put to an empty source model
in S is also referred to as create, i.e, create(v) " put(v, #).
While our work on Channels is not formally based on the
theory of lenses, we will informally adopt the get/put/create
terminology framework [11] to describe the transformation
that creates a virtual database (get) for the purpose of legacy
program access and propagates any updates to that virtual
DB to the real database (put) (cf. Figure 1).

Research on generating bidirectional channnels (or wrap-
pers) is related to the well-known view-upate problem in
databases [1]. Bohannon et al. [2] present relational lenses
as an attempt to adapt the lens framework to address the
relational view update problem from an algebraic perspec-
tive. They propose a new programming language to formal-
ize view update policies in terms of lenses and define for-
mal laws on well-behavedness of these lenses. While related,
our work on database schema evolution has a di↵erent ob-
jective. Rather than programming BX, we are interested in
automatically generating BX Channels as a side e↵ect of ap-
plying schema redesign transformations during the process
of evolving and refactoring database applications.

3. TRANSFORMATION DEFINITION
In this section, we provide definitions for the primitive

and composite transformation used in this paper.

3.1 Pivot and Unpivot
The Pivot operator (T’=PIVOT(T,A,V)) transforms a ta-

ble T in generic key-attribute-value form into a form with
one column per attribute. Column A must participate in
the primary key of T and provide the names for the new
columns in T ! , populated with data from column V . The
resulting table is named T ! . The formal definition given for
the Pivot operator using relational algebra is presented be-
low and based on [12]. Readers who are unfamiliar with
relational algebra are referred to [7] for a primer.

!! C ;A ;V T "

(! columns ( T ) "{ A,V } T ) !" (" V # C 1! columns ( T ) " ( A ) #A = C 1T )

!"... !" (" V # Cn ! columns ( T ) "{ A } #A = Cn T )

for C 1, ..., Cn = C = #(! A (T ))

Figure 2 shows the intermediate steps of the Pivot opera-
tion for an example table T with three columns. In this case,
Period is the pivoting attribute A whose values will give rise
to columns in the resulting table and Price provides the val-
ues for these columns. Figure 2 shows that intermediate
tables are created for each arising attribute. The key for
the resulting table T ! will be all remaining columns in T (all
columns other than A and V ).

The Unpivot operator (T’=UNPIVOT(T,A,V)) is the in-

Figure 2: T’=PIVOT (T,Period,Price)

Figure 3: T’=UNPIVOT(T, Period, Price)

verse of the Pivot operator and transforms a table T from a
one-column-per-attribute form into key-attribute-value tri-
ples, e↵ectively moving column names into data values in
new column A (which is added to the key) with correspond-
ing data values placed in column V . The resulting table
is named T ! . The formal definition (given in [12]) for this
operator in relational algebra is presented below.

!# C ;A ;V T "
!

c$ C

(" C # V ! columns ( T ) " ( C "{ C } ) #C<>null (T )

$ " 1# A (name(C)))

Figure 3 shows the intermediate steps of the Unpivot op-
eration.

3.2 VPartition and VMerge
In practice, Pivot and Unpivot transformations are of-

ten used in composition with two other operators, com-
monly referred to as VPartition and VMerge in [12]. The
(T1, T2) = V P artition(T, f) operator splits a given table
into two tables T1, T2, according to a total selection func-
tion f , which associates each non-key column with one of the
two target tables (T1 or T2). Both resulting tables share the
key columns of T . The (T ! = V Merge(T1, T2)) operator is
the inverse of the V P artition operator and reconstructs a
single table using two tables sharing a common primary key.
The formal definition of VPartition and VMerge is straight
forward based on projection and joins in the relational alge-
gra, respectively, and omitted here.

3.3 Complex transformations: create/get/put
Complex transformations (and the Channels that imple-

ment them) can be composed by concatenations of primi-
tive ones, such as the ones defined above. The composite
transformation we will focus on in our case study combines
VPartition and Unpivot to transform database structures in
one-column-per-attribute format into equivalent structures
into an Entity-Attribute-Value (one-row-per-attribute) for-
mat (akin to create and put in the lens framework). The
inverse transformation composes Pivot and VMerge to re-
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Figure 4: Composite BX - create/get/put

construct the original structure (akin to get). Figure 4 illus-
trates these transformations with a graphical example.

4. CHANNEL IMPLEMENTATION
Di↵erent strategies and techniques can be applied when

implementing Channels for the above transformations. This
section describes and compares several such alternatives and
presents a novel technique referred to as the “coalescing ap-
proach”. For this discussion, we assume that the database
management system (DBMS) used does not have built-in
operators for Pivot and Unpivot transformations. Indeed,
most current DBMS still lack these operators.

In most of the examples below, we present some SQL
pseudo-code in order to help the reader to fully understand
the theory. All the examples are based on the tables from
the schema available in the Figure 4.

4.1 Implementing "Create"
In our application domain of database evolution, create is

mainly used for the data migration task, i.e., to transform
data that conform to the “old” schema to equivalent data
conforming to the newly evolved (transformed) schema. The
amount of that data may be large in real-life applications.

This step can be implemented with a DB client program
or directly within the DB server, in the form of a stored
procedure. We implemented both alternatives. As expected,
the first alternative is much less e�cient. However, it has the
benefit of being more platform independent. The algorithms
are similar for both approaches and provided below.

4.1.1 The procedural approach
The procedural approach uses nested loops. The first loop

inserts each entity in the entity table (the table containing
the columns that will not be unpivoted, e.g., the entity keys
and any columns that should remain in the original format).
For each inserted entity, the second loop will be executed in
order to insert the unpivoted attributes in the corresponding
Entity Attribute Value (EAV) table. An example using the
tables from Figure 4 is presented at Figure 5. Although it
is a small example, it is easy for the reader to project this
for such big tables as exist in real software systems.

4.1.2 The declarative approach
The declarative approach first inserts all the entities into

the entity table and then it executes one “big” insert com-
posed of unions of select to migrate all the unpivoted at-

BEGIN
DECLARE id_var ,A_var ,B_var ,C_var , D_var INTEGER ;
DECLARE cur1 CURSOR FOR SELECT * FROM form ;
OPEN cur1 ;

read_loop : LOOP
FETCH cur1 INTO id_var ,A_var ,B_var ,C_var , D_var ;
IF (no more records ){ LEAVE read_loop ;}
INSERT INTO form_ent i ty VALUES ( id_var ,A_var , B_var ) ;
...
IF ( C_var is not null or C_var != "") {
INSERT INTO form_eav VALUES ( id_var ,"C" ,C_var ) ;}
... ( for all the unpivoted attr ibutes )
END LOOP;

CLOSE cur1 ;
END

Figure 5: Procedural approach (Create)

BEGIN
INSERT INTO form_ent i ty SELECT id ,A ,B FROM form ;
INSERT INTO form_eav SELECT * from (
SELECT id ,name , value FROM ( SELECT id ,C AS value FROM

form WHERE C IS NOT NULL) ,( SELECT "C" AS name
FROM DUAL)

UNION
SELECT id ,name , value FROM ( SELECT id ,D AS value FROM

form WHERE D IS NOT NULL) ,( SELECT "D" AS name
FROM DUAL))

END

Figure 6: Declarative approach (Create)

tributes into the corresponding table. The SQL pseudocode
is given at Figure 6.

4.2 Implementing "Put"
The solution presented here is an implementation of the

update channel transformation defined by Terwilliger [12].
The update channel transformation consists of three basic
operations that are insert, update and delete. Database trig-
gers are a natural solution for invoking these operations.
Each time a“legacy”application inserts/updates/deletes the
data in the virtualized (old) DB, a dedicated trigger executes
the corresponding part of the put function. The listings at
Figures 7, 8 and 9 sketch the SQL pseudocode for the insert,
delete and update triggers in our example.

Of course, these triggered put functions may fail if some
integrity constraints become violated due to concurrent up-
dates, e.g., an insert fails if an item with the same key al-
ready exists in the target database. We do not further dis-
cuss concurrency issues in this paper, as it is assumed that
legacy programs use transactions when accessing the virtual-
ized database, and executing the Channel code is part of that

% SQL Code for Insert tr igger
CRETE TRIGGER insert_form INSTEAD OF INSERT ON

form_view
FOR EACH ROW BEGIN
INSERT INTO form_ent i ty VALUES (NEW.id ,NEW.A,NEW.B);

...
IF (NEW.C IS NOT NULL){
INSERT INTO form_eav VALUES (NEW.id ,"C" ,NEW.C) ;}
... ( for all the unpivoted attr ibutes )

END

Figure 7: Insert trigger (Put)
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% SQL Code for Delete tr igger
DROP TRIGGER IF EXISTS delete_form ;
CREATE TRIGGER delete_form INSTEAD OF DELETE ON

form_view
FOR EACH ROW
BEGIN

DELETE FROM form_eav WHERE id=OLD. id ;
DELETE FROM form_ent i ty WHERE id=OLD. id ;

END

Figure 8: Delete trigger (Put)

% SQL Code for Update tr igger
CREATE TRIGGER update_form INSTEAD OF UPDATE ON

form_view
FOR EACH ROW BEGIN
UPDATE form_ent i ty SET B=NEW.B,A=NEW.A where id=NEW.

id ;
...
IF (NEW.C not l ike OLD.C){

IF (OLD.C=="") {
INSERT INTO form_eav VALUES (NEW.ID ,"C" ,NEW.C);

} ELSEIF (new. id is null ) {
DELETE FROM form_eav WHERE name="C" AND ID=NEW. ID;
ELSE
UPDATE form_eav SET value =NEW.C WHERE name="C" AND

ID=NEW. id ;
}

}
... ( for all the unpivoted attr ibutes )
END

Figure 9: Update trigger (Put)

transaction (and potentially aborts it in case of conflicts).
Pessimistic strategies (locking) may be used to avoid such
inconsistencies at the cost of limiting concurrency. How-
ever, locks applied on the virtualized DB should be propa-
gated through the Channel to the actual DB to be e↵ective.
Terwilliger’s current model of Channels does not cover the
propagation of locks, nor does our implementation of Chan-
nel transformations [12]. We will address this limitation in
future work.

4.3 Implementing "Get"
The get function recreates the old “virtual” database for

the legacy programs to use. To implement the get func-
tion, we first followed the formal definition presented in
Section 3.1. However, we found scalability problems with
this solution. We therefore present a second implementa-
tion right after to avoid these problems.

4.3.1 The join approach
In order to allow “legacy programs” to keep working on

the virtualized “old” database, we defined a set of queries
that can be used to define views on the database. We im-
plemented DML-SQL triggers to handle the usual CRUD
operation on the new schema through the “virtual schema”.
This implementation is based on the theorical solution de-
scribed in [12].

¥ The Join approach The join approach creates for each
column that was unpivoted from the original table, an
intermediate table containing the key-attribute-value
triple for all the non-null values in the original table.
Those intermediate tables are then joined together in
order to create our “virtual schema”. A pseudocode

SELECT a. id ,a.A ,a.B ,a1 . value as C,a2 . value as D
FROM form_ent i ty a
LEFT OUTER JOIN form_eav as a1

ON a1. id=a. id
AND a1.name="C"

LEFT OUTER JOIN form_eav as a2
ON a2. id=a. id
AND a2.name="D";

Figure 10: Join approach (Get)

example is given at Figure 10.

This approach is theoretically perfect. However, at
scale, we found that DBMS run into the problem of
the maximum-joins-per-query limit. The DBMS used
in our case study application (MySQL) allows 61 joins
per query. Some DBMS have higher limits, such as
Microsoft’s SQLServer, which accepts up to 256 joins.
However, some of the tables in our case study have
thousands of columns, which would require thousands
of joins, clearly exceeding such a limit.

¥ The join approach revisited A solution to face the maxi-
mum-joins-per-query limit is to split the set of columns
to migrate into multiple subsets, execute the join ap-
proach for subsets having less than 61 columns (or
whatever the join limit of the DBMS may be) and then
joining all those subsets in the final table. This solu-
tion worked at scale but lacked in performance com-
pared to the coalescing approach we will describe be-
low.

4.3.2 The coalescing approach
We decided to design another solution to execute the Pivot

operation. We refer to this solution as the “coalescing ap-
proach”. The formal definition of the Unpivot operator for
the coalescing approach is given below:

!$ C ;A ;V (T ) = ! ( columns ( T ) "{ A,V } ) ,MAX ( C 1 ) ,...,MAX ( C n )

((
!

c$ C

(" value # name ( C ) (! value,id (#A = name ( C ) (T )))))

%(" 1# name ( C !
1 ) (null) "# ... "# " 1# name ( C !

n ) (null)))

for C1 , ..., Cn = C AND C !
1 , ..., C !

n = C & { C}

where C is the set of values on which to pivot (the set of
attributes you want to pivot), A is the Pivot column (the
column containing the values for the new column names)
and V is the pivot-value column (the column containing the
value for the attributes).

This operation can be decomposed in multiple intermedi-
ate steps that will be explained here.

For this operation, the query is executed with a group-by
clause on the id on the EAV table.

First, the query selects each row in the EAV table (re-
lation T) where the column A contains the name of a col-
umn that belongs to C (In the example given below, C =
{ (columns(T)-{ A,V} )} , i.e. all columns are pivoted.) and
transform it from a 1-row-per-attribute to a 1-column-per-
attribute representation. This will create as many rows as
they are attributes for the given id in the EAV model.
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SELECT id ,A ,B ,C,D FROM
( SELECT

MAX( IF(a.name =ÕCÕ,a.value ,null ) ) AS ÕCÕ,
MAX( IF(a.name =ÕDÕ,a.value ,null ) ) AS ÕDÕ,
id FROM form_eav a GROUP BY id) AS grp , form_ent i ty

AS i WHERE i. id=grp . id ;

Figure 11: Coalescing approach (Get)

Figure 12: The coalescing approach

Then, for each row, the query will add columns that exists
in the destination schema (all the values of C-A) and put a
“null” value into those “joined” columns. This will produce
a row having only one attribute with a non-null value per
row and null-values for all the other columns.

Finally, the query executes an aggregate function (MAX)
in order to “coaelesce” all the rows corresponding to same id
into only one row.

This approach is significantly faster than the join ap-
proaches. We only have to execute one select for each entity
and then execute only one join with the entity table, as
shown at Figure 11. Figure 12 illustrates the coalescing al-
gorithm described above. The example starts with the EAV
model and reconstructs the original table, i.e., the virtual
database. On the left (box 1), there is the EAV table and
the table containing some columns kept in a 1-column-per-
attribute representation. In the middle of the figure, box 2
presents the operation of pivoting the EAV table and joining
the result with the entity table. The result of this box is the
original table, or virtual database, presented in the box 3.

The aim of this MAX function is to coalesce all the rows
that contains only one non-null value per row for each id into
only one row per id, and so allow us to retrieve the original
table. The example of Figure 13 (subschema of Figure 12)
depicts the application of the max operator in this specific
case. Here, the max function is used to retrieve the only
“non-null” value for a specific column of a given id value.

Figure 13: The MAX function

4.4 “Type-preservation" EAV model
One issue arising with transforming relational data into an

EAV model (unpivoting) and back (pivoting) is the preser-
vation of type information. Columns in the original table
may use a large variety of di↵erent types. However, once
cast into a joint EAV model, that type information may be
lost, if it is not preserved. The implementation of type-
preservation may complicate the resulting EAV model. We
can consider di↵erent implementation alternatives summa-
rized below. The three first alternatives have been described
in [5].

1. The basic EAV schema. This schema store all the val-
ues in a single columns that usually uses a generic
TEXT data-type. The original type information is
lost.

2. The multi data-type EAV Schema. This schema use
multiple tables, one for each data-type.

3. The hybrid EAV schema. This schema use multiple
columns in the EAV table, one column for each data-
type.

4. The Variant data-type. This schema use a variant
data-type to store the di↵erent data-type. This so-
lution has performance limitations and may not be of-
fered in many DBMS systems. (It is not o↵ered in
MySQL, for example, the DBMS used by OSCAR.)

The choice we made for the Oscar case is to use a hy-
brid EAV schema with on table and multiple columns types.
Since this may result in a potentially large number of co-
lumns, our transformation implementation generates an EAV
schema to consider only those datatype that are really needed
in the original tables.

This issue of type-preservation also implied that it is im-
possible to use the PIVOT and UNPIVOT functions that
are sometimes defined in certain DBMS. As soon as we have
to manage multiple column in the input for the pivot func-
tion or in the output for the unpivot function, we have to
define our own implementation.

Another detractor of using PIVOT/UNPIVOT operators
provided by some DBMS is that they are not well-defined
and lack a unified semantics (see [14]). It is therefore not
possible to predict what will be the output in specific cases
as for example, a non-unique id for the pivot function.

5. TOOL SUPPORT
We developed a plug-in for DBMain(www.db-main.eu), an

interactive database (re)engineering tool developed by the
University of Namur and its spin-o↵ company Rever. To
date, DBMain o↵ers rich support for database schema trans-
formations, but does not generate Channels. Our plug-in
extends DBMain with the capability of evolving database
schemas based on the aforementioned transformations. DB-
Main generates the database definition of the newly evolved
schema as well as all the code for the bidirectional Channel
that allows legacy programs to run on the newly evolved
database. We have experimented with di↵erent alterna-
tives to implement the required transformations, particu-
larly Pivot and Unpivot, as these operators are not pro-
vided as built-in primitives by most database management
systems, or at least, not as we had to use it.
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Figure 14: Create performance

The DBMain plugin can be used to pivot/unpivot tables
from a DBMain schema (SQL to DBMain schema extrac-
tion also available in DBMain), one at a time or multiple at
a time. The plugin then supports the migration of the ex-
isting data into the new EAV schema, generate the channel
implementation (triggers), generate the view’s, test the data
migration, etc.

The tool support provided by the DBMain plugin is sig-
nificant for two reasons, correctness and scalability. The
first reason is related to the safety critical nature of health-
care information systems. There are strict requirements on
the correctness of transformations and the ability for back-
wards compatibility of programs that use the “old” database
structures. A tool that is capable of implementing schema
transformations based on formally defined lossless transfor-
mations as well as generating code for Channels that can
be used to automatically adapt “legacy programs” provides
welcome assurance in this domain.

Secondly, the size of the Channel code generated by our
plugin is considerable and writing this code by hand would
be tedious and error prone. We found that in the best
performing code (discussed below), each column in a trans-
formed table gives rise to approximately 34 lines of code in
the update (“put”) function of the channel. A table of 1000
columns will therefore give rise to 34KLOC of channel code
for the “put” direction alone.

6. IMPLEMENTATION COMPARISON
In order to evaluate the viability of our solution in a real

world application we decided to perform some performance
tests. We will provide here some performance measurements
of the di↵erent implementations presented above.

First, we present a comparison of the performance for the
data migration from the original model to the EAV format.
This step corresponds to the implementation of the Channel
create function. It is composed of a VPartition operation
followed by the Unpivot operation. For these performance
tests we decided to benchmark the data migration time on
three di↵erent tables. We choose three tables from OSCAR
containing 17, 117 and 425 columns. The following chart
gives an overview of the time needed to migrate 1000 records
from the original table to the EAV table.

Figure 14 shows the di↵erent performance characteristics
of the declarative implementation and the procedural meth-

Figure 15: Pivot performance

ods.
The performance gap between the two unpivoting meth-

ods can be understood by taking a look on the SQL query.
The procedural statement executes a query for each value
of each line that have to be unpivoted to insert all the field
value one by one. The DBMS query optimizer is not able to
optimize this iterative loop. In the other hand, the declara-
tive approach executes only one insert query. This query is
composed of one sub-query per attribute, but is not directly
dependent of the number of rows contained in the original
table, even if it will impact the data set size. The DBMS
query optimizer can optimize and execute this single nested
query more e�ciently.

We also took measurements on the view reconstruction
query (“get”). First, a Pivot operation is executed and then
a VMerge is applied on the result of the Pivot operation with
the table that contains the attributes kept in the “classical”
relational form. We present in the Figure 15 the time to piv-
ot/merge the table for the join approach and the coalescing
approach. For these measurements we took the same tables
as above and measured the time needed to perform a select
query on the EAV model containing 1000 entities.

Comparing the performances of the two pivoting meth-
ods, we see that the first method uses a lot of joins (costly
database operation), by creating one temporary sub-table
per pivoted attribute. The second approach (coalescing ap-
proach) performs a unique select query that retrieves a huge
result-set, then manipulates it to pivot the data. This me-
thod performs no join nor any costly operator. It only uses
a single select with some conditions and is therefore faster.

7. CONCLUSION
Database evolution raises the challenge of co-evolving all

program code that uses the database, unless we can put in
place “adapters” that allow programs to remain unchanged
and use the database in its“old format”. Bidirectional trans-
formations (BX) and Channels implementing BX can play
an important role in keeping legacy applications running
while evolving the database to a more suitable structure. In
this paper, we have reported on experiences of generating
Channels for an industrial case study “at scale”. In particu-
lar, we focus on Channels involving transformations between
traditional relational structures (one column per attribute)
and generic project data structures (one row per attribute).
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Implementation alternatives of these transformations have
not been studied at scale to date. We present performance
and salability aspects related to di↵ent implementation tech-
niques and propose a novel approach for implementing the
Pivot operator, referred to as the coalescing technique. We
developed a plug-in for DBMain that extends the database
reengineering tool with capabilities of generating Channel
implementation code. Our future work is on researching
ways in which Channel transformations can be implemented
by means of object-relational mapping descriptions. Current
object-relational middleware does not have support for com-
plex transformations, such as Pivot and Unpivot, and would
have to be extended to implement such Channels.
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