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ABSTRACT
In this paper, we summarize our work on diversification
based on dissimilarity and coverage (DisC diversity) by pre-
senting our main theoretical results and contributions.

1. DISC DIVERSITY
Diversification has attracted considerable attention, often

as a means of enhancing the quality of the query results
presented to users [3]. Most diversification approaches rely
on assigning a diversity score to each data item and then
selecting as diverse either the k items with the largest score
for a given k (e.g., [1]), or the items with score larger than
some predefined threshold (e.g., [9]).

In our work [4, 5], we address diversity through a di↵erent
perspective and aim at selecting a representative subset that
contains items that are both dissimilar with each other and
cover the whole result set.

Let P be a set of items. We define similarity between
two items using a distance metric d. For a real number r, r
� 0, we use Nr(pi) to denote the set of neighbors (or, the
neighborhood) of an item pi 2 P, i.e., the items lying at
distance at most r from pi:

Nr(pi) = {pj | pi 6= pj ^ d(pi, pj)  r}

We use N+

r (pi) to denote the set Nr(pi)[{pi}. Items in the
neighborhood of pi are considered similar to pi, while items
outside its neighborhood are considered dissimilar to pi. We
define an r-DisC diverse subset as follows:

Definition 1. (r-DisC Diverse Subset) Let P be a
set of items and r, r � 0, a real number. A subset S of P

is an r-Dissimilar-and-Covering diverse subset, or r-DisC
diverse subset, of P, if the following two conditions hold:
(i) (coverage condition) 8pi 2 P, 9 pj 2 N+

r (pi), such that
pj 2 S and (ii) (dissimilarity condition) 8 pi, pj 2 S with
pi 6= pj, it holds that d(pi, pj) > r.
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The first condition ensures that all items in P are rep-
resented by at least one similar item in S and the second
condition that the items in S are dissimilar to each other.
We call every item pi 2 S an r-DisC diverse item and r the
radius of S. Instead of specifying a required size k of the
diverse set or a threshold, our tuning parameter r explic-
itly expresses the degree of diversification and determines
the size of the diverse set. Increasing r results in a smaller,
more diverse subset, while decreasing r results in a larger,
less diverse subset.

There may be more than one dissimilar and covering di-
verse subsets for the same set of items P. Since we want a
concise representation of P, we select the smallest one:

Definition 2. (Minimum r-DisC Diverse Subset Pro-
blem) Given a set P of items and a radius r, r � 0, find an
r-DisC diverse subset S⇤ of P, such that, for every r-DisC
diverse subset S of P, it holds that |S⇤

|  |S|.

It has been shown that any r-DisC diverse subset S of P

is at most B times larger than any minimum r-DisC diverse
subset S⇤, where B is the maximum number of independent
(i.e., dissimilar to each other) neighbors of any item in P [4].
B depends on the distance metric used and on the dimen-
sionality of the data space. In many cases, B is a constant,
e.g., for the 2D Euclidean plane, B = 5.

Comparison with Other Models. Let us now compare
DisC with two widely used diversification models, namely
MaxMin and MaxSum, that aim at selecting a subset S of
P so as the minimum or the average pairwise distance of the
selected items is maximized (e.g., [7, 8, 2]). We also compare
DisC with k-medoids, a widespread clustering algorithm. In
this case, the located medoids constitute the representative
subset S. Input in all the above approaches is the size k
of the diverse subset S. Figure 1 shows the corresponding
sets attained by first locating an r-DisC diverse subset for
a given r and then using the size of the produced diverse
subset as the input k of the other approaches. Here, r =
0.15 and k = 12.

MaxSum and k-medoids fail to cover all areas of the
dataset; MaxSum focuses on the outskirts of the dataset,
whereas k-medoids reports only central items, ignoring items
that are further away. MaxMin performs better in this as-
pect. However, since MaxMin seeks to retrieve items that
are as far apart as possible, it fails to retrieve items from
dense areas. DisC avoids most of these problems.

Multiple Radii. There may be cases in which we want
di↵erent parts of the data space to be represented with more
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(a) r-DisC. (b) MaxSum. (c) MaxMin. (d) k-medoids.

Figure 1: Diverse subsets of size k = 12 produced by di↵erent diversification methods for a clustered dataset.
Selected items are shown as (red) solid circles. Circles around items of the DisC solution denote the radius
r of the selected items.

p1

p3p2 p4

p6

p7

p5

(a)

v1

v3

v2

v4

v6

v5

v7

(b)

v1

v3

v2

v4

v6

v5

v7

(c)

Figure 2: (a) A set of items associated with
di↵erent radii and their graph representation for
the (b) Covering and (c) CoveredBy problems.
A directed edge from vi to vj indicates that
d(pi, pj)  r(pi) and d(pi, pj)  r(pj) respectively.

or less items. Thus, we consider the more general case where
each item pi is associated with a di↵erent radius r(pi).

The problem now loses its symmetry, since an item pi

may be in the neighborhood of an item pj , while pj is not
in the neighborhood of pi. This gives rise to two di↵erent
interpretations of radius. One interpretation is that pi can
represent all items in its neighborhood. The other interpre-
tation is that pi can be represented by all items its neigh-
borhood. We call the first problem Covering DisC diverse
subset problem and the second one CoveredBy DisC diverse
subset problem.

Definition 3. (Covering (resp. CoveredBy) DisC
Diverse Subset) Let P be a set of items and r : P ! R+

be a function determining the radius of each item in P. A
subset S of P is a Covering (resp. CoveredBy) Dissimilar-
and-Covering diverse subset, or Covering (resp. CoveredBy)
DisC diverse subset, of P, if the following two conditions
hold: (i) (coverage condition) 8pi 2 P, 9 pj with d(pi, pj) 

r(pj) (resp. d(pi, pj)  r(pi)), such that pj 2 S and (ii) (dis-
similarity condition) 8 pi, pj 2 S with pi 6= pj, it holds that
d(pi, pj) > max{r(pi), r(pj)}.

Figure 3 presents a qualitative view of various options of
assigning radii to items. We present three di↵erent scenaria.
The first one corresponds to the case where some parts of the
dataset are considered more important than others and we
want them to be represented with more items. In Figure 3a,

items in each of the four quadrants are assigned increasing
radii as we move clockwise. The second scenario corresponds
to the case in which we want to take into account density,
so that dense areas are not under-represented in the diverse
subset. In this case, we assign smaller radii to items in
denser areas (Figure 3b). The third scenario corresponds to
the case in which we want to relate representation with rel-
evance. For example, for the CoveredBy problem, we assign
smaller radii to items wither larger relevance (Figure 3c and
Figure 3d). This ensures that each item can be covered only
by items that have a larger relevance than it.

Graph Representation and NP-hardness. Besides the
geographical interpretation of DisC diversity, there is also
a corresponding graph representation. We define next the
corresponding graph models for both the single and the mul-
tiple radii cases.

For a single radius r, let G
P,r = (V , E) be an undirected

graph such that there is a vertex vi 2 V for each item pi 2 P

and an edge (vi, vj) 2 E, if and only if, d(pi, pj)  r for
the corresponding items pi, pj . Considering multiple radii,
let G

P,r(.) = (V , E) be a directed graph such that there
is a vertex vi 2 V for each item pi 2 P and a (directed)
edge (vi, vj) 2 E, if and only if, for the corresponding items
pi, pj , it holds that d(pi, pj)  r(pi) (Covering problem)
or d(pi, pj)  r(pj) (CoveredBy problem). An example is
shown in Figure 2.

It turns out that DisC diverse subsets correspond to inde-
pendent and dominating sets of the corresponding graphs.
A dominating set D for a graph G is a subset of vertices of
G such that every vertex of G not in D is joined to at least
one vertex in D by some edge when G is undirected and
by an incoming edge when G is directed. An independent
set I for a graph G is a set of vertices of G such that for
every two vertices in I, there is no edge connecting them.
Intuitively, a dominating set of G

P,r satisfies the covering
condition of the DisC diverse subset, whereas an indepen-
dent set of G

P,r satisfies the dissimilarity condition of the
DisC diverse subset.

Lemma 1. Finding a DisC diverse subset for a set P is
equivalent to finding an independent dominating set of the
corresponding graph G.

Finding a minimum independent dominating set of a graph
has been proven to be NP-hard (e.g., [6]).

Computing DisC Diverse Subsets. Next, we present
a general algorithm for locating DisC diverse subsets (Al-
gorithm 1). For presentation convenience, let us call black
the items of P that are in the diverse subset S, grey the
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(a) Areas. (b) Density. (c) Uniform relevance. (d) Clustered relevance.

Figure 3: Using multiple radii. Selected items are shown as (red) solid circles.

Algorithm 1 Locating DisC diverse subsets.

Input: A set of items P, a radius function r(.) and a selection
criterion C(.).

Output: A DisC diverse subset S of P.

1: S  ;
2: for all pi 2 P do
3: color pi white
4: end for
5: while there exist white items do
6: select the white item pi with the largest value of C(pi)
7: S = S [ {pi}
8: color pi black
9: for all pj 2 N

W
r(p

i

)

(pi) (Covering) or pj s.t. pi 2
Nr(p

j

)

(pj) (CoveredBy) do

10: color pj grey
11: end for
12: end while
13: return S

items covered by some item in S and white the items that
are neither black nor grey. NW

r (pi) denotes the set of white
neighbors of pi. Initially, S is empty and all items are white.
Items are selected for inclusion in S in rounds based on some
selection criterion C.

For the single radius case, selecting at each round any
white item will result in a DisC diverse subset. In addition,
the greedy algorithm that selects at each round the white
item pi with the largest white neighborhood NW

r (pi) results
in DisC diverse subsets with size close to the minimum one
[4]. For the multiple radii case, to attain DisC diverse items,
we need to select white items in decreasing order of their
radius for the Covering problem and in increasing order of
their radius for the CoveredBy problem.

Zooming. We also consider a zooming operation where,
after being presented with an initial set of results for some
radius r, a user asks to see either more or less results by
correspondingly decreasing or increasing the radius. For
simplicity, we shall focus on zooming in the case of a sin-
gle radius. Formally, given a set of items P and an r-DisC
diverse subset S of P for some specific radius, we want to
compute an r0-DisC diverse subset S0 of P. There are two
cases: (i) r0 < r (zooming-in) and (ii) r0 > r (zooming-out).
Ideally, S0

◆ S, for r0 < r and S0

✓ S, for r0 > r.
To study the relationship between S and S0, for two radii

r
1

, r
2

, r
2

� r
1

, we define the set NI
r
1

,r
2

(pi), as the set of
items at distance at most r

2

from pi which are at distance
at least r

1

from each other. |NI
r
1

,r
2

(pi)| can be bounded for
specific distance metrics and dimensionality [4].

When zooming-in, we construct diverse sets that are su-
persets of S by adding items to S. It holds that:

Lemma 2. For zooming-in: (i) S ✓ S0 and (ii) |S0

| 

|S| +
P

p
i

2S |N I
r0,r(pi)|

When zooming-out, it may not be possible to construct a
DisC diverse subset S0 that is a subset of S. Thus, we pro-
ceed in two passes. In the first pass, we examine all items
of S in some order and remove their diverse neighbors that
are now covered by them. At the second pass, items from
any uncovered areas are added to S0. It holds that:

Lemma 3. For zooming-out: (i) There are at most
P

p
i

2S

|N I
r,r0(pi)| items in S\S0, (ii) For each item of S not included

in S0, at most B � 1 items are added to S0.

2. SUMMARY AND FUTUREWORK
In a nutshell, we introduced a new, intuitive definition of

diversity based on using a radius r rather than a size limit k.
We presented both a geometrical and an equivalent graph-
based interpretation of our model. We introduced incre-
mental diversification through zooming-in and zooming-out,
showed that locating DisC diverse subsets is an NP-hard
problem and provided e�cient algorithms for their compu-
tation. Directions for future work include extending our ap-
proach to the budgeted r-DisC problem, that is, computing
DisC subsets of a specific size that maximize coverage and
also studying di↵erent variations of our zooming operations.
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