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ABSTRACT 
The evolution of ontologies is an undisputed necessity in current 
research community. The problem of understanding this evolution 
is a fundamental problem as, based on this understanding, 
maintainers of depending artifacts need to take a decision about 
possible changes. Moreover, as ontologies are often developed by 
several ontology engineers, it is also important for them to 
understand what changes have been made by each other. Recent 
research focuses on just identifying and presenting the changes 
from one ontology version to another. In this paper, we argue that 
this is not enough and that we need more fine-grained methods for 
understanding how the ontology evolved. To this direction, we 
present a module, named ProvenanceTracker, which gets as input 
the list of changes between two or more RDF/S ontology versions 
and can answer fine-grained provenance queries about ontology 
resources. Our module can identify when a resource was created 
and how. The sequence of changes that led to the creation of that 
specific resource can be identified and presented to the user. We 
evaluate the time complexity of our approach and show that it can 
possibly reduce the human effort spent on understanding ontology 
evolution. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval 

General Terms 
Algorithms, Experimentation, Languages, Theory. 

Keywords 
Ontology Evolution, Provenance 

1. INTRODUCTION 
Ontologies are defined as formal, explicit specification of a shared 
conceptualization of a domain of interest [1]. However ontologies 
are not static but they are living artifacts and subject to change 
[2]. Due to the rapid development of research, ontologies are 
frequently changed to depict the new knowledge that is acquired. 
Since ontologies are usually managed independently from each 
other they can be used and extended without the explicit 
permission of the owner. In several cases, the owner of an 
ontology is completely unaware of who uses or extends his 

ontology. 

It is therefore vital to be able to support the ontology engineers 
and the maintainers of the dependent artifacts in this complex 
process of ontology evolution [3]. Several approaches so far deal 
with problems such as consistency maintenance, backward 
compatibility, ontology manipulation, change propagation, etc. 
[2]. In the field of a posteriori understanding ontology evolution 
most of the approaches use different representation languages to 
model ontology evolution [4] that they just present to the users. 
However, although the languages of changes used have become 
more concise and compact - by employing high-level change 
operators (operators that can describe complex updates, e.g. the 
insertion of an entire sub-sumption hierarchy) - still ontology 
understanding relies on just presenting to the users a huge list of 
changes between ontology versions.  
In this paper, we argue that only listing the changes between two 
versions is insufficient for the purpose of understanding ontology 
evolution. Moreover, we provide a solution to this problem by 
answering provenance queries concerning both the data and the 
schema information of an ontology. To that direction, we present 
a module, named ProvenanceTracker that gets as input two or 
more ontology versions and it is able to answer queries requesting 
fine-grained provenance information. In order to do that, a 
preprocessing step is required that automatically generates the 
“on-the-fly”  the  sequence of changes between those versions. This 
is accomplished by employing an external module, described 
extensively in [4], which gets as input subsequent ontology 
versions and produces automatically the sequence of changes 
between them.  
In our approach we define the notions of how and when 
provenance and we present the corresponding algorithms. Using 
our module a user can identify with which change operation a 
resource was introduced (how) and in which ontology version 
(when). Moreover, the list of change operations that led to the 
creation of that specific resource can be computed and presented 
to the user (extended-how) allowing further exploration. This 
knowledge can be   used   to   drive   developer’s   understanding   on  
ontology evolution for that specific resource. The simplicity of 
our approach makes it a valuable tool for ontology engineers and 
provides a unique vantage point on long and complex evolution 
histories. 
Finally, we describe our implementation and we present our 
experimental analysis using two well-known ontologies  CIDOC-
CRM [5] and Gene Ontology [6]. Experiments performed show 
the feasibility of our approach and the considerable advantages 
gained.  
The rest of the paper is organized as follows: Section 2 presents 
related work and Section 3 provides preliminaries and introduces 
the problem by an example. Then, Section 4 presents the 
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algorithms for answering provenance queries about ontology 
evolution. Section 5 describes the implemented system and our 
experimental analysis. Finally, Section 6 provides a summary and 
an outlook for further research. 

2. RELATED WORK 
Management of provenance information has been extensively 
studied in the literature, using different methods and approaches. 
Different authors define different provenance management 
techniques (e.g. Why-provenance [7], Trio-Provenance [8], 
provenance semi-rings [9]) that either try to provide annotations 
at the tuple level or to extract provenance information by 
analysing queries. Other works such as [10] try to describe the 
relationship between source and target data in a data integration 
scenario. However our approach differs in both methods and 
goals. To the best of our knowledge, there is no other approach 
that tries to answer provenance queries on ontology evolution. 

Other works that could be employed to understand ontology 
evolution focus on change detection. Those systems can be 
classified under two basic dimensions, namely the level of 
changes they support (low-level or high-level) and the underlying 
representation language assumed (Description Logic [3], RDF/S 
[4] etc.). In its simplest form, a language of changes consists of 
only two low-level operations, Add(x) and Delete(x), which 
determine individual constructs (e.g., triples) that were added or 
deleted [11, 12]. However, a significant number of recent works 
[4, 12-15] imply that high-level change operations should be 
employed instead, which describe more complex updates, as for 
instance the insertion of an entire subsumption hierarchy. A high-
level language is preferable than a low-level one [16], as it is 
more intuitive, concise, closer to the intentions of the ontology 
editors and captures more accurately the semantics of change. 
However, there is no agreed-upon list of changes that are 
necessary for any given context. In our case, we do not redefine 
such a language but we only use one of them. Moreover, our 
results are not limited to this specific language as we shall see 
later in this paper. 
A similar approach to ours, is in [3] where a change is defined and 
detected using temporal queries over a version log that contains 
recordings of the applied changes. However, the version log must 
be updated whenever a change occurs. This overrules the use of 
this approach in non-curated or distributed environments. In our 
approach, on the other hand, the changes can be produced a 
posteriori and no temporal queries are used.  
In [17] the authors provide a mechanism to document schema 
evolution of relational DBs, by presenting automatically the 
changes (called SMOs) between those versions. However, those 
changes are not detected fully automatically. Moreover, they offer 

a schema evolution history analysis tool, but this tool only 
provides coarse-grained results. 
Finally, in [18] the authors present a tool to allow several 
developers to make changes concurrently and remotely to the 
same ontology, track changes, and manage ontology versions. 
However, this tools focuses on conflict resolution and cannot 
provide answers to fine-grained provenance queries. 

3. PRELIMINARIES & MOTIVATING 
EXAMPLE 
RDF is a language for describing web resources [19]. Information 
in RDF is represented using triples of the form (subject, predicate, 
object) which record that subject is related to object via predicate. 
RDF datasets have attached semantics through RDFS schemas 
[19]. RDFS is a vocabulary description language that includes a 
set of inference rules use to generate new, implicit triples from 
explicit ones. Most of the Semantic Web Schemas (85,45%) are 
expressed in RDF/S [20] and RDF/S offers, in our case, an 
optimum trade-off between expressive power and efficient 
reasoning support. In this paper we restrict ourselves to valid 
RDF/S knowledge bases. The validity constraints [4] that we 
consider in this work concern mostly the type uniqueness, i.e., that 
each resource has a unique type, the acyclicity of the subClassOf 
and subPropertyOf relations and that the subject and object of the 
instance of some property should be correctly classified under the 
domain and range of the property, respectively. Those constraints 
are enforced in order to enable unique and non-ambiguous 
detection of the changes among the ontology versions as we shall 
later discuss. 
Now as an example, consider an ontology shown on the left of 
Figure 1 (ontology version O0). This ontology is used as a point of 
common reference, describing people and their contact points. 
Assume now that at some point in time, the ontology evolves and 
we get O1 by   adding   the   class   “Cont.Point”   describing   contact  
points   and   the   property   “has_cont_point”   between   the   class  
“Actor”  and  the  class  “Cont.Point”.  Moreover,  the  domain  of  the  
literals   “street”   and   “city”   is   changed   to   the   class   “Cont.Point”. 
Then the ontology designer decides to evolve again the ontology 
and to produce O2. So, the   domain   of   the   “has_cont_point”  
property is moved from   the   class   “Actor”   to   the   class   “Person”,  
and the property “gender” is deleted.  Moreover,   the  “street”  and  
the   “city”   properties   are   merged   to   the   “address”   property   as  
shown on the right of Figure 1. For modeling this evolution we 
use the language of changes and the corresponding detection 
algorithm as proposed in [4]. The language contains over 70 types 
of change operations and three of them are described in Figure 2. 

Figure 1. Example Ontology Evolution 
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A change operation is defined as follows:  
Definition 3.1 (Change Operation): A change operation u over an 
RDF ontology O, is any tuple (δa, δd) where δa ⋂  O =  ø  and δd ⊆  
O. A change operation u from O1 to O2 is a change operation 
over O1 such that δa ⊆ O2\O1 and δd ⊆  O1\O2. 

Obviously, δa and δd are sets of triples. For simplicity we will 
denote δa(u) the added and δd(u) the deleted triples of a change u. 
From the definition, it follows that δa(u)� δd(u)=   ø and 
δa(u)� δd(u)≠ø if O1≠O2. The application of a change u over an 
ontology version O, denoted by u(O), is defined as u(O) = 
(O� δa(u))\δd(u)). Moreover the application of a sequence of 
change operations us to an ontology, i.e. us(O), is defined as the 
sequential application of the change operation in us to O. An 
important note for those change operations is that for any two 
changes u1, u2 in such a sequence it holds that δa(u1)� δa(u2)=  ø 
and δd(u1)� δd(u2)=   ø. As a consequence the sequence of 
changes between two ontology versions is unique. The interested 
reader is forwarded to [4] for more information on the 
aforementioned language of changes. 
In our example the change log between O0 and O1, i.e. the EO0,O1, 
consists of the following change operations: 

u1:  Add_Class(Cont.Point,  ø,  ø,  ø,  ø,  ø,) 
u2:Add_Property(has_cont_point,   ø,   ø   ,ø   ,ø,   Actor,     
      Cont.Point,  ø,    ø) 
u3: Move_Property( town, Person, Cont.Point))  
u4: Move_Property( street, Person, Cont.Point))  
u5: Rename_Property(town, city) 

Moreover, the change log EO1,O2 consists of the following change 
operations: 

u6: Delete_Property(gender,   ø,   ø   ,ø   ,ø,   Person,   xsd:String, 
        ø,    ø) 
u7: Generalize_Domain(has_cont_point, Actor, Person) 
u8: Merge_Properties({street, city},address) 
u9: Rename_Property(name, fullname)  

Obviously, EO0,O2= EO0,O1�EO1,O2. In this paper we argue that 
only presenting the above sequence of changes is not enough for 
understanding how ontology evolved. Especially in real world 
scenarios, the large number of change operations makes it 
impossible for ontology developers to understand ontology 
evolution based solely on those. In our experiments for example, 
we had 4175 changes for Gene Ontology and 726 changes for 
CIDOC-CRM. 
To overcome this problem we designed and implemented the 
ProvenanceTracker module. This module augments the 
understanding of ontology evolution by answering a range of 
provenance queries, including the following ones: How was a 
resource added to the ontology?  By which change operation was 
the  “Address”  literal  added? What are the change operations that 
had some  influence  on  the  creation  of  the  “Address”  literal? When 
was the  “Address” literal added to the ontology? 

Similar terminology [21] is widely used in relational 
environments. However, to the best of our knowledge it is the first 
time that we use this terminology to capture provenance 

information on ontology evolution. Moreover, although our 
ontology and change operations can be used on instance level as 
well, in this paper we will focus only on schema level without loss 
of generality. 

4. QUERIES ON SCHEMA PROVENANCE 
As already mentioned, presenting only the list of changes between 
ontology versions in not adequate for understanding ontology 
evolution. To answer queries about how a specific resource was 
added we define the notion of an affecting change operation. 
Definition 4.1 (Affecting Change Operation). Let r be a resource 
of an ontology version Om and EOk,Om (k<m) the sequence of 
changes between Ok and Om. A change operation u�EOk,Om 
affects the  resource r, denoted by aff(r), if r�Om and r�δa(u). 
An affecting change operation captures the way a resource was 
introduced in the ontology. Assuming that we have EOk,Om already 
constructed it is quite easy to identify the affecting change 
operation by just scanning the change log once. We have to note 
that the affecting change operation if it exists is unique. This is 
due to the fact that for our languages of changes it holds the 
following: for any two changes u1, u2, δa(u1)� δa(u2)=   ø   and  
δd(u1)� δd(u2)=  ø  as  described   in  Section  2. In our example the 
query how(“Address”) when applied in EO0,O2 it will return the 
change operation u8:Merge_Properties({street, city},address). In 
the case that no affecting change operation is found, no answer 
will be returned. This means that the aforementioned resource was 
added before Ok and we have no information about it. 
Now we would like to know in which ontology version the 
“Address”   resource   was   introduced.   The   idea   is   similar   to  
answering how provenance queries. We only have to scan once 
the change log EOk,Om= EOk,Ok+1 �…� EOm-1,Om. If aff(r) �  
EOk,Om then obviously r�Om so we can conclude that r was 
introduced in Om. In our example the query when(“Address”) will 
return O2 as an answer. 
Presenting only the affecting change operations and the ontology 
version that a resource has been introduced does not necessarily 
provide insights on the corresponding ontology evolution. When 
drastic evolution occurs, those are not enough and we would like 
to get more information about which part of the ontology evolved 
to produce the specific resource. So, instead of providing just the 
affecting change operation and the ontology version, our idea is to 
present the history of the evolution of the specific parts of the 
ontology as an answer to extended-how provenance queries.  
For example, by checking the change log EO0,O2 presented on 
Section 3, we can easily identify that the operations shown in 
Figure 3,  describe  the  evolution  of  the  “address” resource.  
Presenting such a graph to the ontology engineers, their 
understanding on the ontology evolution is focused on the specific 
parts that evolved to produce the aforementioned resource. Such a 
sequence of change operations that depict the history of the 
ontology with respect to a specific resource r is called a change 
path for that resource. However, before defining the change path 

Change Generalize_Domain(a,b,c) Rename_Property(a,b) Merge_Properties(A,b) 
Intuition Change the domain of prop. a from b to superclass c Rename property a to b Merge properties contained in A into b 
δa [(a, domain, c)] [(b, type, property)] (b, type, property) 
δd [(a, domain, b)] [(a, type, property)] ∀ a �  A : (a, type, property) 
Inverse Specialize_Domain(a,c,b) Rename_Property(b,a) Split_Property(b, A) 

Figure 2. Example change operations 
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for a given resource we will define the change path for a change 
operation first. 

 
 
 
 

 
 
 
 

Figure 3. The change path for the  “Address” resource 
visualized as a tree. 

Definition 4.2 (Change path for a change operation). A change 
path for the change operation u�EOk,Om, (k<m) denoted by 
uspathu, is the minimal sequence of change operations in EOk, Om 

such that u�uspathu and that uspathu (Ok) �Om. 

A change path is minimal in the sense that one cannot remove any 
of the change operations in it and still uspathu (Ok) �Om. The 
change path presents the history of the evolution of the specific 
part of the ontology for a specific change operation. For example, 
the change path for the change u8: Merge_Properties({street, 
city},address) is uspathu8 =[u3, u4, u5, u8] as shown in Figure 3 and 
uspathu8 (O0) �O2. 

Proposition 2 (Uniqueness): The change path uspathu over EOk,Om 

is unique. 
Proof: Assume uspathu is not unique. This would mean that we can 
have two change paths uspath1u and uspath2u. Since they are both 
change paths it should hold that size(uspath1u)=size(uspath2u) since 
they both have to be minimal. Now let uspath1u = [uk1,  …,  ukn ] and 
uspath1u = [um1,  …,  umn ]. Since they are both change paths u= ukn= 
umn. For i<n, each one of the uki, umi deletes a part of the ontology 
and adds another part. Since the two change paths have the same 
minimal size and u= ukn= umn in order to be different there must 
exist two change operations uki , umj such that uki ≠ umj  and 
δd(uki)� δd(umi) ≠ ø since they should delete a common part of 
the ontology. However, this is impossible since δd(u1)� δd(u2)= 
ø for our change operations▪ 

 
Figure 4. Computing the change path for a given change 

operation. 
Now, we will present an algorithm that given a change log 
produces the change path for a change operation u. The algorithm 
is shown in Figure 4. The idea is the following: The algorithm 
starts from the input change operation and identifies the triples 
that are added to the ontology, possibly by deleting other triples. 
Then it searches for the change operations that delete that added 

information in order to add new information and so on. After the 
execution the change path for u will be stored in usꞌ. 
Theorem 1: The algorithm ComputeChangePath computes uspathu 
over EOk,Om.  

Proof: In order to prove that algorithm ComputeChangePath 
computes the change path for a given change operation u over a 
change log EOk,Om we have to prove that (a) u�  usꞌ, (b) usꞌ (O1) 
�O2 and that (c) usꞌ is minimal. 

(a) From line 1 of the algorithm indeed u�usꞌ. 
(b) Let’s   assume   that  usꞌ (Ok) is not a subset of Om. This would 
mean that there exists at least one triple, assume tꞌ  in usꞌ (Ok) such 
that it does not exist in Om. So, to reach Ok, there should be a 
change operation uꞌ such that tꞌ �δd(uꞌ) such that tꞌ�δa (usꞌ) not 
identified by our algorithm. However this is impossible from line 
3 of our algorithm. 
 (c) Now   we   prove   minimality.   Let’s   assume   that   usꞌ is not 
minimal. This would mean that there is uspath with size(uspath)< 
size(usꞌ). This would mean that there exist uꞌ �usꞌ such that uꞌ �  
uspath. Of course this would mean from lines 3 and 4 that there 
exist tꞌ such that tꞌ �  δd(uꞌ) and tꞌ �  δa(usꞌ). However, this would 
mean that tꞌ does not belong to Om, and should be deleted by 
another change operation. However for our change operations it 
holds that δd(u1)� δd(u2)=  ø  which makes the previous statement 
impossible. So usꞌ is minimal as well▪ 
The time complexity of the algorithm is O(N*M*S) where N is the 
number of change operations, M  the maximum size of triples in a 
change operation u and S the number of triples in δa(usꞌ). 
Moreover, it is easy to change Algorithm 4.1 in order to retrieve 
the change path for a given resource. This will allow the 
developers to examine the evolution of the ontology concerning a 
specific resource: 
Definition 4.3 (Change path for a resource). The change path 
uspath over EOk,Om for the resource r�Om is uspathr= � uspathui , 
r�ui. 
The algorithm is shown in Figure 5. The idea is that we would 
like to retrieve the history of the evolution of resource r. 
However, r might appear in several triples so we need to identify 
all change paths that have to do with it.   
Theorem 2: The algorithm ComputeChangePathTriple computes 
the change path for a given resource r over EOk,Om. 
 
 
 
 
 
 

 
Figure 5. Computing the change path for a given resource. 

The algorithm is immediately proved by construction. Algorithm 
4.2 needs to scan the change log one time per triple containing the 
resource r in order to identify the change operation that inserts the 
given resource. So the complexity of the algorithm becomes 
O(T*N*M*S) where T is the number of triples containing r, N is 
the number of change operations, M  the maximum size of triples 
in a change operation u and S the number of triples in δa(usꞌ). 

Algorithm 4.1: ComputeChangePath(EOk,Om, u) 
Input: A sequence EOk,Om= [u1,   …,un ] and one change 
operation u 
Output: a sequence of change operations usꞌ 
1.  usꞌ := u 
2.  For i=n to 1 
3.         if there exists t�δd(ui) such that t�δa(usꞌ) 
4.  usꞌ := usꞌ � ui 
5.  Return usꞌ 

 

Move_Property( street, Person, Cont.Point)) 
 
 

Merge_Properties({street, city},address) 

Algorithm 4.2: ComputeChangePathResource ( EO1,O2, r) 
Input: A sequence EO1,O2= [u1,…,un ] and one resource r 
Output: a sequence of change operations usꞌ 
1.  usꞌ :=  ø 
2.  For i=n to 1 
3.        If  t�δa(ui) such that r� t 
4.         usꞌ:=usꞌ�ComputeChangePath(EO1,O2, ui) 
5.  Return usꞌ 

 

Rename_Property(town, city) 

Move_Property( town, Person, Cont.Point)) 
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5. IMPLEMENTATION & EVALUATION 
The ProvenanceTracker module described in this paper is 
implemented as a module of our Exelixis plarform 
(http://139.91.183.29:8080/exelixis/). The platform uses JAVA 
for the algorithms and HTML/JQuery for the presentation layer. 
Using the Exelixis platform, a user is able to load an RDF/S 
ontology, to visualize and explore it. Furthermore, as more 
ontology versions become available, the change logs between 
them are automatically constructed and stored to the system. 
Then, a user can issue queries - denoting the ontology version that 
those queries are using- which are being forwarded to the 
underlying data integration engines to be answered. The system 
automatically identifies registered data integration systems that 
might use different ontology versions and tries to produce 
equivalent query rewritings for them. If this is not possible, the 
reasons for this are reported and approximate query rewritings are 
used. The theory behind query answering can be found in [22] 
whereas a demo of the core components was presented at [23]. 
The module for automatically generating the sequence of changes 
among two ontology versions was presented at [4] whereas [24] 
and [25] report on other modules that try to respond to massive 
number of queries that might need to be changed by producing 
possible rewritings as well. 
In order to evaluate the algorithms reported in this paper, we used 
a workstation with an Intel Core i7 processor running at 3.4 Ghz, 
and 4GB memory, using Windows 7x64. Moreover, we used two 
well-known ontologies: One medium-size ontology (CIDOC-
CRM [6]) from the cultural domain which is rarely changed and 
one large-size ontology (Gene Ontology [6]) from the 
bioinformatics domain which is heavily updated daily. 
CIDOC-CRM is an ISO standard which consists of nearly 80 
classes and 250 properties. For our experiments we used versions 
dated from 02.2002 (v3.2.1) to 06.2005 (v4.2). The detected 
change log that was automatically produced identified 726 total 
changes from v3.2.1 to v.4.2. Gene Ontology (GO) on the other 
hand, is composed of about 28000 classes and 1350 property 
instances. GO is updated on a daily basis and for our experiments 
we used the change log from 25.11.08 to 26.05.09. The change 
log that was automatically produced contained 4175 changes.  

5.1 Answering provenance queries 
Next, we present experiments concerning the scalability of the 
algorithms for answering provenance queries. We measured the 
average execution time for computing answers to how/when and 
extended-how provenance queries. To do that we exhaustively 
queried for how/when and extended-how all resources in the latest 
ontology versions and the results are presented in Figure 6 and 
Fig. 7. 
As shown in the figures, for both ontologies the average time to 
produce a change path increased linear to the number of changes 
we had to search. This is in line with the complexity of our 
algorithms as we presented previously. Moreover, the time to 
compute answers to extended-how provenance queries is greater 
than computing answers to how/when queries. This is reasonable 
since in the first case more triples are being added to the list of 
triples that we are looking for in the sequence of changes. 
However, we can see that the overhead for searching the added 
triples in the change path has little impact in the total execution 
time since the dominant factor is the number of change 
operations. So, for CIDOC-CRM after 726 change operations we 
only need 275 msec in average to compute how/when provenance 

whereas for why provenance we need 280 msec. On the other 
hand, for Gene Ontology after 4175 changes we need 4611 msec 
for how/when queries and 4967 msec for extended-how queries. 

 
Figure 6. The average execution time compared to the number 

of changes for CIDOC-CRM 

 
Fig. 7. The average execution time compared to the number of 

changes for Gene Ontology 
Obviously, the time to compute a change path is greater for the 
Gene Ontology than for CIDOC-CRM. This is reasonable since 
for the Gene Ontology we have to search 4175 changes, whereas 
for CIDOC-CRM we only have to search 726 changes.  
Moreover, we‘ve  identified  that  the  biggest  number  of  changes  in  
a change path in the case of Gene Ontology was 8 whereas for 
CIDOC-CRM it was 5. So, independent of the number of changes 
between ontology versions the interested user needs to check at 
most 8 change operations (including change operations in 
comments) to understand how the specific part of the ontology 
has been evolved. We have to note here that the average number 
of change operations that a user had to examine was 2 for 
CIDOC-CRM and 4 for GO which shows the added value of our 
approach even for ontologies that change often.  
Finally, trying to understand the provenance queries, we made 
several interesting observations. One of them for example, was the 
following: We identified that in the evolution of the CIDOC-
CRM ontology from version v3.2.1 to version v3.3.2, one 
ontology engineer renamed  the  class  “E11 Modification”  to  “E11 
Modification Event”.  A  few  years  later  another  ontology  engineer  
was employed to evolve the ontology. So in v4.2 we can see that 
the   class   “E11 Modification Event”  was   again   renamed   to   “E11 
Modification”.   If   the second ontology engineer had an indication 
of the previous renaming he would avoid cycles, he would be able 
to identify possibly the reasons behind each renaming since we 
are also able to show comments from the ontology evolution. So, 
using provenance queries to explore ontology evolution can be a 
valuable tool reducing greatly the time spent on understanding 
evolution. 

6. CONCLUSION & DISCUSSION 
In this paper, we argue that ontology evolution is a reality and that 
the problem of understanding ontology evolution is a fundamental 
problem in the area. Ontology engineers should have proper tools 
to help them understand the choices of the past. To that direction, 

 ex.-How 

 How/When 

How/When 

ex.-How 
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we presented a novel module that assists ontology evolution as the 
reality that ontology model changes. 
Instead of just identifying and presenting the changes from one 
ontology version to another, our module can answer fine-fine 
grained provenance queries for a specific resource. It can identify 
when a resource was created, how it was introduced and it can 
present the change operations that lead to the creation (or 
deletion) of that resource and its evolution history. This greatly 
minimizes the total time for understanding ontology evolution. 
Experiments performed, show the potential impact of our 
approach. For example, for CIDOC-CRM provenance answers 
can be retrieved at most within 280 msec and for GO at most 
within 5sec even if there are more than 4000 changes that have to 
be examined. Moreover, ontology engineers have to examine at 
most 5 change operations for CIDOC-CRM and 8 change 
operations for GO to understand how the ontology evolved.  
We need to note that we selected the specific language of changes 
for several reasons. One of them is because it is a high-level 
language of changes as already described in Section 2. Moreover, 
the language possesses nice properties such as uniqueness, 
composition and inversion. Uniqueness is a pre-requisite for our 
system whereas composition and inversion are desirable but not 
obligatory properties. So, instead of the specific language of 
changes other languages (and the corresponding detection 
algorithm) could be also used as long as they preserve uniqueness.  
As future work, several challenging issues need to be further 
investigated. An interesting topic would be to extend our 
approach for OWL ontologies. Another interesting topic would be 
to present summaries of the evolved change path if they become 
too big. Ontology evolution is becoming more and more 
important topic and several challenging issues remain to be 
investigated in near future. 
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