
Exploring RDF/S Evolution using Provenance Queries
Haridimos Kondylakis

kondylak@ics.forth.gr

Institute of Computer Science, FORTH

Vasilika Vouton, Heraklion
Greece

Dimitris Plexousakis

dp@ics.forth.gr

ABSTRACT
The evolution of ontologies is an undisputed necessity in current
research community. The problem of understanding this evolution
is a fundamental problem as, based on this understanding,
maintainers of depending artifacts need to take a decision about
possible changes. Moreover, as ontologies are often developed by
several ontology engineers, it is also important for them to
understand what changes have been made by each other. Recent
research focuses on just identifying and presenting the changes
from one ontology version to another. In this paper, we argue that
this is not enough and that we need more fine-grained methods for
understanding how the ontology evolved. To this direction, we
present a module, named ProvenanceTracker, which gets as input
the list of changes between two or more RDF/S ontology versions
and can answer fine-grained provenance queries about ontology
resources. Our module can identify when a resource was created
and how. The sequence of changes that led to the creation of that
specific resource can be identified and presented to the user. We
evaluate the time complexity of our approach and show that it can
possibly reduce the human effort spent on understanding ontology
evolution.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Languages, Theory.

Keywords
Ontology Evolution, Provenance

1. INTRODUCTION
Ontologies are defined as formal, explicit specification of a shared
conceptualization of a domain of interest [1]. However ontologies
are not static but they are living artifacts and subject to change
[2]. Due to the rapid development of research, ontologies are
frequently changed to depict the new knowledge that is acquired.
Since ontologies are usually managed independently from each
other they can be used and extended without the explicit
permission of the owner. In several cases, the owner of an
ontology is completely unaware of who uses or extends his

ontology.

It is therefore vital to be able to support the ontology engineers
and the maintainers of the dependent artifacts in this complex
process of ontology evolution [3]. Several approaches so far deal
with problems such as consistency maintenance, backward
compatibility, ontology manipulation, change propagation, etc.
[2]. In the field of a posteriori understanding ontology evolution
most of the approaches use different representation languages to
model ontology evolution [4] that they just present to the users.
However, although the languages of changes used have become
more concise and compact - by employing high-level change
operators (operators that can describe complex updates, e.g. the
insertion of an entire sub-sumption hierarchy) - still ontology
understanding relies on just presenting to the users a huge list of
changes between ontology versions.
In this paper, we argue that only listing the changes between two
versions is insufficient for the purpose of understanding ontology
evolution. Moreover, we provide a solution to this problem by
answering provenance queries concerning both the data and the
schema information of an ontology. To that direction, we present
a module, named ProvenanceTracker that gets as input two or
more ontology versions and it is able to answer queries requesting
fine-grained provenance information. In order to do that, a
preprocessing step is required that automatically generates the
“on-the-fly” the sequence of changes between those versions. This
is accomplished by employing an external module, described
extensively in [4], which gets as input subsequent ontology
versions and produces automatically the sequence of changes
between them.
In our approach we define the notions of how and when
provenance and we present the corresponding algorithms. Using
our module a user can identify with which change operation a
resource was introduced (how) and in which ontology version
(when). Moreover, the list of change operations that led to the
creation of that specific resource can be computed and presented
to the user (extended-how) allowing further exploration. This
knowledge can be used to drive developer’s understanding on
ontology evolution for that specific resource. The simplicity of
our approach makes it a valuable tool for ontology engineers and
provides a unique vantage point on long and complex evolution
histories.
Finally, we describe our implementation and we present our
experimental analysis using two well-known ontologies CIDOC-
CRM [5] and Gene Ontology [6]. Experiments performed show
the feasibility of our approach and the considerable advantages
gained.
The rest of the paper is organized as follows: Section 2 presents
related work and Section 3 provides preliminaries and introduces
the problem by an example. Then, Section 4 presents the

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,
2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

176

algorithms for answering provenance queries about ontology
evolution. Section 5 describes the implemented system and our
experimental analysis. Finally, Section 6 provides a summary and
an outlook for further research.

2. RELATED WORK
Management of provenance information has been extensively
studied in the literature, using different methods and approaches.
Different authors define different provenance management
techniques (e.g. Why-provenance [7], Trio-Provenance [8],
provenance semi-rings [9]) that either try to provide annotations
at the tuple level or to extract provenance information by
analysing queries. Other works such as [10] try to describe the
relationship between source and target data in a data integration
scenario. However our approach differs in both methods and
goals. To the best of our knowledge, there is no other approach
that tries to answer provenance queries on ontology evolution.

Other works that could be employed to understand ontology
evolution focus on change detection. Those systems can be
classified under two basic dimensions, namely the level of
changes they support (low-level or high-level) and the underlying
representation language assumed (Description Logic [3], RDF/S
[4] etc.). In its simplest form, a language of changes consists of
only two low-level operations, Add(x) and Delete(x), which
determine individual constructs (e.g., triples) that were added or
deleted [11, 12]. However, a significant number of recent works
[4, 12-15] imply that high-level change operations should be
employed instead, which describe more complex updates, as for
instance the insertion of an entire subsumption hierarchy. A high-
level language is preferable than a low-level one [16], as it is
more intuitive, concise, closer to the intentions of the ontology
editors and captures more accurately the semantics of change.
However, there is no agreed-upon list of changes that are
necessary for any given context. In our case, we do not redefine
such a language but we only use one of them. Moreover, our
results are not limited to this specific language as we shall see
later in this paper.
A similar approach to ours, is in [3] where a change is defined and
detected using temporal queries over a version log that contains
recordings of the applied changes. However, the version log must
be updated whenever a change occurs. This overrules the use of
this approach in non-curated or distributed environments. In our
approach, on the other hand, the changes can be produced a
posteriori and no temporal queries are used.
In [17] the authors provide a mechanism to document schema
evolution of relational DBs, by presenting automatically the
changes (called SMOs) between those versions. However, those
changes are not detected fully automatically. Moreover, they offer

a schema evolution history analysis tool, but this tool only
provides coarse-grained results.
Finally, in [18] the authors present a tool to allow several
developers to make changes concurrently and remotely to the
same ontology, track changes, and manage ontology versions.
However, this tools focuses on conflict resolution and cannot
provide answers to fine-grained provenance queries.

3. PRELIMINARIES & MOTIVATING
EXAMPLE
RDF is a language for describing web resources [19]. Information
in RDF is represented using triples of the form (subject, predicate,
object) which record that subject is related to object via predicate.
RDF datasets have attached semantics through RDFS schemas
[19]. RDFS is a vocabulary description language that includes a
set of inference rules use to generate new, implicit triples from
explicit ones. Most of the Semantic Web Schemas (85,45%) are
expressed in RDF/S [20] and RDF/S offers, in our case, an
optimum trade-off between expressive power and efficient
reasoning support. In this paper we restrict ourselves to valid
RDF/S knowledge bases. The validity constraints [4] that we
consider in this work concern mostly the type uniqueness, i.e., that
each resource has a unique type, the acyclicity of the subClassOf
and subPropertyOf relations and that the subject and object of the
instance of some property should be correctly classified under the
domain and range of the property, respectively. Those constraints
are enforced in order to enable unique and non-ambiguous
detection of the changes among the ontology versions as we shall
later discuss.
Now as an example, consider an ontology shown on the left of
Figure 1 (ontology version O0). This ontology is used as a point of
common reference, describing people and their contact points.
Assume now that at some point in time, the ontology evolves and
we get O1 by adding the class “Cont.Point” describing contact
points and the property “has_cont_point” between the class
“Actor” and the class “Cont.Point”. Moreover, the domain of the
literals “street” and “city” is changed to the class “Cont.Point”.
Then the ontology designer decides to evolve again the ontology
and to produce O2. So, the domain of the “has_cont_point”
property is moved from the class “Actor” to the class “Person”,
and the property “gender” is deleted. Moreover, the “street” and
the “city” properties are merged to the “address” property as
shown on the right of Figure 1. For modeling this evolution we
use the language of changes and the corresponding detection
algorithm as proposed in [4]. The language contains over 70 types
of change operations and three of them are described in Figure 2.

Figure 1. Example Ontology Evolution

177

A change operation is defined as follows:
Definition 3.1 (Change Operation): A change operation u over an
RDF ontology O, is any tuple (δa, δd) where δa ⋂ O = ø and δd ⊆
O. A change operation u from O1 to O2 is a change operation
over O1 such that δa ⊆ O2\O1 and δd ⊆ O1\O2.

Obviously, δa and δd are sets of triples. For simplicity we will
denote δa(u) the added and δd(u) the deleted triples of a change u.
From the definition, it follows that δa(u)� δd(u)= ø and
δa(u)� δd(u)≠ø if O1≠O2. The application of a change u over an
ontology version O, denoted by u(O), is defined as u(O) =
(O� δa(u))\δd(u)). Moreover the application of a sequence of
change operations us to an ontology, i.e. us(O), is defined as the
sequential application of the change operation in us to O. An
important note for those change operations is that for any two
changes u1, u2 in such a sequence it holds that δa(u1)� δa(u2)= ø
and δd(u1)� δd(u2)= ø. As a consequence the sequence of
changes between two ontology versions is unique. The interested
reader is forwarded to [4] for more information on the
aforementioned language of changes.
In our example the change log between O0 and O1, i.e. the EO0,O1,
consists of the following change operations:

u1: Add_Class(Cont.Point, ø, ø, ø, ø, ø,)
u2:Add_Property(has_cont_point, ø, ø ,ø ,ø, Actor,
 Cont.Point, ø, ø)
u3: Move_Property(town, Person, Cont.Point))
u4: Move_Property(street, Person, Cont.Point))
u5: Rename_Property(town, city)

Moreover, the change log EO1,O2 consists of the following change
operations:

u6: Delete_Property(gender, ø, ø ,ø ,ø, Person, xsd:String,
 ø, ø)
u7: Generalize_Domain(has_cont_point, Actor, Person)
u8: Merge_Properties({street, city},address)
u9: Rename_Property(name, fullname)

Obviously, EO0,O2= EO0,O1�EO1,O2. In this paper we argue that
only presenting the above sequence of changes is not enough for
understanding how ontology evolved. Especially in real world
scenarios, the large number of change operations makes it
impossible for ontology developers to understand ontology
evolution based solely on those. In our experiments for example,
we had 4175 changes for Gene Ontology and 726 changes for
CIDOC-CRM.
To overcome this problem we designed and implemented the
ProvenanceTracker module. This module augments the
understanding of ontology evolution by answering a range of
provenance queries, including the following ones: How was a
resource added to the ontology? By which change operation was
the “Address” literal added? What are the change operations that
had some influence on the creation of the “Address” literal? When
was the “Address” literal added to the ontology?

Similar terminology [21] is widely used in relational
environments. However, to the best of our knowledge it is the first
time that we use this terminology to capture provenance

information on ontology evolution. Moreover, although our
ontology and change operations can be used on instance level as
well, in this paper we will focus only on schema level without loss
of generality.

4. QUERIES ON SCHEMA PROVENANCE
As already mentioned, presenting only the list of changes between
ontology versions in not adequate for understanding ontology
evolution. To answer queries about how a specific resource was
added we define the notion of an affecting change operation.
Definition 4.1 (Affecting Change Operation). Let r be a resource
of an ontology version Om and EOk,Om (k<m) the sequence of
changes between Ok and Om. A change operation u�EOk,Om
affects the resource r, denoted by aff(r), if r�Om and r�δa(u).
An affecting change operation captures the way a resource was
introduced in the ontology. Assuming that we have EOk,Om already
constructed it is quite easy to identify the affecting change
operation by just scanning the change log once. We have to note
that the affecting change operation if it exists is unique. This is
due to the fact that for our languages of changes it holds the
following: for any two changes u1, u2, δa(u1)� δa(u2)= ø and
δd(u1)� δd(u2)= ø as described in Section 2. In our example the
query how(“Address”) when applied in EO0,O2 it will return the
change operation u8:Merge_Properties({street, city},address). In
the case that no affecting change operation is found, no answer
will be returned. This means that the aforementioned resource was
added before Ok and we have no information about it.
Now we would like to know in which ontology version the
“Address” resource was introduced. The idea is similar to
answering how provenance queries. We only have to scan once
the change log EOk,Om= EOk,Ok+1 �…� EOm-1,Om. If aff(r) �
EOk,Om then obviously r�Om so we can conclude that r was
introduced in Om. In our example the query when(“Address”) will
return O2 as an answer.
Presenting only the affecting change operations and the ontology
version that a resource has been introduced does not necessarily
provide insights on the corresponding ontology evolution. When
drastic evolution occurs, those are not enough and we would like
to get more information about which part of the ontology evolved
to produce the specific resource. So, instead of providing just the
affecting change operation and the ontology version, our idea is to
present the history of the evolution of the specific parts of the
ontology as an answer to extended-how provenance queries.
For example, by checking the change log EO0,O2 presented on
Section 3, we can easily identify that the operations shown in
Figure 3, describe the evolution of the “address” resource.
Presenting such a graph to the ontology engineers, their
understanding on the ontology evolution is focused on the specific
parts that evolved to produce the aforementioned resource. Such a
sequence of change operations that depict the history of the
ontology with respect to a specific resource r is called a change
path for that resource. However, before defining the change path

Change Generalize_Domain(a,b,c) Rename_Property(a,b) Merge_Properties(A,b)
Intuition Change the domain of prop. a from b to superclass c Rename property a to b Merge properties contained in A into b
δa [(a, domain, c)] [(b, type, property)] (b, type, property)
δd [(a, domain, b)] [(a, type, property)] ∀ a � A : (a, type, property)
Inverse Specialize_Domain(a,c,b) Rename_Property(b,a) Split_Property(b, A)

Figure 2. Example change operations

178

for a given resource we will define the change path for a change
operation first.

Figure 3. The change path for the “Address” resource
visualized as a tree.

Definition 4.2 (Change path for a change operation). A change
path for the change operation u�EOk,Om, (k<m) denoted by
uspathu, is the minimal sequence of change operations in EOk, Om

such that u�uspathu and that uspathu (Ok) �Om.

A change path is minimal in the sense that one cannot remove any
of the change operations in it and still uspathu (Ok) �Om. The
change path presents the history of the evolution of the specific
part of the ontology for a specific change operation. For example,
the change path for the change u8: Merge_Properties({street,
city},address) is uspathu8 =[u3, u4, u5, u8] as shown in Figure 3 and
uspathu8 (O0) �O2.

Proposition 2 (Uniqueness): The change path uspathu over EOk,Om

is unique.
Proof: Assume uspathu is not unique. This would mean that we can
have two change paths uspath1u and uspath2u. Since they are both
change paths it should hold that size(uspath1u)=size(uspath2u) since
they both have to be minimal. Now let uspath1u = [uk1, …, ukn] and
uspath1u = [um1, …, umn]. Since they are both change paths u= ukn=
umn. For i<n, each one of the uki, umi deletes a part of the ontology
and adds another part. Since the two change paths have the same
minimal size and u= ukn= umn in order to be different there must
exist two change operations uki , umj such that uki ≠ umj and
δd(uki)� δd(umi) ≠ ø since they should delete a common part of
the ontology. However, this is impossible since δd(u1)� δd(u2)=
ø for our change operations▪

Figure 4. Computing the change path for a given change

operation.
Now, we will present an algorithm that given a change log
produces the change path for a change operation u. The algorithm
is shown in Figure 4. The idea is the following: The algorithm
starts from the input change operation and identifies the triples
that are added to the ontology, possibly by deleting other triples.
Then it searches for the change operations that delete that added

information in order to add new information and so on. After the
execution the change path for u will be stored in usꞌ.
Theorem 1: The algorithm ComputeChangePath computes uspathu
over EOk,Om.

Proof: In order to prove that algorithm ComputeChangePath
computes the change path for a given change operation u over a
change log EOk,Om we have to prove that (a) u� usꞌ, (b) usꞌ (O1)
�O2 and that (c) usꞌ is minimal.

(a) From line 1 of the algorithm indeed u�usꞌ.
(b) Let’s assume that usꞌ (Ok) is not a subset of Om. This would
mean that there exists at least one triple, assume tꞌ in usꞌ (Ok) such
that it does not exist in Om. So, to reach Ok, there should be a
change operation uꞌ such that tꞌ �δd(uꞌ) such that tꞌ�δa (usꞌ) not
identified by our algorithm. However this is impossible from line
3 of our algorithm.
 (c) Now we prove minimality. Let’s assume that usꞌ is not
minimal. This would mean that there is uspath with size(uspath)<
size(usꞌ). This would mean that there exist uꞌ �usꞌ such that uꞌ �
uspath. Of course this would mean from lines 3 and 4 that there
exist tꞌ such that tꞌ � δd(uꞌ) and tꞌ � δa(usꞌ). However, this would
mean that tꞌ does not belong to Om, and should be deleted by
another change operation. However for our change operations it
holds that δd(u1)� δd(u2)= ø which makes the previous statement
impossible. So usꞌ is minimal as well▪
The time complexity of the algorithm is O(N*M*S) where N is the
number of change operations, M the maximum size of triples in a
change operation u and S the number of triples in δa(usꞌ).
Moreover, it is easy to change Algorithm 4.1 in order to retrieve
the change path for a given resource. This will allow the
developers to examine the evolution of the ontology concerning a
specific resource:
Definition 4.3 (Change path for a resource). The change path
uspath over EOk,Om for the resource r�Om is uspathr= � uspathui ,
r�ui.
The algorithm is shown in Figure 5. The idea is that we would
like to retrieve the history of the evolution of resource r.
However, r might appear in several triples so we need to identify
all change paths that have to do with it.
Theorem 2: The algorithm ComputeChangePathTriple computes
the change path for a given resource r over EOk,Om.

Figure 5. Computing the change path for a given resource.

The algorithm is immediately proved by construction. Algorithm
4.2 needs to scan the change log one time per triple containing the
resource r in order to identify the change operation that inserts the
given resource. So the complexity of the algorithm becomes
O(T*N*M*S) where T is the number of triples containing r, N is
the number of change operations, M the maximum size of triples
in a change operation u and S the number of triples in δa(usꞌ).

Algorithm 4.1: ComputeChangePath(EOk,Om, u)
Input: A sequence EOk,Om= [u1, …,un] and one change
operation u
Output: a sequence of change operations usꞌ
1. usꞌ := u
2. For i=n to 1
3. if there exists t�δd(ui) such that t�δa(usꞌ)
4. usꞌ := usꞌ � ui
5. Return usꞌ

Move_Property(street, Person, Cont.Point))

Merge_Properties({street, city},address)

Algorithm 4.2: ComputeChangePathResource (EO1,O2, r)
Input: A sequence EO1,O2= [u1,…,un] and one resource r
Output: a sequence of change operations usꞌ
1. usꞌ := ø
2. For i=n to 1
3. If t�δa(ui) such that r� t
4. usꞌ:=usꞌ�ComputeChangePath(EO1,O2, ui)
5. Return usꞌ

Rename_Property(town, city)

Move_Property(town, Person, Cont.Point))

179

5. IMPLEMENTATION & EVALUATION
The ProvenanceTracker module described in this paper is
implemented as a module of our Exelixis plarform
(http://139.91.183.29:8080/exelixis/). The platform uses JAVA
for the algorithms and HTML/JQuery for the presentation layer.
Using the Exelixis platform, a user is able to load an RDF/S
ontology, to visualize and explore it. Furthermore, as more
ontology versions become available, the change logs between
them are automatically constructed and stored to the system.
Then, a user can issue queries - denoting the ontology version that
those queries are using- which are being forwarded to the
underlying data integration engines to be answered. The system
automatically identifies registered data integration systems that
might use different ontology versions and tries to produce
equivalent query rewritings for them. If this is not possible, the
reasons for this are reported and approximate query rewritings are
used. The theory behind query answering can be found in [22]
whereas a demo of the core components was presented at [23].
The module for automatically generating the sequence of changes
among two ontology versions was presented at [4] whereas [24]
and [25] report on other modules that try to respond to massive
number of queries that might need to be changed by producing
possible rewritings as well.
In order to evaluate the algorithms reported in this paper, we used
a workstation with an Intel Core i7 processor running at 3.4 Ghz,
and 4GB memory, using Windows 7x64. Moreover, we used two
well-known ontologies: One medium-size ontology (CIDOC-
CRM [6]) from the cultural domain which is rarely changed and
one large-size ontology (Gene Ontology [6]) from the
bioinformatics domain which is heavily updated daily.
CIDOC-CRM is an ISO standard which consists of nearly 80
classes and 250 properties. For our experiments we used versions
dated from 02.2002 (v3.2.1) to 06.2005 (v4.2). The detected
change log that was automatically produced identified 726 total
changes from v3.2.1 to v.4.2. Gene Ontology (GO) on the other
hand, is composed of about 28000 classes and 1350 property
instances. GO is updated on a daily basis and for our experiments
we used the change log from 25.11.08 to 26.05.09. The change
log that was automatically produced contained 4175 changes.

5.1 Answering provenance queries
Next, we present experiments concerning the scalability of the
algorithms for answering provenance queries. We measured the
average execution time for computing answers to how/when and
extended-how provenance queries. To do that we exhaustively
queried for how/when and extended-how all resources in the latest
ontology versions and the results are presented in Figure 6 and
Fig. 7.
As shown in the figures, for both ontologies the average time to
produce a change path increased linear to the number of changes
we had to search. This is in line with the complexity of our
algorithms as we presented previously. Moreover, the time to
compute answers to extended-how provenance queries is greater
than computing answers to how/when queries. This is reasonable
since in the first case more triples are being added to the list of
triples that we are looking for in the sequence of changes.
However, we can see that the overhead for searching the added
triples in the change path has little impact in the total execution
time since the dominant factor is the number of change
operations. So, for CIDOC-CRM after 726 change operations we
only need 275 msec in average to compute how/when provenance

whereas for why provenance we need 280 msec. On the other
hand, for Gene Ontology after 4175 changes we need 4611 msec
for how/when queries and 4967 msec for extended-how queries.

Figure 6. The average execution time compared to the number

of changes for CIDOC-CRM

Fig. 7. The average execution time compared to the number of

changes for Gene Ontology
Obviously, the time to compute a change path is greater for the
Gene Ontology than for CIDOC-CRM. This is reasonable since
for the Gene Ontology we have to search 4175 changes, whereas
for CIDOC-CRM we only have to search 726 changes.
Moreover, we‘ve identified that the biggest number of changes in
a change path in the case of Gene Ontology was 8 whereas for
CIDOC-CRM it was 5. So, independent of the number of changes
between ontology versions the interested user needs to check at
most 8 change operations (including change operations in
comments) to understand how the specific part of the ontology
has been evolved. We have to note here that the average number
of change operations that a user had to examine was 2 for
CIDOC-CRM and 4 for GO which shows the added value of our
approach even for ontologies that change often.
Finally, trying to understand the provenance queries, we made
several interesting observations. One of them for example, was the
following: We identified that in the evolution of the CIDOC-
CRM ontology from version v3.2.1 to version v3.3.2, one
ontology engineer renamed the class “E11 Modification” to “E11
Modification Event”. A few years later another ontology engineer
was employed to evolve the ontology. So in v4.2 we can see that
the class “E11 Modification Event” was again renamed to “E11
Modification”. If the second ontology engineer had an indication
of the previous renaming he would avoid cycles, he would be able
to identify possibly the reasons behind each renaming since we
are also able to show comments from the ontology evolution. So,
using provenance queries to explore ontology evolution can be a
valuable tool reducing greatly the time spent on understanding
evolution.

6. CONCLUSION & DISCUSSION
In this paper, we argue that ontology evolution is a reality and that
the problem of understanding ontology evolution is a fundamental
problem in the area. Ontology engineers should have proper tools
to help them understand the choices of the past. To that direction,

 ex.-How

 How/When

How/When

ex.-How

180

we presented a novel module that assists ontology evolution as the
reality that ontology model changes.
Instead of just identifying and presenting the changes from one
ontology version to another, our module can answer fine-fine
grained provenance queries for a specific resource. It can identify
when a resource was created, how it was introduced and it can
present the change operations that lead to the creation (or
deletion) of that resource and its evolution history. This greatly
minimizes the total time for understanding ontology evolution.
Experiments performed, show the potential impact of our
approach. For example, for CIDOC-CRM provenance answers
can be retrieved at most within 280 msec and for GO at most
within 5sec even if there are more than 4000 changes that have to
be examined. Moreover, ontology engineers have to examine at
most 5 change operations for CIDOC-CRM and 8 change
operations for GO to understand how the ontology evolved.
We need to note that we selected the specific language of changes
for several reasons. One of them is because it is a high-level
language of changes as already described in Section 2. Moreover,
the language possesses nice properties such as uniqueness,
composition and inversion. Uniqueness is a pre-requisite for our
system whereas composition and inversion are desirable but not
obligatory properties. So, instead of the specific language of
changes other languages (and the corresponding detection
algorithm) could be also used as long as they preserve uniqueness.
As future work, several challenging issues need to be further
investigated. An interesting topic would be to extend our
approach for OWL ontologies. Another interesting topic would be
to present summaries of the evolved change path if they become
too big. Ontology evolution is becoming more and more
important topic and several challenging issues remain to be
investigated in near future.

7. ACKNOWLEDGMENTS
This work was partially supported by the PlanetData NoE
(FP7:ICT-2009.3.4, #257641), the eHealthMonitor (FP7-287509)
and the MyHealthAvatar (FP7-600929) EU projects.

8. REFERENCES
[1] Gruber, T.R. 1993. A translation approach to portable

ontology specifications. Knowl. Acquis. 5, pp. 199-220.
[2] Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis,

D., Antoniou, G.: Ontology change, 2008. Classification and
survey. Knowl. Eng. Rev. 23, pp. 117-152.

[3] Plessers, P., Troyer, O.D., Casteleyn, S. 2007. Understanding
ontology evolution: A change detection approach. Web
Semantics: Science, Services and Agents on the World Wide
Web, 5, pp. 39-49.

[4] Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D.,
Christophides, V. 2013. High-Level Change Detection in
RDF(S) KBs. Transactions on Database Systems, 38.

[5] Doerr, M., Ore, C.-E., Stead, S. 2007. The CIDOC
conceptual reference model: a new standard for knowledge
sharing. Tutorials, posters, panels and industrial
contributions at the ER, vol. 83, pp. 51-56.

[6] Gene Ontology Consortium, 2004. The Gene Ontology (GO)
database and informatics resource. Nucl. Acids Res. 32,
D258-261.

[7] Buneman, P., Khanna, S., Tan, W.C. 2001. Why and Where:
A Characterization of Data Provenance, ICDT, pp. 316-330.

[8] Benjelloun, O., Sarma, A.D., Halevy, A., Theobald, M.,
Widom, J. 2008. Databases with uncertainty and lineage. The
VLDB Journal, 17, pp. 243-264.

[9] Green, T.J., Karvounarakis, G., Tannen, V. 2007.
Provenance semirings. ACM SIGMOD-SIGACT-SIGART
PODS. pp. 31 - 40 ACM, Beijing, China

[10] Chiticariu, L., Tan, W.-C. 2006. Debugging schema
mappings with routes. VLDB , pp. 79-90.

[11] Volkel, M., Winkler, W., Sure, Y., Kruk, S.R., Synak, M.
2005. Semversion: A versioning system for rdf and
ontologies. ESWC.

[12] Zeginis, D., Tzitzikas, Y., Christophides, V. 2007. On the
Foundations of Computing Deltas Between RDF Models.
ISWC/ASWC, pp. 637-651.

[13] Noy, N.F., Chugh, A., Liu, W., Musen, M.A. 2006. A
Framework for Ontology Evolution in Collaborative
Environments ISWC, pp. 544-558.

[14] Plessers, P., Troyer, O.D. 2005. Ontology Change Detection
Using a Version Log. ISWC, pp. 578-592.

[15] Rogozan, D., Paquette, G. 2005. Managing Ontology
Changes on the Semantic Web. IEEE/WIC/ACM
International Conference on Web Intelligence, pp. 430-433.

[16] Stojanovic, L. 2004. Methods and Tools for Ontology
Evolution. Phd. Univ. of Karlsruhe.

[17] Curino, C., Moon, H., Deutsch, A. and Zaniolo, C. 2013.
Automating the database schema evolution process. The
VLDB Journal, 22, 1, pp. 73-98.

[18] Jim, E., Ruiz, N., Grau, B. C., Horrocks, I. and Berlanga, R.
2011. Supporting concurrent ontology development:
Framework, algorithms and tool. Data Knowl. Eng., 70, 1,
pp. 146-164.

[19] RDF Primer, W3C Recommendation:
http://www.w3.org/TR/rdf-primer/

[20] Theoharis, Y., 2007. On Graph Features of Semantic Web
Schemas. IEEE Transactions on Knowledge and Data
Engineering, 20, pp. 692-702.

[21] Cali, A., Gottlob, G., Lukasiewicz, T. 2009. Datalog+-: a
unified approach to ontologies and integrity constraints.
ICDT, pp. 14-30. ACM, St. Petersburg, Russia.

[22] Kondylakis, H., Plexousakis, D. 2013. Ontology evolution
without tears. Journal of Web Semantics: Science, Services
and Agents on the World Wide Web, 19, pp. 42-58.

[23] Kondylakis, H., Plexousakis, D. 2011. Exelixis: Evolving
Ontology-Based Data Integration System. SIGMOD, pp.
1283-1286.

[24] Kondylakis, H., Plexousakis, D. 2011. Ontology Evolution in
Data Integration: Query Rewriting to the Rescue. ER, pp.
393-401.

[25] Kondylakis, H., Plexousakis, D. 2012. Ontology Evolution:
Assisting Query Migration. ER, vol. 7532, pp. 331-344

181

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

