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ABSTRACT
An ideal way for people to query graph-based knowledge, in-
cluding triplestores in the semantic web, would be for them
to ask questions in a natural language (NL). However, ex-
isting NL query interfaces to graph-based data have lim-
ited expressive power and cannot accommodate arbitrarily-
nested quantification (i.e. phrases such as “a gangster who
joined every gang”) together with multiple complex prepo-
sitional phrases, such as “in a city located in Illinois in 1918
using a set of keys that was stolen from a gangster”. It
would appear that the commonly-used “entity-based” triple-
stores, together with what has become the de-facto approach
of converting NL queries to SPARQL queries before being
evaluated, hinders the development of expressive NL query
processors. The reason is that entity-based triples are not
conducive to the development of semantic theories of com-
plex prepositional phrases, and the development of such the-
ories is made considerably more complex when translation
to SPARQL has to be taken into account. An alternative ap-
proach, which uses “event-based” triplestores, treats (brack-
eted) English queries as expressions of the lambda calculus
which can be evaluated directly with respect to the triple-
store. This approach facilitates the development of a formal
denotational semantics of English queries which easily ac-
commodates complex prepositional phrases. The approach
described here could be used to develop a denotational se-
mantics for a highly-expressive NL query language, and then
that semantics could be used to guide the design of an NL
query to SPARQL translator, thereby taking advantage of
SPARQL optimizations.

Categories and Subject Descriptors
H.2.4 [database management]: Query processing; H.5.2
[user interfaces]: Natural language

General Terms
Theory
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1. INTRODUCTION
The fact that Al Capone joined the Five Points Gang can

be represented by the following triple:

(.../capone, .../joined, .../fpg)

where .../ are Uniform Resource Identifiers (URIs) for name-
spaces, and .../capone is a URI for a person. However, there
is a problem with this approach. It is di�cult to add related
data such as the fact that Capone joined the FPG gang in
1914. It is insu�cient to simply add the triple:

(.../capone,.../year_joined_gang, .../1914)

as this does not provide the necessary link between the two
facts (the link is necessary because Capone joined several
gangs). Various approaches are available to overcome this
problem, only one of which concerns us in this paper. The
aproach in which we are interested is one which uses events
rather than entities as subjects in the triples. For example,
the fact that Al Capone joined the Five Points Gang can be
represented as follows (note that from now on, we use ENT
”capone” in place of “.../capone” etc.

{(EV 1001, REL "type", TYPE "join_ev"),
(EV 1001, REL "subject", ENT "capone"),
(EV 1001, REL "object", ENT "fpg")}

We can add the fact that Capone joined the Five Points
Gang in 1914, with:

(EV 1001, REL "year", ENTNUM 1914)

A particular advantage of this approach is that the use
of events facilitates the creation of a powerful denotational
semantics for NL queries to graph-based data. In partic-
ular, use of events enables us to create an NL semantics
with the following six properties: 1) the semantics is deno-
tational in the sense that English words and phrases have
a well-defined mathematical denotation (meaning), 2) the
meaning of a composite phrase can be created by applying
simple operations to the meanings of its components, 3) it
is referentially transparent in the sense that the meaning
of a word or phrase (after syntactic disambiguation) is the
same no matter in what context it appears. 4) there is a
one-to-one correspondence between the semantic rules de-
scribing how the meaning of a phrase is computed from its
components and the syntactic rules describing the structure
of the phrase, 5) it is computationally tractable, and 6) the
meanings of words are defined directly in terms of primitive
triple-store retrieval operations.
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These six properties enable NL triple-store query proces-
sors to be implemented as highly modular syntax-directed
interpreters. The advantage of this is that processors for
individual language constructs can be built and tested sep-
arately. Consequently, the query processors can easily be
extended to accomodate new language constructs such as
prepositional phrases.

The semantics that we have developed is complex and
is the result of two revisions that we have made to a well-
known formal semantics of English, called Montague Seman-
tics (MS) [6]. We first modified MS to create a computation-
ally tractable form called FLMS which is suitable as a basis
for NL query interfaces to relational databases. We then
modified FLMS to a form which we call EV-FLMS which
is suitable as a basis for querying event-based triple stores.
Owing to the complexity of these modifications, this paper
describes the two revisions in two separate sections.

The paper is structured as follows: in 2.1 we introduce
Montague Semantics. In 2.2 and 2.3 we show how MS can
be extended and converted to a computationally tractable
form which can be used as a basis for NL query interfaces
to conventional relational databases. In section 3 we discuss
in more detail how knowledge can be represented in triple
stores. In 4 we introduce some primitive retrieval operators
for triple stores. In 5 we introduce a new event-based version
of FLMS, called EV-FLMS and show how the meaning of
words and phrases can be defined in terms of the triple-
store retrieval operators. In 5.2 we show how the semantics
accommodates prepositional phrases, thereby achieving all
six of the properties listed above. In 6 we give examples of
how complex queries such as“which gangster who stole a car
in 1908 or 1918 in Manhattan joined a gang that was joined
by Torrio?” are answered. In 7, we briefly discuss the use of
a parser to disambiguate queries. In 8 we mention related
work. We conclude in 9 with work yet to be done.

2. A COMPOSITIONAL SEMANTICS FOR
NL RELATIONAL DB QUERIES

We begin by discussing MS and show how the meaning of
a sentence in English can be composed from the meanings
of its component words and phrases. We then show how
MS can be extended and modified for use as a basis for NL
query interfaces to conventional relational databases.

2.1 Montague Semantics
If we ignore that part of MS which deals with inten-

sional and modal aspects of language, common nouns such
as “thief” and intransitive verbs such as “smokes” can be
thought of as denoting predicates over the set of entities in
the “universe of discourse”, i.e. characteristic functions of
type entity ! bool, where x ! y denotes the type of func-
tions whose input is a value of type x and whose output is
of type y. One of Montague’s many insights is that proper
nouns (i.e. names) do not denote entities directly. Rather,
they denote functions defined in terms of entities. For ex-
ample, the proper noun “Capone” denotes the function �p

p cap where cap represents the entity associated with the
name “Capone”. (For readers not familiar with the lambda
calculus, the expression �x e denotes a function which, when
applied to an argument y, returns as result the expression e

with all instances of x in it replaced by y.) According to the
rules proposed by Montague, the phrase “Capone smokes”

(ignoring temporal aspects) is interpreted as shown below,
where a => b indicates that b is the result of evaluating a, kxk
represents the denotation (meaning) of the word or phrase
x, and x_pred is the predicate associated with the word x.

kCapone smokesk => kCaponek ksmokesk
=> (�p p cap) smokes_pred
=> smokes_pred cap

Quantifiers such as “every”, and “a” denote higher-order
functions of type: (entity!bool)!((entity!bool)!bool)

For example:

keveryk = �p�q 8x (p x) ! (q x)

where ! denotes logical implication in this context. Ac-
cordingly, the phrase “every thief smokes” is interpreted as:

(�p�q 8x(p x)!(q x))thief_pred smokes_pred
=>(�q 8x thief_pred (x) ! q(x)) smokes_pred
=> 8x thief_pred (x) ! smokes_pred(x)

There are many advantages to MS including the fact that
phrases of the same syntactic type, e.g. “Capone” and “ev-
ery thief” have denotations of the same type i.e. (entity !
bool) ! bool, making the semantics highly compositional
with respect to the syntactic structure of the phrase. Con-
sequently, the semantics is easy to implement in a syntax di-
rected interpreter as there is a one-to-one correspondence be-
tween the syntactic rules of the grammar defining the query
language and the semantic rules defining how the meaning
of a compound construct is computed from the meaning of
its components). There are, however, two disadvantages of
directly implementing MS as the basis for a database query
processor, as discussed in the next two sub-sections.

2.2 An explicit denotation for transitive verbs
MS is not fully compositional as it does not have an ex-

plicit denotation for transitive verbs. Instead it leaves tran-
sitive verbs uninterpreted throughout the rewriting of the
lambda expression denoting the sentence or phrase, and only
deals with the transitive verb at the very end through a syn-
tactic rewrite rule (see page 216 in [6] for the details). In
earlier work [11] we developed a method for defining the
denotation of transitive verbs explicitly. Accordingly, the
denotation of “join” (as in “join a gang”) is as follows:

kjoink = �z z(�x�y join_pred (y, x))

Where join_pred is the two place predicate corresponding
to the word “join”. Note that this is similar to, but not
exactly the same as, that proposed by Hendricks [18], Main
and Benson [22], Blackburn and Bos [2] (who attribute it to
Robin Cooper at the University of Goteborg), and Cli↵ord
[4]. The following shows the use of this denotation:

kDid Capone join the Five Points Gang?k
by parsing
=> kCaponek(kjoink kFive Points Gangk)
=> (�p p cap) ((�z z(�x�y join_pred(y,x)))(�q q fpg))
=> (�p p cap) ((�q q fpg)(�x�y join_pred(y,x)))
=> (�p p cap) ((�x�y join_pred(y, x)) fpg)
=> (�p p cap) (�y join_pred(y, fpg))
=> (�y join_pred (y, fpg)) cap
=> join_pred(cap, fpg)

which returns True if Capone joined the Five Points Gang.

2.3 An efficient version of MS
Another disadvantage of MS as a basis for database query

processors is that a direct implementation of the denotations
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of phrases which include the word“every” is computationally
intractable. This is due to the fact that the function which
denotes the word “every” requires all entities in the universe
of discourse to be examined. For example:

8x thief_pred(x) ! smokes_pred(x)

In order to overcome this problem, MS can be converted to
a semantics called FLMS that is based on sets and relations
rather than on their corresponding predicates. In this ap-
proach, which was first suggested and partially implemented
by Frost and Launchbury [9] and further developed by Frost
and Fortier, [15], sets and relations are used in the deno-
tations of common nouns, intransitive verbs, and transitive
verbs, rather than their corresponding predicates, and all
other denotations are modified appropriately:

kthiefk = {capone, torrio, moran ..
kgangk = {bowery, fpg ..
ksmokek = {capone, torrio, moran ..
kCaponek = �p capone 2 p
kMorank = �p moran 2 p
kTorriok = �p torrio 2 p
kFive Points Gangk = �p fpg 2 p
keveryk = �s�t s ! t
kak = �s�t s \ t 6= {}
kandk = �f�g �s ((f s) & (g s))
kjoink = �q {x|(x,image_x) 2 collect(join_rel)

& q(image_x)}
join_rel = {(capone, bowery),(capone, fpg),

(torrio, fpg),etc.}

The definition of kjoink uses relative set notation: infor-
mally, {a | b1 2 s1 etc., & c1 etc.} is read as the set of
all a such that b1 is a member of the set s1, etc. and c1 is a
condition, etc. The function collect is defined such that it
returns a new binary-relation, containing one binary tuple
(x, image_x) for each member of the projection of the left-
hand column of join_rel, where image_x is the mathematical
image of x under the relation join_rel. For example:

collect join_rel
=> {(capone, {bowery,fpg}),(torrio, {fpg}), etc.

As example of the use of the denotation of the word“join”,
consider: kjoink kFive Points Gangk

=> �q{x|(x,image_x) 2 collect(join_rel) & q(image_x)}
(�p fpg 2 p)

=> {x|(x,image_x) 2 collect(join_rel) &
(�p fpg 2 p)(image_x)}

=> {x|(x,image_x) 2 collect(join_rel) &
(fpg 2 image_x)}

=> {capone, torrio}

The resulting semantics is highly compositional: denota-
tions of compound phrases and sentences are created using
function application, according to the syntactic structure of
the query. It should be noted that syntactic ambiguity is ac-
commodated by having the parser generate more than one
syntax tree each of which determines an order of application
of the functions which are denoted by the words and phrases
in the query. For example: one of the two syntactic parses
of the query “Did Capone and Torrio join a gang?” would
result in the following expression, which has the same mean-
ing as the query“Did Capone join a gang and did Torrio join
a (not necessarily the same) gang?”

(kandkkCaponekkTorriok) (kjoink (kakkgangk) )

which evaluates to True w.r.t. the definitions given above.
We discuss ambiguity further in section 7.

The set-based FLMS semantics has the first five of the six
properties discussed earlier. It can be implemented directly
as part of a syntax-directed query processor for conventional
relational databases in any programming language, but most
easily in languages such as LISP, Miranda, Haskell, Scheme,
ML or Python which support higher-order functions. De-
notations of common nouns such as “thief” and intransitive
verbs such as “smokes” are defined directly in terms of unary
relations in the database. Relations such as join rel, which
are used in the denotations of transitive verbs, are defined
directly in terms of binary-relations.

3. EVENT-BASED TRIPLE STORES
Before we discuss how to convert FLMS to a form that

can be used with event-based triple stores, it is helpful to
consider further how knowledge can be represented in such
stores. First, we consider how to represent facts associated
with intransitive verbs. For example, the fact that Capone
was known to smoke. This can be represented as:

{(EV 1005, REL "type", TYPE "smoke_ev"),
(EV 1005, REL "subject", ENT "capone")}

Next, set membership which is the result of an action, e.g.
the fact that Capone became a thief, can be represented by
treating set membership as an event:

{(EV 1002, REL "type", TYPE "membership"),
(EV 1002, REL "subject", ENT "capone"),
(EV 1002, REL "object", ENT "thief")}

Now we can add the fact that he became a thief in 1908:

(EV 1002, REL "year", ENTNUM 1908)

Finally, consider set membership which is a consequence of
an intrinsic property of an entity, e.g. the triples represent-
ing the fact that “Capone stole a car in 1918 in Manhattan”
are:

{(EV 1004, REL "type", TYPE "steal_ev"),
(EV 1004, REL "subject", ENT "capone"),
(EV 1004, REL "object", ENT "car1"),
(EV 1004, REL "year", ENTNUM 1908),
(EV 1004, REL "location", ENT "Manhattan")}

In the above, we have not represented the fact that car1 is
a car. To be consistent, this fact should be represented in a
way that is similar to the way in which event 1002 represents
the fact that Capone was a thief:

{(EV 1006, REL "type", TYPE "membership"),
(EV 1006, REL "subject", ENT "car1"),
(EV 1006, REL "object", ENT "car")}

It is somewhat burdensome to have to treat membership
of a set (e.g. car) which results from the “core” essence of
an entity (e.g. car1) in a similar way to membership of a
set which is contingent on an action. However, this allows
us define denotation of all common nouns in the same way.

From the examples given above, one can see that when set
membership (e.g. the set thief) is contingent on an action
(e.g. steal), there could be some redundancy in the triple
store. For example, the data represented by event 1002 could
be derived from event 1004 data. We do not address this
concern in this paper, as it has to do with how data from
other data structures is converted to triple store data, and
what deductive machinery accompanies the triple store.
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4. RETRIEVING DATA FROM AN EVENT-
BASED TRIPLE STORE

Before we introduce the new event-based semantics, we
define some basic triple store retrieval operators. Given the
limitations of space, rather than define the retrieval oper-
ators and our new semantics using the notation of lambda
calculus and set theory, and then show how they can be
implemented in a programming language, we give the defi-
nitions directly using the notation of the programming lan-
guage Miranda. We choose Miranda for four reasons: 1) It
has built-in list operators and a list comprehension construct
which corresponds to the“relative set notation”that we used
in denotations in FLMS (section 2.3). 2) Similar to MS and
FLMS, our new semantics uses higher-order functions which
can be defined directly in Miranda. 3) Miranda has a sim-
pler syntax than other higher-order functional languages. 4)
Given the declarative nature of Miranda, the definitions are
executable specifications which allow us to test our ideas.

In Miranda:

- [x1,..,xn] is a list of n elements of the same type.

- #s is the length of the list s.

- f a1..an returns the result of applying f to a1..an

- member s x returns True if x is in the list s.

- (x1,..,xn) is a tuple of n values of different type.

- Lists are created using list-comprehensions which
have the general form:[values|generators;conditions]
For example: [(x^2 | x <- [1..10], odd x]

=> [1, 9, 25, 49, 81]

- f a1..an = e defines f to be a function of n arguments
whose value is the expression e.

- n $f m allows f to be used as an infix operator.

- Functions can be composed with the . operator:
(f . g) x = f (g x)

- map f s applies f to every member of the list s.

- New types can be defined using type constructors,e.g.

field ::= EV num | ENT [char] | ENTNUM num
TYPE [char] | REL [char] | ANY

then EV 1000 is a value of type field

Note in function application brackets are used to establish
the order of application, not to enclose arguments, e.g. sqrt

9 + sqrt (2 + 2) => 5. We begin by defining a triple store
called data which we use as an example throughout the rest
of the paper. Note that we have used type constructors
EV, REL etc. (which we earlier referred to as “tags”) in the
definition of the triple store. Note also that the definition
of data is part of the Miranda program that we built to test
our semantics.

data =
[(EV 1000, REL "type", TYPE "born_ev"),
(EV 1000, REL "subject", ENT "capone"),
(EV 1000, REL "year", ENTNUM 1899),
(EV 1000, REL "location", ENT "brooklyn"),
(EV 1001, REL "type", TYPE "join_ev"),
(EV 1001, REL "subject", ENT "capone"),

(EV 1001, REL "object", ENT "fpg"),
(EV 1002, REL "type", TYPE "membership"),
(EV 1002, REL "subject", ENT "capone"),
(EV 1002, REL "object", ENT "thief"),
(EV 1002, REL "year", ENTNUM 1908 ),
(EV 1003, REL "type", TYPE "join_ev"),
(EV 1003, REL "subject", ENT "capone"),
(EV 1003, REL "object", ENT "bowery"),
(EV 1004, REL "type", TYPE "steal_ev"),
(EV 1004, REL "subject", ENT "capone"),
(EV 1004, REL "object", ENT "car_1"),
(EV 1004, REL "year", ENTNUM 1918),
(EV 1004, REL "location", ENT "manhattan"),
(EV 1005, REL "type", TYPE "smoke_ev"),
(EV 1005, REL "subject", ENT "capone"),
(EV 1006, REL "type", TYPE "membership"),
(EV 1006, REL "subject", ENT "car_1"),
(EV 1006, REL "object", ENT "car"),
(EV 1007, REL "type", TYPE "membership"),
(EV 1007, REL "subject", ENT "fpg"),
(EV 1007, REL "object", ENT "gang"),
(EV 1008, REL "type", TYPE "membership"),
(EV 1008, REL "subject", ENT "bowery"),
(EV 1008, REL "object", ENT "gang"),
(EV 1009, REL "type", TYPE "join_ev"),
(EV 1009, REL "subject", ENT "torrio"),
(EV 1009, REL "object", ENT "fpg"),
(EV 1010, REL "type", TYPE "membership"),
(EV 1010, REL "subject", ENT "capone"),
(EV 1010, REL "object", ENT "person"),
(EV 1011, REL "type", TYPE "membership"),
(EV 1011, REL "subject", ENT "torrio"),
(EV 1011, REL "object", ENT "person")]

We now define a basic retrieval function getts which re-
turns triples from data which match given field value(s):

getts (a,ANY,ANY) = [(x,y,z) | (x,y,z) <- data; x = a]
getts (ANY,ANY,c) = [(x,y,z) | (x,y,z) <- data; z = c]
etc.
Example uses are:

getts (ANY, "subject", "torrio")
=> [(1009, "subject", "torrio"),

(1011, "subject", "torrio"),
etc.]

getts (1009, "type", ANY) => [(1009, "type", join_ev)]

Operators to extract one or more fields from a triple in-
clude:

first (a,b,c) = a
second (a,b,c) = b
third (a,b,c) = c
thirdwithfirst (a,b,c) = (c, a) etc.

Operators which return sets of fields from sets of triples
can be defined using the functions above and the function
map:

firsts trips = map first trips
thirds trips = map third trips
thirdswithfirsts trips = map thirdwithfirst trips etc.

We can now define more complex operators, such as:

get_subj_for_event ev
= thirds (getts (ev, REL "subject", ANY))

get_subjs_for_events evs
= concat (map get_subj_for_event evs)
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Such that:

get_subjs_for_events [EV 1000, EV 1009]
=> [ENT "capone",ENT "torrio"]

The function get_members returns all entities which are
members of a given set:

get_members set = get_subjs_for_events events
where
events_for_type_membership
= firsts (getts (ANY,REL "type",TYPE "membership"))

events_for_set_as_object
= firsts (getts (ANY,REL "object", ENT set))

events
= intersect events_for_type_membership

events_for_set_as_object

An example use of this operator is:

get_members "person" => [ENT "capone",ENT "torrio"]

Another useful operator is one which returns all of the
subjects of an event of a given type:

get_subjs_of_event_type event_type
= get_subjs_for_events events
where
events
= firsts (getts (ANY, REL "type", TYPE event_type))

For example:

get_subjs_of_event_type "smoke" => [ENT "capone"]

5. A NEW SEMANTICS BASED ON
TRIPLES AND EVENTS

5.1 Denotations of words
We begin with nouns. As in FLMS, the denotation of

a noun is the set of entities which are members of the set
associated with that noun. The get_members function re-
turns that set as a list. Note that in the Miranda program,
sets are implemented as lists. We use the term “set” when
discussing the semantics and “list” when discussing the im-
plementation of the triple-store operators. Note also, that
from now on, instead of representing denotaions as, for ex-
ample: kpersonk, we define denotations as functions with an
appropriate name, e.g. person. These denotations can then
be applied to each other in the program, as shown on the
next page, to create the meanings of more complex phrases.

person = get_members "person"
gang = get_members "gang"
car = get_members "car"
thief = get_members "thief"

e.g. gang => [ENT "fpg", ENT "bowery"]

Next, we consider intransitive verbs. The denotation of
an intransitive verb is the set of entities which are subjects
of an event of the type associated with that verb:

smoke = get_subjs_of_event_type "smoke_ev"

e.g smoke => [ENT "capone"]

Intransitive use of transitive verbs are similar:

steal_intrans = get_subjs_of_event_type "steal_ev"
steal_intrans => [ENT"capone"]

As in FLMS, proper nouns denote functions which take a
set of entities as argument and which return True if a par-
ticular entity is a member of that set, and False otherwise:

capone setofents = member setofents (ENT "capone")
torrio setofents = member setofents (ENT "torrio")
car_1 setofents = member setofents (ENT "car_1)
fpg setofents = member setofents (ENT "fpg")
year_1908 setofents = member setofents (ENTNUM 1908)
etc.
An example application: capone smoke => True

The quantifiers, “a”, “one” , “two”, “every”, etc. and the
conjoiners are defined in the same way as in FLMS:

a nph vbph = #(intersect nph vbph) ~= 0
one nph vbph = #(intersect nph vbph) = 1
two nph vbph = #(intersect nph vbph) = 2
every nph vbph = subset nph vbph

nounand s t = intersect s t
nounor s t = mkset (s ++ t)
that = nounor

termand tmph1 tmph2
= f where

f setofevs = (tmph1 setofevs) & (tmph2 setofevs)
termor tmph1 tmph2
= f where

f setofevs = (tmph1 setofevs)\/(tmph2 setofevs)

An example application of the above is:

(capone $termor torrio) thief => True

Transitive verbs are more complex. We need something
similar to the image in the FLMS approach. We can create
“images” for an event et using the following:

make_image et
= collect
(concat [(thirdswithfirsts . getts)

(ev, REL "subject", ANY)| ev <- events])
where
events = (firsts . getts) (ANY, REL "type", TYPE et)

An example application:

make_image "join_ev"
=> [(ENT "capone", [EV 1001, EV 1003]),

(ENT "torrio", [EV 1009])]

We can now use make_image to define the denotation of a
transitive verb associated with an event of a given type:

join
= f where

f tmph
= [subj|(subj,evs)<- make_image "join_ev";

tmph(concat[(thirds.getts)
(ev, REL "object", ANY)| ev <- evs])]

This definition is somewhat complex. We begin by not-
ing that a termphrase is a syntactic category that includes
proper nouns and determiner phrases such as“fpg”, “a gang”,
“a gang that was joined by torrio”, etc. The denotation
of “join” is a function f such that when f is applied to a
termphrase tmph (which is itself a function) it returns a list
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of subjects each of which is associated with a set of events
evs in the image of the join_ev, such that when tmph is ap-
plied to the list of objects of the events evs, the result is
True, e.g.:

join (a gang) => [ENT "capone",ENT "torrio"]

ENT capone is in the result owing to the fact that the de-
notation of the termphrase (a gang) is a function which re-
turns True when applied to the list of objects of the set of
events associated with ENT "capone" in the image of event
type join_ev. Similarly for ENT "torrio".

We can define the passive form of transitive verbs by re-
placing subject by object in the definition of make_image and
use it to create a function make_passive_trans. For example:

joined_by = make_passive_trans "join_ev"

Example use:
joined_by (capone $termand torrio) => [ENT "fpg"]

We conclude this sub-section by defining some “query”
words:

which nph vph = intersect nph vph
how_many nph vph = intersect nph vph
did tph vbph = "yes",if tph vbph = True

= "no", otherwise
who vph = which person vph

5.2 Prepositional phrases
Complex prepositional phrases, such as “in 1908 or 1918

in a city in Illinois”have typically been somewhat di�cult to
integrate into a compositional NL query semantics which al-
lows arbitrarily-nested quantification (which our semantics
does). We do not have any problems and can easily accom-
modate multiple prepositional phrases by having the parser
convert the list of prepositional phrases to a possibly empty
list of “prepositional pairs”. Each pair consists of a REL
value and a termphrase. For example, the phrase “in 1908
or 1918, in Manhattan” which consists of two prepositional
phrases is converted to:

[(REL "year", year_1908 $termor year_1918),
(REL "location", "manhattan")]

The definition of each transitive verb is redefined to make
use of this list to filter the events which are in the image
of the event-type associated with that transitive verb before
the termphrase which is the argument to the denotation of
the transitve verb is applied to the set of objects associated
with the event. A recursive function called filter_ev applies
each prepositional phrase in turn as a filter to each event:

steal’ tmph preps
= [ subj | (subj, evs) <- image_steal;

tmph (concat
[(thirds.getts) (ev, REL "object", ANY)
| ev <- evs; filter_ev ev preps])]

filter_ev event [] = True
filter_ev event (prep:list_of_preps)

= ((snd (prep)) ((thirds.getts)
(event,fst (prep),ANY)))

& filter_ev event list_of_preps

for example:

steal’ (a car)
[(REL "year", year_1908 $termor year_1918),
(REL "location", "manhattan")]

=> [ENT "capone"]

6. DEFINING WORDS INDIRECTLY AND
EXAMPLE QUERIES

The meaning of some words can be defined in terms of
words and phrases whose meanings are known. For example:

gangster = join (a gang)

Our EV-FLMS semantics has the six properties mentioned
earlier. The answers to complex queries can be obtained
from the meanings of their components by simple function
application. For example, the query “Which gangster who
stole a car in 1908 or 1918 in Manhattan, joined a gang which
was joined by Torrio?” would be converted to the following
functional expression by the parser, and then evaluated di-
rectly by the programming language in the same way as the
expression 3 + (2 * 4) would be evaluated:

which
(person $that
(steal’ (a car)

[(REL "year", year_1908 $termor year_1918),
(REL "location", "manhattan")]))

(join (a (gang $that (joined_by torrio))))

=> [ENT"capone"]

The conversion, by the parser, of the word “in” to (REL

"year") and (REL "location") in the two di↵erent contexts
is clumsy and contravenes Montague’s notion that words do
not denote entities directly. We will improve this approach
in futue work.

In our semantics, queries can contain arbitrarily-nested
quantification. Termphrases with quantifiers (“a”, “every”,
“some”, “one” ”two”, etc.) can also appear in prepositional
phrases. For example, if the data store held the appropriate
triples, the following query can be processed ”Who broke
into a bar using a jimmy or a brick in two cities located in
Illinois?”

7. USING A PARSER TO DISAMBIGUATE
Our new semantics has a one-to-one correspondence be-

tween the syntax rules defining the syntactic structure of
the queries, and the semantic rules determining the order of
application of the functional denotations. All phrases and
words of a syntactic category have denotations (meanings)
of the same semantic type, simplifying integration of the se-
mantics with a parser to create a syntax-directed interpreter.
We have already done this for the FLMS semantics and we
are currently doing this for the semantics presented here.

There is insu�cient space in this paper to discuss am-
biguity in detail. In summary, our parser generates more
than one syntax tree for ambiguous queries. For example,
the query “Did Capone and Torrio join a gang?” would be
parsed in two ways, resulting in the two expressions:

(capone $termand torrio) (join (a gang))
(a gang) (joined_by (capone $termand torrio))
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The first returns True if Capone and Torrio both joined
a, not necessarily the same, gang, and the latter would only
return True if at least one gang was joined by both Capone
and Torrio.

8. RELATED WORK
Triple stores have been used in binary-relational databases

since the 70’s. A comprehensive survey of research on binary
relational databases and triplestores, up to and including
that carried out in the early 1980’s, is provided in [10]. That
paper also includes a description of a triple-based query lan-
guage called WAROUT which appears to be one of the first
SPARQL like query languages to have been developed.

Since the 80’s, various attempts have been made to cre-
ate user-friendly query interfaces to binary-relational triple-
stores. Early attempts include WAROUT mentioned above,
pseudo natural-language interfaces [26], Prolog interfaces
[29], and graphical visual interfaces [28], [24] and [25].

More recent interfaces to triplestores include the system
of Mandreoli et al [23] on flexible query answering which re-
turns best approximations to a query; the four systems (Se-
mantic Crystal, Ginseng, NLP-reduce and Querix) of Kauf-
mann and Bernstein [1], [20], [19]; the AquaLog system of
Lopez et al. [21]; the ORAKEL system of Cimiano et al. [3]
which also uses a Montague-like semantics; the NQ system
of Ran and Lencevicius [27]; the Pythia system of Unger and
Cimiano which converts the NL query to an FLogic query
[30]; the SQUALL system of Ferre [8] which is also based
on Montague’s linguistic approach; the system of Yahya et
al [32]; the system of Damova et al. [5] which is also based
on a formal lagic and which which converts NL queries to
SPARQL using the Grammatical Framework (GF); the sys-
tem of Hakimov et al [17] and the Metafrastes system of
Embregts et al. [7].

The approach that we have presented in this paper is dif-
ferent from the work mentioned above in that we regard
bracketed NL (e.g. English) queries as functional expres-
sions using a formal denotational semantics, and then eval-
uate those expressions through direct reference to the triple-
store using basic triple retrieval operators. We do not trans-
late the NL query to any intermediate language such as
SPARQL or FLogic.

This paper describes work which is part of a research
project that has extended over several years [9], [13], [15],
[11], [16] and [12]. The major contributions of this pa-
per include 1) a detailed explanation of the development
of the new semantics, 2) the method for dealing with mul-
tiple and complex prepositional phrases, and 3) Miranda
program code showing how the event-based semantics can
be implemented.

9. CONCLUSION AND FUTURE WORK
We have argued that 1) using events rather than entities as

the subject of triples, and 2) treating (bracketed) NL queries
as expressions of the lambda calculus that can be evaluated
directly with respect to the triplestore, allows the creation
of a denotational semantics for a wide range of NL queries,
and also the construction of query processors as modular
syntax-directed interpreters.

The semantics described in this paper is only a proof of
concept and much remains to be done.

We have already started work on interfacing our semantics

to remote semantic-web event-based triplestores and have
built an on-line query interface. That work is described in
an unpublished paper [14].

Our research group is planning to do the following over
the next year: 1) improve our approach to prepositional
phrases, 2) extend the semantics to accommodate aggrega-
tion and negation, 3) integrate the semantics with a parser
using the SAIGA attribute grammar programming environ-
ment [16], 4) investigate the use of our query processor with
existing (conventional) entity-based triple stores in the se-
mantic web. This will require converting, as needed, some
of the entity-based triples to event-based triples, 5) inves-
tigate the integration of the method of Walter et al [31]
for mapping query words to appropriate URIs and build-
ing the denotations of words in real-time when the query is
parsed, and 6) create a denotational semantics for Japanese
and investigate the use of event-based triple stores as an
intermediate knowledge representation format for language
translation between English and Japanese.

We hope that this paper prompts discussion of the relative
advantages and disadvantages of “entity-based” and “event-
based” triplestores, and also prompts discussion of the pros
and cons of converting NL queries to SPARQL before they
are evaluated.

A possible way forward might be to have a 2-stage ap-
proach to the development of a powerful NL query proces-
sor: Stage I: use the approach described in this paper to
develop a formal denotational semantics for a wide range of
NL constructs including nested quantifiers, complex chained
prepositional phrases, aggregation, negation, modality (such
as “who believes that ...”, aggregates, and temporal phrases
(such as for what period of time...) Stage II: after the NL
semantics has been developed, a translater could be built,
based the semantics, to convert NL queries to SPARQL
queries. Stage I would facilitate the development of the
complex denotational semantics necessary to accommodate
a wide range of NL queries, and STAGE II would allow the
query processor to make use of the many methods that have
been developed to optimize SPARQL queries.
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