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ABSTRACT

Graph databases implementing the property graph model
provide schema-flexible storage and support complex, ex-
pressive queries like shortest path, reachability, and graph
isomorphism queries. However, both the flexibility and ex-
pressiveness in these queries come with additional costs:
queries can result in an unexpected, empty answer. To un-
derstand the reason of an empty answer, a user normally
has to create alternative queries, which is a cumbersome
and time-consuming task.

To address this, we introduce diff-queries, a new kind
of graph queries, that give an answer about which part of
a query graph is represented in a data graph and which
part is missing. We propose a new algorithm for process-
ing diff-queries, which detects maximum common subgraphs
between a query graph and a data graph and computes
the difference between them. In addition, we present seve-
ral extensions and optimizations for an established maxi-
mum common subgraph algorithm for processing property
graphs, which are the foundation of state of the art graph
databases.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

Keywords

Maximum Common Subgraph, Flexible Query Answering

1. INTRODUCTION

New kinds of data and their analysis increase the demand
for flexible data models supporting data of different degrees
of a structure. Graph databases implementing the property
graph model [11] are a reasonable answer to this demand.
They support diverse data with different degrees of a struc-
ture in the form of a graph. A diverse schema of vertices and
edges is represented by an arbitrary number of attributes,
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which can differ between vertices or edges of the same se-
mantic type. A major advantage is that such systems do
not require a predefined rigid database schema.

However, the flexibility provided by graph databases and
the property graph model comes with additional costs. A
user of graph databases typically has only limited knowledge
about stored data, which complicates the creation of queries.
He can overspecify queries that can result in an empty an-
swer. Any empty response causes confusion on the user side,
since its reason is unclear: was the query overspecified or are
some data missing in the database? To answer this question,
a user needs a possibility for explorative queries and guid-
ance through the query answering process. To provide this,
a system has to be able to give intermediate points in query
processing, which describe the already discovered and still
missing parts of a query graph. As a result, a user could
discover overspecified query parts or conclude that some in-
formation is missing in a dataset and, therefore, has to be
obtained from external data sources [8, 15].

Related Work.

If the result of a query does not meet the user’s expecta-
tions, he can conduct “Why Not?” queries [3] to determine
why the result set does not include the items of interest. It
is assumed that a user cannot process the data manually be-
cause of their large volume and complexity. A user specifies
items of interest with attributes or key values. Then a “Why
Not?” query could be “Why are the items with predicate P
not in the result set?”

There are several ways of answering “Why Not?” queries.
On the one hand, the causes for an empty answer can be
found, as done in [3], where a “Why Not?” query applies a
set of manipulations to the original query. As an answer, the
system provides an operator from the original query, which
removes required items from the result set. This approach
relies on manipulations of operators and derives an answer
for a specific item. On the other hand, a provenance-based
explanation can be delivered by computing the provenance
of possible answers for SPJ queries, like for example in [9].
This is also possible to refine the query in such a way, that
the items of interest appear in the result set. In this case,
the explanation for a “Why Not?” query is based on an
automatically generated query, which response consists of
the original results and the items of interest [13].

In contrast, our problem is to find missing structural parts
of a query that prevent the system from delivering a non-
empty answer. At this point, we are not interested in specific
attributes and items (which is done in the relational case).
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To the best of our knowledge, the question of discovering a
missing query part in a data graph has not been addressed
in graph database research.

Contributions.

In graph databases, a query can be understood as a pat-
tern that has to be seeked in a large data graph. To tell a
user which query parts were discovered in a data graph and
which are missing, we propose (1) to find maximum common
subgraphs in a data graph for a given query, and (2) to cal-
culate the difference between them and a query graph. As a
result, the system yields a list of discovered maximum com-
mon subgraphs as starting points and undiscovered parts of
a query graph as a subject for the future explorative search.

As our contributions we present in this paper diff-queries,
a new kind of graph database queries, which give an ans-
wer about existing and missing query parts. Diff-queries
deliver discovered maximum common subgraphs of a data
graph and corresponding missing parts of a query graph.
We introduce an all-covering spanning tree allowing for the
processing of a whole query graph and weakly connected
graphs. This tree allows us to get larger subgraphs than the
standard solutions for connected graphs. We also provide
several optimizations for diff-queries to deliver a final result
faster and to reduce the number of intermediate subgraphs.

The rest of the paper is structured as follows. We intro-
duce the property graph model and basic algorithms for dis-
covering maximum common connected subgraphs between
two graphs in Section 2. We outline the processing of diff-
queries in a graph database in Section 3. In Section 4 we
describe challenges of multiple starts and weakly connected
graphs for the standard algorithm and their solutions. We
provide several optimizations for our proposed algorithm in
Section 5 and evaluate our approach in Section 6.

2. MAXIMUM COMMON CONNECTED
SUBGRAPH DETECTION

As an underlying data model we use the property graph
model [11]. It represents a graph as a directed multigraph,
where vertices are entities and edges are relationships bet-
ween them. Each edge and vertex can be described by mul-
tiple attributes and their values. The attributes can differ
concerning edges and vertices — even if they are of the same
semantic type. We define a property graph as a directed
graph G = (V, E,u, f, g) over attribute space A = AyUAg,
where: (1) V,E are finite sets of vertices and edges; (2)
u: F — V? is a mapping between edges and vertices; (3)
f(V) and g(F) are attribute functions for vertices and edges;
and (4) Ay and Ag are their attribute space.

A graph G' = (V',E',v/,f',¢') is a connected sub-
graph of G, if V' CV,E' C E,u |u, f' |7, and ¢’ |4.

Given a data graph G4 and a query graph Gy, the graph

Y= (Vj,Eq,uy, fi,94) is a common connected sub-
graph of graphs G4 and G4, if G is a connected subgraph
of G4 and G} is a connected subgraph of G,. There may be
multiple common connected subgraphs in a data graph G4
for a query graph Gy.

For property graphs, a maximum common connected
subgraph G/, is a common connected subgraph of a data
graph Gg for a query graph G4 such that there exists a match
Smaz in Gq for G4 such that for any match S in G4 for G,
S < Smaz 1V < Vimaz UE < Enae.

Finding Maximum Common Connected Subgraphs.

To tell, which part of a query can be found in a data
graph, we have to find maximum common subgraphs in a
data graph G4 for a query graph G4. This can be done
by maximum common connected subgraph algorithms. The
computation depends on how a graph is stored and pro-
cessed. A commonly used adjacency matrix or adjacency
list allow the compact storing of graphs and their efficient
processing [5]. For example, a matrix M consists of n X n
elements, where n is the number of vertices in a graph. Each
element of a matrix a;; with a value 1 represents an edge
between vertices ¢ and j. A maximum common connected
subgraph can be calculated by linear algebra operations. If
a graph is a property graph, then its attributes can be stored
in separated structures and can be used during prefiltering.

Ullmann in [14] describes a brute-force tree-search enu-
meration procedure, which efficiently eliminates successor
vertices. It excludes some elements from a matrix M and,
thereby, reduces the search space. The algorithm is com-
monly used for exact graph matching. Another backtrack-
ing algorithm — the McGregor algorithm [10] — also works
on matrices and provides extension points for pruning tech-
niques and prefiltering options.

Both methods rely on labeled graphs, which differ from
our underlying property graph model [11]. To apply them
to our use case, these algorithms have to be adapted to work
on properties on edges and vertices.

o e3e4 D
G o e5

(b) A few edges processed

(a) All edges processed

Figure 1: Depth-first search

Ullmann’s [14] and McGregor’s [10] algorithms are back-
tracking algorithms, which are a base for traversal opera-
tions in graph databases. Both methods implement a depth-
first search that begins at the root and traverses the graph
as far as possible along each branch before backtracking. As-
suming the search starts from the grey vertex, in the examp-
le shown in Figure 1(a) we begin then from vertex A and exp-
lore all edges of the graph as follows: el,e2,e3,e4, e5,e6. If
we start from vertex C' like in Figure 1(b), then only edges
e3,ed, e are traversed. To ensure the discovery of all maxi-
mum common connected subgraphs, the search is conducted
for each vertex of a query, and a data graph is treated as
undirected. This makes the search NP-complete.

A maximum common connected subgraph problem can
also be modified for the search of a maximum clique like in
the Durand-Pasari algorithm [7] and in the Balas Yu algo-
rithm [1]. These algorithms are also tree-search algorithms.
Some of them work better with sparse graphs, others with
dense graphs. According to [4], the McGregor algorithm
shows good results in all cases and has the best space comp-
lexity. Based on these observations, we have chosen it as
the base for our discovery of maximum common connected
subgraphs.
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Figure 2: A diff-query and its answer: which two vertices play in the same national team and club?

Difference Graphs.

With a maximum common connected subgraph algorithm
we can determine, which query part has an answer in a data
graph. To detect, which structural part is missing we need
to compute the difference graph — the difference between dis-
covered maximum connected subgraphs and a query graph.

A difference graph includes those query vertices and edges,
which were not discovered during query processing, and the
instances of query vertices adjacent to a maximum common
connected subgraph.

For property graphs we define a difference graph as
a graph Gy, = (V,, Ey, ug, f4, 94, Va(adj),C), where V; C
Vi B} C Byt L 4 1500 log. Valadj) are adjacent ver-
tices, and C is a set of non-adjacent discovered vertices to
be excluded from the further explorative search.

In [6] the authors compute difference graphs from concep-
tual graphs. The first graph is transformed into one of its
large common subgraphs and the set of applied operations
is stored. Then the large common subgraph is transformed
into the second graph, and the set of applied operations is
stored. Finally, both stored sets are concatenated in a differ-
ence graph. Operations include standard insert and remove
operations and specific operations for conceptual modeling
like a generalization or a specialization of a concept.

In our work we do not provide any conceptual analysis
and reasoning for “non-existing” edges from a hierarchical
taxonomy. Moreover, the first step is redundant: we record
the discovered parts of a graph during the graph traversal.

Diff-queries.

If a user gets an empty response to his query, he can con-
duct a diff-query that shows, which query part is addressed
in data and which part is missing. For this purpose, it de-
tects maximum common connected subgraphs and computes
their corresponding difference graphs, which prevent a sys-
tem from the delivery of a non-empty answer to a user.

Assuming we search for two soccer players from the same
national team and the same club. Then the query graph
could be represented as in Figure 2(a). A possible answer
to this diff-query would consist of a maximum common con-
nected subgraph G as shown in Figure 2(b), and a miss-
ing part of a query with constraints G, as in Figure 2(c).
The first part includes all discovered instances of vertices
and edges like “Gareth Bale”, “Real Madrid”, and “Wales
national team”. The second part consists of instances of dis-
covered adjacent vertices (dark grey), missing query vertices
and edges (grey), and constraints for vertices (grey).

3. PROCESSING OF DIFF-QUERIES IN
GRAPH DATABASES

In this section we shortly describe the graph database we
use in our prototype and outline the diff-query computation
process. The processing of diff-queries consists of two steps:
the detection of a maximum common connected subgraph by
using an extended version of the McGregor algorithm [10]
for property graphs, and the computation of a difference
graph between the discovered maximum common connected
subgraph and a query graph.

3.1 Storage Representation

In our prototype system the property graph model is im-
plemented as a graph abstraction on top of a RDBMS, which
uses separate tables for vertices and edges. Vertices are desc-
ribed by a set of columns for their attributes, and edges are
stored as simplified adjacency lists in a table. Each edge can
have multiple attributes, which are stored together with its
description. All edges and vertices have unique identifiers.

To process such a graph efficiently, we use an in-memory
column database, which supports optimized flexible tables
(new attributes can efficiently be added and removed) and
provides advanced compression techniques for sparsely po-
pulated columns like in [2, 12]. This abstraction allows us to
store graphs with an arbitrary number of attributes without
a predefined rigid schema.

The graph database provides the following operations: in-
sert, delete, update, filter based on attribute values, aggrega-
tion, and graph traversal in a breadth-first manner. Traver-
sal along directed edges is possible in both directions with
the same performance.

Queries to the database are represented via graphs, where
vertices describe entities and edges describe connections bet-
ween them. Each description of vertices and edges can in-
clude predicates for attribute values. A specific vertex is
represented by its identifier in a query graph.

3.2 Detection of Maximum Common
Connected Subgraphs

To detect the maximum commonality between a query
and a data graph, we have chosen the McGregor maximum
common connected subgraph algorithm [10] presented in Al-
gorithm 1, which uses a depth-first search (Figure 1).

To leverage the McGregor algorithm for property graphs,
the edges and vertices tables of our graph database have to
be processed. First, the projection on a vertices table re-
duces the number of start vertices at line 4. Second, each
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Algorithm 1 The MCCS algorithm for a property graph

: function MCCSSEARCH(query graph Gg)
graphs, tmp
for all edge ¢; in G, do
sources; = getSourceVertices(q;)
graph = DFS(sources;, g, true, graphs;)
graphs.addGraph(graph)
for all graphs; do
if graphs; > tmp then tmp = graphs;

©

return tmp

10: /*depth-first search*/

11: function DFS(sources, edge, isStart, graph)

12: for all sources; do

13: if lisStart then edge = get Next Edge(edge)
14: if noNextEdge then return graph

15: targets = traverse(edge)

16: filterTargets(targets)

17: for all targets, do

18: graph.addEdge(edge, sourcesj, targetsq)
19: graph = DFS(targetsa, edge, false, graph)

20: return graph

step is traversed by the graph traversal operator at line 15.
Finally, the target vertices are filtered according to their
predicates (see line 16). To ensure that the algorithm finds
a maximum common connected subgraph, it is started multi-
ple times from all query vertices as starting points at line 5.
The maximum common connected subgraph is stored for
each starting point in a set. After all runs the best sub-
graph is chosen from the collected set (see lines 7-9).

3.3 Computation of a Difference Graph

To compute a missing part of a query, we use a query
graph and a discovered maximum common connected sub-
graph. The process consists of two steps: (1) the split of
discovered and undiscovered vertices and edges, and (2) the
completion of an undiscovered part with attributes or ver-
tices conditions.

In our first step, during processing we store the mapping
between data edges and query edges, data vertices and query
vertices in temporary tables. The difference graph consists
of query edges and vertices, which are not presented in these
temporary tables. Some edges in the difference graph will
have only single vertices at their ends, because other end
vertices have already been traversed. Therefore, we have to
include the discovered edges’ ends into the difference graph
in the second step — the completion of the difference graph
with attributes or vertices conditions.

In the second step we detect, which conditions have to be
applied to the graph discovered in the first step. We study
the table with discovered vertices and a query description
and assign conditions to the difference graph according to
several rules: If a query edge is not discovered, but at least
one of its end vertices has already been found, then this is
a positive condition. It means we include a discovered end
vertex into the difference graph. In the example presented
above the two dark grey vertices represent such conditions
(see Figure 2(c)). Such vertices are included into a differ-
ence graph and can be used as starting points for a future
explorative search. If a query vertex and all its query edges

Figure 3: Weakly connected graphs

(incoming and outgoing) are discovered in a data graph, then
this vertex is a negative condition, and its instance has to
be excluded from the non-discovered query vertices. In our
example this can be “Gareth Bale” (see Figure 2(c)), which
does not have to be considered in a future explorative search.

4. PROBLEMS OF MULTIPLE STARTS
AND WEAKLY CONNECTED GRAPHS

The general version of the McGregor algorithm [10] takes
all vertices of a query as starting points and iterates through
them. So, the system traverses the same data edges multiple
times. On the one hand, this ensures that no edge is left out
and all maximum common connected subgraphs are disco-
vered. On the other hand, this generates large intermediate
results and increases the response time dramatically.

We figure out two problems, which solution can increase
the performance of the algorithm, find larger graphs, and
reduce the number of runs. First, the algorithm works only
with connected graphs, therefore, only one-directed search
for directed graphs is done. This can be solved by the exten-
sion of the search for weakly connected graphs. Second, we
can miss some maximum common connected subgraphs by
start from a single vertex. This can be solved by a restart
strategy for non-traversed edges.

Processing of Weakly Connected Graphs.

The McGregor maximum common connected subgraph al-
gorithm, which is a base for our algorithm, processes the di-
rected graph only in a forward direction. This can limit the
size of discovered subgraphs and deliver subgraphs of poten-
tially smaller size than could be determined. To ensure the
discovery of a maximum subgraph, we have to choose that
vertex as a root, where all vertices can be reached from. Be-
cause the algorithm works only in a forward direction, it is
not always possible to find the best root vertex.

For example, the query presented in Figure 3 does not
have any ideal root. This is a weakly connected graph: it
is connected, if directions of edges are not considered. For
this query the McGregor algorithm can discover subgraphs
only with two edges and three vertices (ABC or BCD).
Therefore, we need to modify the algorithm to also consider
unreachable components.

To process queries with unreachable components, we int-
roduce an all-covering spanning tree that has the following
characteristics. If the whole query graph is available in data,
then the all-covering spanning tree is able to cover all query
vertices and edges in a single run. An edge can be included
into the search in forward or backward directions. In case of
a backward direction, an edge is marked with a flag “back”.
This can be done without additional effort because of the
underlying data model and the graph traversal operator pro-
vided by the database like in [12]. Another way would be to
make a graph basically undirected with duplicated data or
double table scans, which is less efficient.
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Figure 4: All-covering spanning tree and the back-
tracking procedure
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We adapt Algorithm 1 to work with an all-covering span-
ning tree. From now on, we consider all edges for each ver-
tex. Outgoing edges have priority over incoming edges and
are processed first. After all outgoing edges are traversed,
incoming edges are considered.

To guarantee a correct search, we maintain the all-cove-
ring spanning tree as a temporary table and refer to it during
the backtracking procedure. It records the mapping between
previously traversed and next edges. The all-covering span-
ning tree has three columns: a previous edge, a source ver-
tex, and a next edge. To save space, we can use a Boolean
identifier of a traversed edge instead of an identifier for a
source vertex. For ensuring the simplicity of explanation,
we use vertices in the following example.

Assuming the search for a query presented in Figure 4
begins from vertex A. At initialization, the spanning tree
is empty. Vertex A has two outgoing edges. After we have
followed edge el, we add the following entry into the table:
no previous edge, source vertex is A, next edge is el (-;A;el).
Now we are at vertex B without any outgoing edges. We
take incoming edge e2, mark it with “back”, and add an
entry into the table (el; B; e2). We repeat the process and
traverse edges e4,e3. Finally, we are at vertex A without
any non-traversed edges and start the backtracking.

The backtracking procedure is done according to the cre-
ated all-covering spanning tree. The last traversed edge is
e3. We check its entry (column “Next”) in the mapping ta-
ble, take its previous edge e4 and go to source vertex C.
There are no other non-traversed edges for vertex C, and
so we continue the backtracking. The predecessor of e4 is
e2 with vertex D, so we move to it. The procedure con-
tinues until it gets to source vertex A, where no further
non-traversed edges exist.

A graph database gives the possibility of changing the
direction through suitable storing and processing of edges.
All edges are stored in a forward direction — “from a source
to a target”. In case of the backward traversal, the graph
traversal operator changes the order of columns to be sear-
ched: “from a target to a source”. Therefore, we need only
to change the direction of an edge in the query description
and pass it to the traversal operator.

Restart Strategy.

With the all-covering spanning tree, we can construct a
traversal path, which includes all vertices and edges, and
process weakly connected graphs. Hereby, we solve the first
problem of the one-directed search. Now we do not need
to iterate through all vertices multiple times. We just take
one vertex and search from it. This approach works well if
all edges are represented in a data graph. The absence of
some edges in the data graph can split a query graph into
several subgraphs, which are unreachable from each other.

Figure 5: Only white or grey part is traversed

In this case if we start with a vertex from a smaller subgraph,
we will miss a maximum common connected subgraph from
another subgraph. Thereby, we come to the second problem
of the algorithm, which can be solved by a restart strategy.

If we start a search from a single node that is located in
the smaller connected subgraph of a query graph, we can
potentially miss the larger subgraph, provided by another
subgraph. The problem can be explained with a query graph
containing a bridge. If a query has a bridge (see Figure 5),
which is not addressed in the data graph, then only a subset
of vertices and edges is traversed. In our example query edge
e4 does not have any matching data edges. In this case, a
maximum common connected subgraph found by our algo-
rithm would be the white or the dark-grey part. Therefore,
if we do a single run in the dark area the maximum com-
mon connected subgraph will be missing, which is located
in the white area. To solve this problem, we can resume
the search with the edges, which were not traversed. The fi-
nal maximum common subgraph would be unconnected and
would contain all discovered maximum common connected
subgraphs.

We maintain a list of traversed edges of a query graph.
After the first set of maximum common connected subgraphs
is returned, we remove those edges from the list that have
already been traversed. The next step is taken from this set.
This strategy ensures the discovery of a maximum common
subgraph for a given start vertex, if an all-covering spanning
tree was constructed.

For example, at the beginning a query graph in Figure 5
has an empty list of traversed edges. Assuming we start from
the edge el and find edges el, €2, €3, but the edge e4 is mis-
sing from a data graph. We add all four edges into the list of
traversed edges and remove them from the list of start edges.
We choose the next start among the edges €5, €6, €7, e8. The
search from any of them will find the same subgraph of four
edges. This is the maximum common connected subgraph.
If we concatenate it with the first discovered maximum com-
mon connected subgraph, then we will get a maximum com-
mon unconnected subgraph. So, as a maximum common
subgraph we will get a set of unconnected parts. This re-
duces the number of intermediate results and gives a notion
to a user about which edges should exist to complete the
graph. Such a methodology can potentially return larger
subgraphs than the strategy for connected subgraphs.

Therefore, with all-covering spanning trees and restart
strategies we can limit the number of restarts and find a
maximum common unconnected subgraph, which then can
be used for the further explorative search and the integra-
tion of missing data. In the following we use maximum
common connected and unconnected subgraphs and refer to
them jointly as maximum common subgraphs.

5. OPTIMIZATION STRATEGIES
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Table 1: Diff-query templates used in the evaluation

To increase the efficiency of the proposed algorithm, we
have developed several optimizations for start and restart
vertices, and early termination conditions.

5.1 Choice of Start and Restart Edges

The general McGregor algorithm [10] processes a graph
from all query vertices, and then the biggest graph is chosen
and delivered as a maximum common connected subgraph.
With all-covering spanning tree and multiple restarts as pro-
posed in Section 4, we can ensure that from each query ver-
tex the whole query can potentially be traversed in the best
case. The question is: Which query vertex should be taken
as a start? The size of the intermediate results strongly de-
pends on the cardinality of the processed edges and vertices.
If a query graph is described very generally, then it will re-
sult in a large amount of intermediate results. To decrease
it, we extend our algorithm with several strategies to select
a start vertex, a start edge, and a next branch to traverse.
For example, we can make decisions based on the cardinality
of predicates or on the degree of a vertex.

Number of Incoming/Outgoing Edges.

The order of edges can be chosen according to the number
of their previous or next edges. A vertex with the maximal
degree is selected as the starting point. For a vertex with a
higher degree, more edges need to be processed, and, there-
fore, we can discover a maximum common subgraph earlier.
This strategy can potentially reduce the number of restarts.

Edge and Vertex Cardinality.

Before executing a query, the system calculates the cardi-
nality for all vertices and edges in a query. It then sorts them
separately according to the number of items, which should
be returned by a system in an ascending order. We choose
the edge with the lowest cardinality as the start edge. If we
use an all-covering spanning tree, then we can also choose
a search direction, based on the cardinality of a source and
a target. Otherwise, we use forward processing as default.
The same strategy can be applied to restarts, but only the
cardinality for edges is considered. In addition, this method
has the advantage that if an edge has cardinality = 0 then
it is discarded from the search. This reduces the number of
table scans and makes the search more efficient.

5.2 Threshold-based Termination Condition

In general, the search stops when no more edges are found
and a backtracking procedure returns to start. In addition,
there can be cases, when a system can stop the search earlier.

A threshold can be an estimated size of a maximum common
subgraph or the number of discovered maximum common
subgraphs, which could be derived from a data graph. To
calculate these numbers, we can reuse the above presented
cardinality of a query. If a query graph has N edges, and
for M edges the cardinality(M) > 0, where M € N, then
the maximum common subgraph can have only M edges.
After M edges are found, the search can be savely stopped.
Similar rules can be formulated for sources and targets.

Assuming we have a query with four vertices and three
edges with the following predicate cardinalities: cardeager =
5, cardedgez = 2, cardedges = 0, then the maximum common
subgraph can only consist of up to two edges, and we can
have a maximum of five graphs like this. We can terminate
our search, after the first subgraph with two edges has been
discovered .

6. EVALUATION

In this section we evaluate diff-queries and proposed op-
timization techniques. We describe the evaluation setup in
Section 6.1. Then we discuss the scalability of the best con-
figuration, derived in Section 6.2, for different query topolo-
gies in Section 6.3. Finally, we evaluate start and restart
strategies in Section 6.4.

6.1 Evaluation Setup

We have implemented our algorithm and its optimizations
in an in-memory column database, which provides the graph
abstraction as described in Section 3.1. We have created a
property graph from DBpedia RDF triples, where labels rep-
resent attribute values of entities. It has about 20K vertices
and 100K edges. The evaluated queries are presented in
Table 1. We have tested each case for each query ten times
and have taken the average as a measure.

6.2 Configuration

In this section we study several configurations of the algo-
rithm: multiple starts from all edges without the all-covering
spanning tree (only for connected components), with the all-
covering spanning tree (for weakly connected components),
and restart strategy (also for unconnected components).

As we can see in Figure 6, the restart strategy discovers
larger graphs with shorter response times and less interme-
diate and final results. Although the method with the all-
covering spanning tree has a longer response time (because
of the tree construction), it discovers larger graphs. The
response time and the size of the maximum common sub-
graph (MCS) are the best for the restart strategy with the
tree construction.
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6.3 Topology

In this section we use the best configuration of the pre-
vious step: restart with the all-covering spanning tree. For
its evaluation on different graph topologies, we have const-

ructed several queries, which consist of the edges of simi-
lar semantic (for a specific topology). The star and path
topologies use a single type of edges, while the zigzag evalu-
ates queries with two edge types. The evaluation results are
presented in Figures 7(a)-7(d).

In the path each second edge is missing, so the number
of MCS decreases. The star tends to increase the number
of solutions, because all edges have the same starting point
and larger graphs are combined from smaller graphs. The
number of MCS for the zigzag evolves dramatically, because
we use edges of two types, otherwise, the behavior would
be similar to behavior of the path. With the size of a query
graph, the response time is growing linearly, except the star,
which is explained by the growing intermediate results (see
Figures 7(c)-7(d)).

Comparing the results of the evaluation on three topolo-
gies, we conclude that, first, the response time dependency
on the number of MCS is linear. Second, for the star topo-
logy, the size of a result set grows if edges of the same se-
mantic type are used. Third, the response time depends on
both factors: size of intermediate results and size of a query
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graph. Fourth, to ensure the linear dependency, optimiza-
tion strategies have to be used, which reduce the number of
intermediate results.

6.4 Optimization Strategies

We evaluate start strategies for a single start and for
restart (see Figures 7(e)-7(f)). We observe that with the
restarts we can increase the average size of MCS. Regard-
less of the strategy, we get MCS of the same size by using
the restart configuration. The response time for the search
can be reduced by using an appropriate optimization stra-
tegy. For example, the “maximum cardinality” strategy re-
duces the number of intermediate results, the number of
MCS, and the processing time. Although the “random stra-
tegy” gives less intermediate results, on average it discovers
smaller MCS.

Comparing the results of this evaluation, we conclude that
with the restart strategy we can find bigger common sub-
graphs without starting with each edge multiple times. Op-
timizations can reduce the number of intermediate results,
the number of MCS, and the response time. If characte-
ristics of edges (degree, predicate) are similar, all strategies
provide similar results. The strategies of cardinality can be
even more efficient, if after the edge selection the direction of
its processing is chosen according to the vertices’ cardinality.

With the evaluation we show that the restart configura-
tion and all-covering spanning tree can be used without the
start from each query edge. They facilitate to find bigger
maximum common unconnected subgraphs with less res-
ponse time. Optimizations can also decrease the response
time, but they will give less MCS.

7. CONCLUSION

To express graph queries correctly is a complicated task,
because of the diversity and schema flexibility of a data
graph. If a query derives an empty answer, a user requires
support to understand, what the reason was: an overspeci-
fied query or missing data. In this paper we introduce diff-
queries, a new kind of graph queries, that support a user
in such cases. The response to a diff-query describes the
parts of a query graph that are addressed and those that
are missing in a data graph. The processing of a diff-query
consists of two steps: the discovery of a maximum common
subgraph and the computation of a difference graph. As a
base algorithm we take the McGregor maximum common
connected subgraph algorithm. We adapt it for directed
weakly-connected property graphs with an all-covering span-
ning tree and reduce the number of lookups with the restart
strategy, which searches from a single edge, does restarts, if
some of the edges were not processed, and delivers a maxi-
mum common unconnected subgraph. We show that this
can be improved by the choice of a start and restart vertex
and edge. After the answer is delivered to a user, he can
do explorative search of missing data in external sources or
modify the query according to the derived difference graph.

Although our method shows good results for our use case,
there is an open challenge for the future: the number of in-
termediate and final results is still very large. We want to de-
velop strategies for reducing and ranking them. In addition,
we did not study, how to present and to rate answers accord-
ing to a given specification. For this purpose, we propose
assigning priorities to specific subgraphs of a diff-query and
conducting a user study to qualify solutions. Also, we would

like to introduce a similarity measure to quantify vertices,
edges and their predicates, and to enhance the algorithm by
discarding the backtracking part and by introducing more
sophisticated strategies for the choice of a start vertex to
decrease the number of restarts.
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