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ABSTRACT
In this paper, we investigate the problem of e�cient query-
ing large amount of linked data using Map-Reduce frame-
work. We assume data graphs that are arbitrarily parti-
tioned in the distributed file system. Our technique focuses
on the decomposition of the query posed by the user, which
is given in the form of a query graph into star subqueries. We
propose a two-phase, scalable Map-Reduce algorithm that
e�ciently results the answer of the initial query by comput-
ing and appropriately combining the subquery answers.
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ming
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1. INTRODUCTION
Linked data is a widespread method for publishing in-

terlinked data, built upon a standard model used for data
interchange, called RDF. As the amount of linked data is
rapidly increasing the e�cient management, analysis, and
hence querying of large amount of linked data has become a
significant challenge in many areas, such as learning analyt-
ics, digital libraries, and other applications analyzing linked
open data. The e�cient querying of large amount of data is
also a significant challenge in many other information man-
agement areas, where parallel processing has been proved
particularly e↵ective in manipulating such an amount of
data.

A well-established programming framework used for pro-
cessing and managing large amount of data, in parallel, us-
ing a cluster of commodity machines is Map-Reduce [8].
A popular, open-source implementation is Apache Hadoop
[1]. Boasting a simple, fault-tolerant and scalable paradigm,
Hadoop has been established as dominant in the area of mas-
sive data analysis.

In this paper, we investigate the problem of e�cient query-
ing large amount of linked data using Map-Reduce frame-
work, and extend our approach presented in [10]. In particu-
lar, we focus on the decomposition of the query posed by the
user, which is given in the form of a query graph, into star
subqueries and propose a two-phase, scalable Map-Reduce
algorithm that e�ciently results the answer of the initial
query. Furthermore, we assume data graphs that are arbi-
trarily partitioned in the distributed file system. The first
phase of our algorithm takes advantage of the star form of
the sub-queries and focuses on evaluating the star subqueries
over the input segments. The results of the sub-queries are
emitted to the second phase, which combines them properly
in order to produce the answers of the initial query.

2. RELATED WORK
During the last decade, the problem of e�ciently querying

large data graphs using Map-Reduce framework has been
investigated in many research areas related to information
management [9, 2, 12, 11, 16, 15, 13, 18, 5, 6, 19].

Evaluating SPARQL queries over RDF graphs by paral-
lelizing the processing of the join and selection operators
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has received much attention [14, 12, 16, 15, 18]. The RDF
triples can be either directly stored in files in the distributed
file system (DFS) or stored in a distibuted database (e.g.,
HBase [16]). In [14], the authors propose an approach where
the query plan is evaluated using a sequence of Map-Reduce
phases. Initially, the relevant RDF triples are selected and
then a sequence of joins is evaluated. Each operator in
the plan is performed within a Map-Reduce phase, while
the evaluation of the query requires multiple Map-Reduce
phases, according to the number of operators of the given
query. In [12] the RDF triples are stored in multiple DFS
files, according to their predicates and objects, while only
the relevant files are read from the DFS for each query. In
H

2

RDF system [16] data triples are stored in HBase. In or-
der to answer a query, a sequence of joins is executed, which
is obtained in a greedy manner. Other approaches have been
proposed, which translate SPARQL queries to other query
languages, such as JACL ([15]) and PigLatin ([13], [18]). In
addition, [7] provides a detailed experimental analysis and
comparison of the main NoSQL data stores for RDF process-
ing. The systems that are used for storing the data are the
following: Apache HBase, CumulusDB (a RDF data store
built upon Cassandra) and Couchbase; while the 4store was
used as a baseline, native and distributed RDF DBMS. Jena
was used as a SPARQL query engine over HBase and Couch-
base, Hive over HBase and Sesame for CumulusDB.

In [11] and [9], the RDF data has been initially partitioned
in a predefined manner. [11] assumes that the RDF graph is
vertex partitioned and its parts are stored with some triple
replication, to ensure that for small queries, each answer
can be computed using a single part of the graph. Larger
queries are decomposed and the answers to the subqueries
are joined by MapReduce jobs. In HadoopRDF [9], RDF
triples with the same predicate are placed in the same part
of the data graph, which is stored in a traditional triple store,
such as Sesame. Queries are divided in the same way, so that
each subquery can be answered by a single computer-node.
The answers to the subqueries are merged by MapReduce
jobs. The decomposition of the given query is also one of
the main characteristics of our Map-Reduce algorithm pre-
sented in [10]. In that approach, however, the triples could
be arbitrarily partitioned in the DFS and the queries are de-
composed into paths. The proposed Map-Reduce algorithm
evaluates the given query in two phases; one for evaluating
the path subqueries and one for finding the total answers by
combining the results of the subqueries.

The problem of querying large data graphs using Map-
Reduce is also investigated in [2, 19, 6]. J. Cohen in [6]
presents di↵erent approaches of finding subgraphs in large
data graphs using Map-Reduce. In [19], the authors focus
on the problem of querying triangles and propose one single-
phase and one two-phase Map-Reduce algorithm for finding
triangles in a graph whose edges have been arbitrarily dis-
tributed in DFS. Afrati et al. [2] investigate the cost of
evaluating query graphs on data graphs using Map-Reduce,
and proposed an approach of translating the graphs into con-
junctive queries which in turn are evaluated in Map-Reduce
using the approach proposed in [3].

Systems for quering RDF data that are distributed over
the web, which adopt query decomposition, have also been
proposed ([17], [4]). DARK [17] uses a service description
language to maintain information about the data stored in
various hosts, and uses these service descriptions for query

planning and optimization. Avalanche [4] has a preprocess-
ing phase that selects a set of candidate host, which are
queried for statistical information. Next, the query exe-
cution phase brakes down the given query into subqueries
(called molecules), which are bound to physical hosts by a
plan generator. This phase terminates, when an adequate
number of solutions have been found.

3. DATA AND QUERY GRAPHS
In this section we introduce the basic notions regarding

our data model. We start with the definition of data and
query graphs:

Definition 1. Let Uso and Up be two disjoint infinite sets
of URI references and let L be an infinite set of (plain) lit-
erals1. An element (s, p, o) 2 Uso ⇥Up ⇥ (Uso [L) is called a
data triple. In a data triple (s, p, o), s is called the subject, p
the predicate and o the object. A data graph is a non-empty
set of data triples. A data graph G0 is a subgraph of a data
graph G if G0

✓ G.

Definition 2. Let Uso and Up be two disjoint sets of URI
references, let L be a set of (plain) literals and let V be a
set of variables. An element (s, p, o) 2 (Uso [ V ) ⇥ Up ⇥

(Uso [ L [ V ) is called a query triple. A query graph (or
simply a query) is a non-empty set of query triples. The
output pattern O(Q) of a query graph Q is the sequence
(X

1

, . . . , Xn) of the variables appearing in Q. A query graph
Q0 is a subquery of a query graph Q if Q0

✓ Q.

Notice that, queries with variables in the place of pred-
icates are not allowed. The set of nodes nd(G) of a data
graph G consists of all the elements of Uso [L that occur in
the triples of G. The set of arc labels al(G) of a data graph
G consist of all the elements of Up that occur in the triples
of G. The set of nodes nd(Q) and the set of arc labels al(Q)
of a query Q are defined in an analogous way.

A class of queries of a special form (namely star queries)
play an important role in this paper.

Definition 3. A query Q is called a star query if there
exists a node c 2 nd(Q) such that for every triple t 2 Q it
is either t = (c, p, v) or t = (v, p, c) for some node v 2 nd(Q)
and some predicate p 2 al(Q). The node c is called the
central node of Q.

It is convenient to use a graphical representation for data
and query graphs. A node (subject or object) which is ei-
ther a URI or a variable is represented as a rounded rect-
angle while an object which is a literal is represented by a
rectangle. A triple (s, p, o) is represented by an arc from
s to o, labeled with p. Moreover, we adopt the following
conventions: strings with initial lowercase letters represent
predicates, while strings with initial uppercase letters de-
note URIs. Literals are represented as strings enclosed in
double quotes. Finally, variable names begin with the ques-
tion mark symbol (?).

Example 1. Fig. 1 depicts a data graph G and a query
graph Q. 2

1In this paper we do not consider typed literals

225



(G) (Q)

hasAuthor

Person2

Article1

Person1
Person3

Article2

hasTitle
hasTitle

year year

Journal1

publishedIn
publishedIn

hasAuthor
hasAuthorhasAuthor

³7LWOH1´

³2005´
³2008´

³7LWOH2´

hasSupervisor

hasAuthor

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

³7LWOH3´

year

³2008´

publishedIn

Journal2

?P1

Article1

?P2

hasTitle year

?J

publishedIn publishedIn

hasAuthor hasAuthorhasAuthor

?T ³2008´

hasSupervisor

?A

n1

n2

n3

n4

n5

n6

n7

t1

t2

t3

t4

t5
t6t7 t8

Figure 1: An embedding of the query graph Q in the data graph G.

In order to compute the answers to a query Q for a given
data graph G, we need to find an appropriate correspon-
dence between the nodes of Q and the nodes of G. This is
formalized by the notion of embedding, defined as follows:

Definition 4. An embedding of a query graph Q in a data
graph G is a total mapping e : nd(Q) ! nd(G) with the
following properties:

1. For each non-variable node v 2 nd(Q), it is e(v) = v.

2. For each triple (s, p, o) 2 Q, (e(s), p, e(o)) is in G.

The tuple (e(X
1

), . . . , e(Xn)), where (X
1

, . . . , Xn) is the out-
put pattern of Q, is said to be an answer to the query Q.

Example 2. Fig. 1 shows an embedding of the query Q in
data graph G. The answer obtained is (?P1, ?A, ?J, ?P2, ?T )
= (Person2, Article2, Journal1, P erson3, “T itle1”). 2

4. DATA GRAPH PARTITIONING
Data graphs may consist of a huge number of data triples,

stored in numerous computer nodes. In this section we de-
fine the notion of the partition of a data graph.

Definition 5. A triple partition of a data graph G is a
tuple P = (G

1

, . . . , Gm) where G
1

, . . . , Gm ✓ G, such thatS
i Gi = G and Gi \Gj = ;, for all i, j, with 1  i < j  m.

Subgraphs G
1

, . . . , Gm are called the graph segments.

From the above definition it follows that graph segments
in a triple partition of a graph G cannot share data triples;
however, they may have common nodes.

Definition 6. Let P = (G
1

, . . . , Gm) be a triple partition
of a data graph G. Then, a border node v of Gi, is a node
that belongs to nd(Gi) \ nd(Gj) \ Uso for some j 6= i. We
denote by B(Gi) the set of border nodes of Gi.

Example 3. (Continued from Example 2). In Fig. 2 we
see a triple partition of the data graph G of Fig. 1. The
shaded nodes correspond to the border nodes between the
graph segments. Consider now the query graph Q appearing
in the right part of Fig. 2. It is easy to see that we cannot
obtain the solution appearing in Example 2 by finding an
embedding of Q in a segment of G appearing in Fig. 2 (as
such an embedding does not exist). 2

5. QUERY DECOMPOSITION
In this section we define the notion of query decomposition

and we show how it can be used in order to compute all the
answers to a given query.

Definition 7. A query decomposition of a query graph Q
is a tuple F = (Q

1

, . . . , Qn) such that Q
1

, . . . , Qn ✓ Q andS
i Qi = Q. A query decomposition is non-redundant if Qi \

Qj = ; for each pair i, j such that 1  i < j  n. A
branching node in Q is a node that belongs to nd(Qi) \

nd(Qj) for a pair i, j, where i 6= j. By B(Q) we denote all
branching nodes of Q.

In this paper, our aim is to construct the embeddings of
a query Q in G, by appropriately combining embeddings
of its subqueries in G. Two embeddings can be combined
only in the case that they agree in the values of nodes that
are common in the corresponding subqueries. The above
requirement is formalized by the following definition:

Definition 8. Let Q
1

, Q
2

be two query graphs and let e
1

,
e
2

be embeddings of Q
1

, Q
2

respectively in a data graph
G. We say that e

1

and e
2

are compatible if for every v 2

nd(Q
1

) \ nd(Q
2

) it is e
1

(v) = e
2

(v). The join of e
1

and e
2

is the embedding e of Q
1

[ Q
2

in G defined as follows:

e(v) =

⇢
e
1

(v) if v 2 nd(Q
1

)
e
2

(v) otherwise

It is not hard to see that the join operation is commutative
and associative. Therefore, we can refer to the embedding
resulting by the join of n mutually compatible embeddings
without ambiguity. The following theorem can be easily
proved by an induction on the number n of subqueries in
the decomposition of a query Q.

Theorem 1. Let F = (Q
1

, . . . , Qn) be a query decompo-
sition of a query graph Q and let G be a data graph. Then e
is an embedding of Q in G if and only if there exist mutually
compatible embeddings e

1

, . . . , en of Q
1

, . . . , Qn in G such
that the join of e

1

, . . . , en is e.

The above theorem implies that in order to compute the
answers to a given query for a data graph G, we can decom-
pose the query into subqueries that belong to a certain class

226



(G1)
Article1

hasTitle year

³7LWOH1´ ³2005´

Person2

Article1

Person3

Article2

hasAuthor

hasAuthor

hasAuthor

hasSupervisor

Article1

Article2

hasTitle
year

Journal1

publishedIn

publishedIn

³2008´

³7LWOH2´

(G2)

(G3)

(G)

hasAuthor

Person4
hasAuthor

Person2

Article1

Person1

Person3

hasTitle
hasTitle

year year

Journal1

publishedIn
publishedIn

hasAuthor
hasAuthorhasAuthor

³7LWOH1´

³2005´
³2008´

³7LWOH2´

hasSupervisor

hasAuthor

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

³7LWOH3´

year

³2008´

publishedIn

Journal2

Article2

hasAuthor

Person1

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

³7LWOH3´

year

³2008´publishedIn

Journal2

Figure 2: triple partition of the data graph G of Fig. 1.

C, compute the embeddings of the subqueries in G (which
may be an easier task due to the special form of the sub-
queries) and then join these embedding to obtain the desired
result. However, given a target class of queries C, it may not
be always possible to decompose an arbitrary query Q into
subqueries that belong to C (for example this is the case if
C is the class of path queries of length 3). Nevertheless, for
every query there exist a non-redundant decomposition into
star subqueries. This follows trivially from the fact that ev-
ery query that consists of a single triple is a star query (with
either the subject or the object being the central node). We
next present a more general result, relating the decompo-
sitions of a query graph into star subqueries to the node
covers of this query graph.

Definition 9. Let Q be a query graph. A set of nodes
V ✓ nd(Q) is called a node cover of Q if for every triple
(s, p, o) 2 Q, it is either s 2 V or o 2 V . A node cover V is
minimal if no proper subset of V is a node cover.

Lemma 1. Let Q be a query graph and let V = {v
1

, . . . vk}

be a minimal node cover of Q. For each vi define the star
query Qv

i

= {t 2 Q | t = (s, p, vi)} [ {t 2 Q | t =
(vi, p, o) and o /2 V }. Then F = (Qv

1

, . . . , Qv
k

) is a non-
redundant decomposition of Q.

Therefore, if a set of nodes is a minimal node cover of a
query Q, then its elements are the central nodes of the star
subqueries in some non-redundant decomposition of Q.

Conversely, in any decomposition (redundant or not) of a
query into stars, the set of the central nodes is a node cover
(not necessarily minimal).

Lemma 2. Let Q be a query graph, let F = (Q
1

, . . . , Qk)
be a decomposition of Q such that Q

1

, . . . , Qk are star queries
and let c

1

, . . . , ck be their central nodes. Then {c
1

, . . . , ck}

is a node cover of Q.

Example 4. In Fig. 3 we see a decomposition of the query
Q into three star queries Q

1

, Q
2

and Q
3

, which is obtained
by the construction of Lemma 1, using the minimal node
cover {n

4

, n
2

, n
5

} of Q. 2

To summarize, suppose that a data graph G is partitioned
into m segments G

1

, . . . , Gm, that are stored in di↵erent
computer nodes. The above discussion suggests the follow-
ing query evaluation strategy:
Step 1: Decompose query Q into star subqueries Q

1

, . . . , Qn.
Step 2: Compute all possible embeddings of each triple in
Q in every segment Gi of G.
Step 3: For each subquery Qj , collect the embeddings of all
triples in Qj and join compatible embeddings in all possible
ways to compute the embeddings of Qj in G.
Step 4: Join compatible embeddings Q

1

, . . . , Qn in all pos-
sible ways to compute the embeddings of Q in G.

6. A MAP-REDUCE ALGORITHM
We start this section with a brief presentation of the Map-

Reduce framework. Then, we give a detailed description of
our algorithm for quering linked-data using Map-Reduce.

6.1 The MapReduce framework
Map-Reduce is a programming framework for processing

large datasets in a distributed manner, using a cluster of
commodity machines. The storage layer for the Map-Reduce
framework is a Distributes File System (DFS), such as the
Hadoop Distributed File System (HDFS). The DFSs di↵er
from conventional file systems in three main aspects. First,
the data files are distributed across the nodes of the cluster.
Second, their block/chuck size (typically 16-128MB in most
of DFSs) is much larger than those in conventional file sys-
tems. Third, replication of chunks in relatively independent
locations ensures availability.

The framework is based on the definition of two functions,
the Map and the Reduce function. In particular, the user
defines the two functions, which run in each cluster node, in
isolation. The map function is applied to one or more files, in
DFS, and results [key,value] pairs. This process is called
Map process/task. The nodes that run the Map processes are
called Mappers, and may run multiple tasks over di↵erent
input files. The master controller is responsible to route the
pairs to the Reducers (i.e., the nodes that apply the reduce
function to the pairs) such that all pairs with the same key
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Figure 3: Query decomposition.

initialize a single reduce process, called reduce task. The
reduce tasks apply the reduce function to the input pairs and
also results [key,value] pairs, which are eventually stored
in the DFS. This procedure describes one MapReduce phase.
Furthermore, the output of the reducer can be set as the
input of a map function, which gives the user the flexibility
to create workflows consisting of Map-Reduce phases.

6.2 The preprocessing phase
In this phase query Q is decomposed into a set of star sub-

queries Q
1

, . . . , Qn. For each subquery Qi, a query proto-
type of the form (bnF lags, nbnF lags, tF lags) is constructed,
where bnF lags, nbnF lags and tF lags have one place for
each branching node, non-branching node, and triple in Q,
respectively. If an element (node or triple) occurs in Qi, then
the corresponding place in the query prototype contains a
“+”, otherwise it contains a “-”. Moreover, an auxiliary list
NBL = [(bi, Qj)| bi 2 B(Q) and bi 62 nd(Qj)] is constructed.

Preprocessing phase emits the above to the mappers of
Phase 1 with key the pair (subqueryID, SegmentID). NBL
is also emitted to all reducers of Phase 1.

For the presentation of the algorithm we assume an enu-
meration n

1

, n
2

, . . . , n
|nd(Q)|

of the nodes of a query Q, such
that n

1

, n
2

, . . . , n
|B(Q)|

are the branching nodes of Q and
n

|B(Q)|+1

, . . . , n
|nd(Q)|

are the non-branching nodes of Q.
We will denote by I the function that gives the index of a
node in nd(Q) with respect to the above enumeration (that
is, for every x 2 nd(Q) it holds x = nI(x)

). We also denote
by Inb the function from nd(Q) � B(Q) to {1, . . . , |nd(Q) �

B(Q)|}, with Inb(x) = I(x) � |B(Q)|. Similarly, we assume
a an enumeration t

1

, t
2

, . . . , t
|Q|

of the triples in Q.
An embedding e of a (sub)query is represented as a pair of

tuples (bn, nbn). If x is a branching (resp. non-branching)
node, then bn[I(x)] (resp. nbn[Inb(x)]) contains the value
e(x). If e is an embedding of a subquery Qi and x is a node
that does not occur in Qi, then an asterisk (’*’) is stored in
the place of e(x).

Example 5. Consider the query graph appearing in Fig.
3 decomposed into three star subqueries. The branching
nodes are n

1

, n
2

and n
3

, while the non-branching nodes are
n

4

, n
5

, n
6

and n
7

. The query prototypes are the following:
Q

1

: (h+, ,+i, h+, ,+, i, h+, , , , , ,+,+i)
Q

2

: (h+,+,+i, h , , ,+i, h ,+, , ,+,+, , i)
Q

3

: (h+,+, i, h ,+, , i, h , ,+,+, , , , i)
The list NBL = [(n

2

, Q
1

), (n
3

, Q
3

)] is also constructed. 2

6.3 Phase 1 of the algorithm
The first phase of the algorithm computes the embeddings

of the star subqueries Q
1

, . . . , Qn in G.

6.3.1 Mapper of Phase 1
Each mapper gets as input a graph segment Gj , a star

subquery Qi and the NBL list. We denote by ci the central
node of Qi (recall that this node appears in every triple
of Qi). The operation of the mapper is divided into two
parts. Observe that if for some embedding e of Qi in G
the value of ci is a non-border node of Gj (i.e., is e(ci) 2

(nd(Gi) � B(Gi))), then it holds e(v) 2 Gj for every node
v 2 nd(Qi). This means that e is an embedding of Qi into
Gj and it can be computed locally. This computation is
performed by the second part of the mapper.

The first part of the mapper handles the information that
is relevant to the remaining embeddings: it computes all the
embeddings of each triple of Qi in Gj that map the central
node ci to a border node, and emits the results to appropriate
reducers. More specifically, let t = (s, p, o) be a triple that
belongs to subquery Qi and let e be an embedding of t into
Gj such that e(ci) is a border node of Gj . If the central
node of Qi is s then the mapper emits a pair (key, value),
where key = (Qi, e(s)) and value = (o, e(o)). Otherwise
(i.e., the central node of Qi is o) then key = (Qi, e(o)) and
value = (s, e(s)).

Notice that embeddings of triples in Qi that map ci to dif-
ferent nodes of the data graph are incompatible and cannot
be joined to obtain an embedding of Qi into G. Since the
value of ci is included in the key, incompatible embeddings
of triples are emitted to di↵erent reducers, while compatible
embeddings are emitted to the same reducer.

The second part of the mapper, computes all the embed-
dings of Qi in Gj , which map ci to a non-border node of
Gj . This can be achieved either by adding an appropriate
conjunct to Qi, or by computing all the embeddings of Qi

in Gj and then removing those that assign border nodes to
ci. The embedings computed in the second part of the map-
per are directly emitted to the mappers of Phase 2 (rather
than to the reducers of Phase 1). Similarly, the values of
branching nodes are emitted to the mappers of Phase 2.

mapper1((Qi, Gj), (GjData, B(GjData), subqueryInfo, NBL))

//(Qi,Gj): Qi/Gj is the ID of a subquery/data segment

// GjData: the content of the data graph segment Gj

// B(GjData): the set of border nodes of Gj

// SubqueryInfo: prototypes/branching & non-branching nodes

/triples of Q

// NBL: the list of missing branching nodes

begin

- ci := the central node of Qi

% Part 1

- for each triple t = (ci, p, o) in Qi do

begin

- compute E = {e | e is an embedding of {t} in GjData
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and e(ci) 2 B(GjData) };
- for each embedding e in E do

emit([(Qi, e(ci)),(o, e(o))])
end

- for each triple t = (s, p, ci) in Qi do

begin

- compute E = {e | e is an embedding of {t} in GjData

and e(ci) 2 B(GjData) };
- for each embedding e in E do

emit([(Qi, e(ci)),(s, e(s))])
end

% Part 2

- compute E = {e | e is a embedding of Qi in GjData

and e(ci) /2 B(GjData) }
- for each embedding e = (bn, nbn) in E do

begin

- emitToSecondPhase([Qi, (bn, nbn)]);

- for k = 1 to |bn| do
- if (bn[k] != ’*’) then

- for each (nk, Qj) in NBL do

- emitToSecondPhase([Qj , (nk, bn[k])]);
end

end.

Example 6. (Continued from Example 5). In this exam-
ple we see the application of the mapper1 on the pairs of
subqueries and graph segments:
Applying mapper1 on (Q

1

, G
1

) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q

1

, Article1), (n
1

, P erson4) (embedding of t1)
(Q

1

, Article1), (n
6

, “T itle1”) (embedding of t7)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q

2

, G
1

) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q

2

, Article1), (n
1

, P erson4) (embedding of t2)
Besides, the following key, value pairs are emitted directly
(see Part 2) to the mapper2 (mapper of Phase 2):
Q

2

, (hPerson4, Article3, Journal2i, h⇤, ⇤, ⇤, “2008”i)
Q

1

, (n
2

, Article3)
Q

3

, (n
3

, Journal2)
Applying mapper1 on (Q

3

, G
1

) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q

3

, P erson4), (n
2

, Article1) (embedding of t4)
(Q

3

, P erson4), (n
2

, Article3) (embedding of t4)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q

1

, G
2

) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q

1

, Article1), (n
1

, P erson1) (embedding of t1)
(Q

1

, Article1), (n
1

, P erson2) (embedding of t1)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q

2

, G
2

) results in emission (see Part
1) of the following key, value pairs to the reducer1 :
(Q

2

, Article1), (n
1

, P erson1) (embedding of t2)
(Q

2

, Article1), (n
1

, P erson2) (embedding of t2)
(Q

2

, Article2), (n
1

, P erson2) (embedding of t2)
(Q

2

, Article2), (n
1

, P erson3) (embedding of t2)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q

3

, G
2

) results in no emission of
any key, value pair to the reducer1. However, the following
key, value pairs are emitted (see Part 2) to the mapper2 :
Q

3

, (hPerson4, Article1, ⇤i, h⇤, P erson1, ⇤, ⇤i)
Q

3

, (hPerson2, Article2, ⇤i, h⇤, P erson3, ⇤, ⇤i)
Q

1

, (n
2

, Article1)
Q

1

, (n
2

, Article2)
Applying mapper1 on (Q

1

, G
3

) results in emission of the
following key, value pair to the reducer1 :
(Q

1

, Article1), (n
3

, Journal1) (t8)

No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q

2

, G
3

) results in emission of the
following key, value pair to the reducer1 :
(Q

2

, Article1), (n
3

, Journal1) (t5)
(Q

2

, Article2), (n
3

, Journal1) (t5)
(Q

2

, Article2), (n
7

, “2008”) (t6)
No key value pairs are emitted to Phase 2.
Applying mapper1 on (Q

3

, G
3

) produces no results. 2

6.3.2 Reducer of Phase 1
For each key (Qi, v) the corresponding reducer computes

all the embeddings of Qi that map central node ci of Qi to
v. The input to this reducer is a list of pairs of the form
(nk, u), where nk is a node of Qi di↵erent from ci and u is
a possible values for nk in an embedding of Qi in G.

Suppose that nk
1

, nk
2

, . . . , nk
m

are the non-central nodes
in Qi. The reducer constructs for every j = 1, . . . , m a set
Lk

j

of all possible values for node nk
j

. Then for each element
(x

1

, x
2

, . . . , xm) of the cartesian product Lk
1

⇥ Lk
2

⇥ · · · ⇥

Lk
m

it constructs an embedding e = (bn, nbn) of Qi in G,
such that e(ci) = v and e(nk

j

) = xj and emits (Qi, (bn, nbn))
(see Subsection 6.2 for the representation of an embedding).

Moreover, if every list Lk
1

, Lk
2

, . . . , Lk
m

is non-empty
(that is, at least one embedding of Qi has been found), re-
ducer1 emits the values of missing branching nodes.

reducer1((Qi, v), values)

// Qi: a subquery ID

// v: the value of the central node of Qi

// values: contains a list of pairs (x, u) and the NBL list.

begin

- allNonEmpty := true

- for each non-central node x in Qi do

begin

- L[x] := {u | (x, u) 2 values}
- if L[x] is empty then allNonEmpty := false

end

- if allNonEmpty then

begin

- create an embedding with undefined values

(bn, nbn) := (h⇤, . . . , ⇤i, h⇤, . . . , ⇤i)
- ci := the central node of Qi

- L[ci] := {v}
- if ci is a branching node

then bn[I(ci)] := v

else nbn[Inb(ci)] := v

- E := {(bn, nbn)}
- for each non-central node x in Qi do

begin

- E

0

:= ;
- for each e in E do

- for each u in L[x] do
begin

- create a copy e

0 = (bn0

, nbn

0) of e

- if x is a branching node

then bn

0[I(x)] := u

else nbn

0[Inb(x)] := u

- insert (bn0

, nbn

0) in E

0

end

- E := E

0

end

- for each embedding e = (bn, nbn) in E do

- emit([Qi, (bn, nbn)])

- for each (x, Qj) in NBL do

- if x is a node in Qi then

- for each u in L[x] do emit([Qj , (x, u)])
end

end.

Example 7. (Continued from Example 6).
The reducer with key (Q

1

, Article1) receives the list of values
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[(n
1

, P erson4), (n
6

, “T itle1”), (n
1

, P erson1), (n
1

, P erson2),
(n

3

, Journal1)]. It constructs the lists: Ln
1

= {Person1,
P erson2, P erson4}, Ln

3

= {Journal1}, Ln
6

= {“T itle1”}.
It emits the following key, value pairs:
Q

1

, (hPerson1, ⇤, Journal1i, hArticle1, ⇤, T itle1, ⇤i)
Q

1

, (hPerson2, ⇤, Journal1i, hArticle1, ⇤, T itle1, ⇤i)
Q

1

, (hPerson4, ⇤, Journal1i, hArticle1, ⇤, T itle1, ⇤i)
Q

3

, (n
3

, Journal1)
The reducer with key (Q

2

, Article1) receives the list of values
[(n

1

, P erson4), (n
1

, P erson1), (n
1

, P erson2), (n
3

, Journal1)].
It constructs the lists: Ln

1

= {Person1, P erson2, P erson4},
Ln

3

= {Journal1}, Ln
7

= {}. Nothing is emitted.
The reducer with key (Q

2

, Article2) receives the list of values
[(n

1

, P erson2), (n
1

, P erson3), (n
3

, Journal1), (n
7

, “2008”)].
It constructs the lists: Ln

1

= {Person2, P erson3}, Ln
3

=
{Journal1}, Ln

7

= {“2008”}.
It emits the following key, value pairs:
Q

2

, (hPerson2, Article2, Journal1i, h⇤, ⇤, ⇤, “2008”i)
Q

2

, (hPerson3, Article2, Journal1i, h⇤, ⇤, ⇤, “2008”i)
Q

1

, (n
2

, Article2)
Q

3

, (n
3

, Journal1)
The reducer with key (Q

3

, P erson4) receives the list of values
[(n

2

, Article1), (n
2

, Article3)]. It constructs the lists: Ln
1

=
{}, Ln

2

= {Article1, Article3}. Nothing is emitted. 2

6.4 Phase 2 of the algorithm
Phase 2 of the algorithm is similar to the Phase 2 of the

algorithm proposed in [10].

6.4.1 Mapper of Phase 2
Each mapper gets as input all the embeddings of a specific

subquery Qi; moreover for each branching node that does
not occur in Qi it gets as input the values assigned to this
node by the embeddings of the other queries. It fills in their
missing branching node values using the corresponding val-
ues in the input, and emits the resulted embeddings to the
reducers of Phase 2. The key is the tuple of the branching
node values, which implies that two embeddings are emitted
to the same reducer if and only if they are compatible.

mapper2(Qi, values)

// Qi: the ID of a subquery

// values: a set E of the parts (bn, nbn) of the embeddings

// of Qi and a set V of pairs (nk, v),
// where v is a candidate value for bn[k]
begin

- for each embedding e = (bn, nbn) in E do

- for each instance bn

0

of bn using the values in V do

- emit([bn0

, (Qi, nbn)])
end.

Example 8. (Continued from Example 7). The mapper
that works for the subquery Q

1

, gets a list of values that
contain the embeddings of Q

1

in G:
Q

1

, (hPerson1, ⇤, Journal1i, hArticle1, ⇤, T itle1, ⇤i)
Q

1

, (hPerson2, ⇤, Journal1i, hArticle1, ⇤, T itle1, ⇤i)
Q

1

, (hPerson4, ⇤, Journal1i, hArticle1, ⇤, T itle1, ⇤i)
and the values of missing branching nodes:
(n

2

, Article1), (n
2

, Article2), (n
2

, Article3)
It emits the following key, value pairs to the reducers of
Phase 2:
hPerson1, Article1, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)
hPerson1, Article2, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)
hPerson1, Article3, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)
hPerson2, Article1, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)

hPerson2, Article2, Journal1i, (Q
1

, hArticle1, ⇤, T itle1, ⇤i)
hPerson2, Article3, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)
hPerson4, Article1, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)
hPerson4, Article2, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)
hPerson4, Article3, Journal1i, (Q

1

, hArticle1, ⇤, T itle1, ⇤i)
The mapper that works for the subquery Q

2

, receives a list
of values containing the following embeddings
Q

2

, (hPerson4, Article3, Journal2i, h⇤, ⇤, ⇤, “2008”i)
Q

2

, (hPerson2, Article2, Journal1i, h⇤, ⇤, ⇤, “2008”i)
Q

2

, (hPerson3, Article2, Journal1i, h⇤, ⇤, ⇤, “2008”i)
Notice that Q

2

has no missing branching nodes. The mapper
emits the following key, value pairs to the reducers:
hPerson4, Article3, Journal2i, (Q

2

, h⇤, ⇤, ⇤, “2008”i)
hPerson2, Article2, Journal1i, (Q

2

, h⇤, ⇤, ⇤, “2008”i)
hPerson3, Article2, Journal1i, (Q

2

, h⇤, ⇤, ⇤, “2008”i)
The mapper that works for the subquery Q

3

, get a list of
values that contain the embeddings of Q

3

in G:
Q

3

, (hPerson4, Article1, ⇤i, h⇤, P erson1, ⇤, ⇤i)
Q

3

, (hPerson2, Article2, ⇤i, h⇤, P erson3, ⇤, ⇤i)
and the values of missing branching nodes:
(n

3

, Journal1), (n
3

, Journal2)
It emits the following key, value pairs to the reducers:
hPerson4, Article1, Journal1i, (Q

3

, h⇤, P erson1, ⇤, ⇤i)
hPerson4, Article1, Journal2i, (Q

3

, h⇤, P erson1, ⇤, ⇤i)
hPerson2, Article2, Journal1i, (Q

3

, h⇤, P erson3, ⇤, ⇤i)
hPerson2, Article2, Journal2i, (Q

3

, h⇤, P erson3, ⇤, ⇤i) 2

6.4.2 Reducer of Phase 2
Each reducer gets as input embeddings for each sub-query

that are compatible (each one of them assigns the values in
the key of the reducer to the branching nodes of the query).
The embeddings (one for each subquery in (Q

1

, . . . , Qn)) are
joined to construct the final answers of Q:

reducer2(key, values)

// key: a tuple of branching node values

// values: pairs of the form

(Qi, partial embedding for non-branching nodes)
begin

- for each join obtained by using one

embedding for each subquery do

- Emit the result produced by this join

end.

Example 9. (Continued from Example 8). The reducer
with key hPerson2, Article2, Journal1i receives the list of
values [(Q

1

, hArticle1, ⇤, T itle1, ⇤i), (Q
2

, h⇤, ⇤, ⇤, ”2008”i),
(Q

3

, h⇤, P erson3, ⇤, ⇤i)] and constructs the unique embed-
ding of Q in G:
(hPerson2, Article2, Journal1i,
hArticle1, P erson3, T itle1, “2008”i)

The remaining 11 reducers do not return any answer (they
don’t receive values for at least one subquery). 2

6.5 Implementation of the algorithm and ex-
perimental results

In this section, we present a set of preliminary experi-
ments performed on a Hadoop cluster of 14 nodes of the
following characteristics: Intel Pentium(R) Dual-Core CPU
E5700 3.00GHz with 4GB RAM. We used five di↵erent
datasets of sizes 113.6MB, 231.6MB, 491.5MB, 1.2GB, and
2.5GB obtained and adapted from the Lehigh University
Benchmark (LUBM)2. These data sets are partitioned into

2http://swat.cse.lehigh.edu/projects/lubm/
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four, nine or fourteen data segments in correspondence with
the number of the nodes of the cluster used in the exper-
iment. Data segments are stored in di↵erent nodes of the
cluster, in relational MySQL databases, whose schema con-
sists of two tables one containing the triples of the segment
and the other containing the border nodes.

The results of the first experiment are depicted in Table 1,
where we can see that the algorithm is scalable in terms of
the dataset size. In addition, the degree of the star (i.e. the
number of the triples in the star) also a↵ects the execution
time: the larger the degree the smaller the execution time.
The results of the second experiment (depicted in Table 2)

Dataset stars of Stars of Stars of Num of
size degree 6 degree 3 degree 2 Answers

113.6MB 190 219 254 93
231.6MB 212 258 280 189
491.5MB 310 369 459 402
1.2GB 650 689 727 999
2.5GB 1149 1200 1261 2007

Table 1: Execution times (in seconds) for three dif-
ferent star-decompositions of a query in three dif-
ferent datasets, using a cluster of 14 nodes.

show that our algorithm scales well by increasing the number
of nodes in the cluster. In this experiment, the same queries
have been computed (using the same star-decompositions)
in 4, 9 and 14 computer nodes, for a fixed data set of size
231.6MB. Finally, the results of third experiment, depicted

# nodes stars of stars of stars of
degree 6 degree 3 degree 2

4 278 322 343
9 271 309 316
14 212 258 280

Table 2: Execution times (in seconds) for three dif-
ferent star-decompositions of a query in a dataset of
size 231.6MB, using clusters of 4, 9, and 14 nodes.

in Table 3, show that the algorithm of this paper performs
better in most cases (depending on the form of the given
query) than the algorithm proposed in [10].

Alg. query1 query2 query3 query4 query5

[10] 8,24 9,44 9,03 10,37 5,06
this 4,27 5,45 5,25 11,53 5,59

Table 3: Execution times (in minutes) of two algo-
rithms for five di↵erent queries, in a dataset of size
491,5MB, using a cluster of 14 nodes.

7. CONCLUSION
In this paper, we present a two-phase MapReduce algo-

rithm, for querying large amount of linked data, that extends
our approach in [10]. The input query is decomposed into
star subqueries and the answers to these subqueries are com-
puted and joined to obtain the answers to the given query.
Experimental evaluation shows that the algorithm is scal-
able in terms of the size of the data graph as well as the
number of nodes in the cluster. In the near future we plan
to compare the performance of the algorithm for di↵erent
methods for decomposition of the input query into stars.
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