Frequent Pattern Mining from Dense Graph Streams

Juan J. Cameron
University of Manitoba, Winnipeg, MB, Canada
umcame33@cs.umanitoba.ca

Fan Jiang
University of Manitoba, Winnipeg, MB, Canada
umjian29@cs.umanitoba.ca

ABSTRACT

As technology advances, streams of data can be produced in
many applications such as social networks, sensor networks,
bioinformatics, and chemical informatics. These kinds of
streaming data share a property in common—namely, they
can be modeled in terms of graph-structured data. Here, the
data streams generated by graph data sources in these ap-
plications are graph streams. To extract implicit, previously
unknown, and potentially useful frequent patterns from these
streams, efficient data mining algorithms are in demand.
Many existing algorithms capture important streaming data
and assume that the captured data can fit into main mem-
ory. However, problems arise when such an assumption does
not hold (e.g., when the available memory is limited). In this
paper, we propose a data structure called DSMatriz for cap-
turing important data from the streams—especially, dense
graph streams—onto the disk when the memory space is
limited. In addition, we also propose two stream mining al-
gorithms that use DSMatrix to mine frequent patterns. The
tree-based horizontal mining algorithm applies an effective
frequency counting approach to avoid recursive construction
of sub-trees as in many tree-based mining. The vertical min-
ing algorithm makes good use of the information captured
in the DSMatrix for mining.

Categories and Subject Descriptors

E.1 [Datal]: Data Structures—graphs and networks; H.2.8
[Database Management|: Database Applications—data
mining

General Terms

Algorithms; Design; Experimentation; Management; Perfor-
mance; Theory

Keywords

Data mining, frequent pattern discovery, graph patterns,
graph-structured data, social networks, extending database
technology, database theory

(©)2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

Alfredo Cuzzocrea
ICAR-CNR & Uni. Calabria, Rende (CS), Italy
cuzzocrea@si.deis.unical.it

Carson K. Leung
University of Manitoba, Winnipeg, MB, Canada
kleung@cs.umanitoba.ca

1. INTRODUCTION & RELATED WORK

Since the introduction of the research problem of frequent
pattern mining from traditional static databases [3], nu-
merous studies [9, 18, 22] have been proposed. Examples
include the Apriori algorithm [3]. To improve efficiency,
Han et al. [16] proposed the FP-growth algorithm, which
uses an extended prefix-tree structure called Frequent Pat-
tern tree (FP-tree) to capture the content of the transaction
database. Unlike Apriori that scans the database k times
(where k is the maximum cardinality of the mined frequent
patterns), FP-growth scans the database twice. Although
there are some works [5, 15] that use disk-based structure
for mining, they mostly mine frequent patterns from static
databases. As a preview, we mine frequent patterns from
dynamic data streams. When dealing with these stream-
ing data, we no longer have the luxury of scanning the data
multiple times, for instance in support of complex knowledge
discovery processes from data streams, like OLAP analysis
over data streams (e.g., [10])).

Over the past decade, the automation of measurements
and data collection has produced high volumes of valuable
data at high velocity in many application areas. The in-
creasing development and use of a large number of sensors
has added to this situation. These advances in technology
have led to streams of data such as sensor networks, social
networks, road networks [19, 28]. These kinds of data share
in common the property of being modeled in terms of graph-
structured data [23] so that the streams they generate are,
properly, graph streams (i.e., streams of graphs). In order to
be able to make sense of streaming data, stream mining al-
gorithms are needed [17, 24, 26]. When comparing with the
mining from traditional static databases, mining from dy-
namic data streams is more challenging due to the following
properties of data streams:

Property 1: Data streams are continuous and unbounded.
To find frequent patterns from streams, we no longer have
the luxury of performing multiple data scans. Once the
streams flow through, we lose them. Hence, we need some
data structures to capture the important contents of the
streams (e.g., recent data—because users are usually more
interested in recent data than older ones (e.g., [12, 11])).

Property 2: Data in the streams are mot necessarily uni-
formly distributed; their distributions are usually changing
with time. A currently infrequent pattern may become fre-
quent in the future, and vice versa. So, we have to be care-
ful not to prune infrequent patterns too early; otherwise, we
may not be able to get complete information such as fre-
quencies of certain patterns (as it is impossible to retract

240

those pruned patterns).

Several approximate and exact algorithms have been pro-
posed to mine frequent patterns from data streams. Approx-
imate algorithms (e.g., FP-streaming [14], TUF-streaming
[20]) focus mostly on efficiency. However, due to approxi-
mate procedures, these algorithms may find some infrequent
patterns or miss frequency information of some frequent pat-
terns (i.e., some false positives or negatives). An ezact al-
gorithm mines only truly frequent patterns (i.e., no false
positives and no false negatives) by (i) constructing a Data
Stream Tree (DS Tree) [21] to capture contents of the stream-
ing data and then (ii) recursively building FP-trees for pro-
jected databases based on the information extracted from
the DSTree.

While the above two properties play an important role in
the mining of data streams in general, they play a more
challenging role in the mining of a special class of data
streams—namely, graph streams. Nowadays, various graph
data sources can easily generate high volumes of streams
of graphs (e.g., direct acyclic graphs representing human
interactions in meetings [13], social networks representing
connections or friendships among social individuals [7, 25]).
However, when comparing with data streams in general,
graph streams in particular are usually more difficult to
handle [4]. Problems and state-of-the-art solutions are high-
lighted in recent studies. For instance, Aggarwal et al. [2]
studied the research problem of mining dense patterns in
graph streams, and they proposed probabilistic algorithms
for determining such structural patterns effectively and effi-
ciently. Bifet et al. [4] mined frequent closed graphs on evolv-
ing data streams. Their three innovative algorithms work on
coresets of closed subgraphs, compressed representations of
graph sets, and maintain such sets in a batch-incremental
manner. Moreover, Aggarwal [1] explored a relevant prob-
lem of classification of graph streams. Along this direction,
Chi et al. [8] proposed a fast graph stream classification
algorithm that uses discriminative clique hashing (DICH),
which can be applicable for OLAP analysis over evolving
complex networks. Furthermore, Valari et al. [27] discov-
ered top-k dense subgraphs in dynamic graph collections by
means of both exact and approximate algorithms. As a pre-
view, while these recent studies focus on graph mining, the
mining algorithms we propose in the current paper work on
both graph-structured data and other non-graph data.

Note that, although memory is not too expensive nowa-
days, the volume of data generated in data streams (in-
cluding graph streams) also keeps growing at a rapid rate.
Hence, algorithms for mining frequent patterns with limited
memory are still in demand, so as to deal with the probing
case of streams generated by graph data sources. For in-
stance, Cameron et al. [6] studied this topic and proposed
an algorithm that works well for sparse data streams in lim-
ited memory space. In contrast, the mining algorithms we
propose in the current paper are designed to mine dense
data streams in limited memory space. These algorithms
can be viewed as complements to the sparse stream mining
algorithm.

Here, key contributions of our current paper include a
simple yet powerful on-disk data structure called DSMa-
triz for capturing and maintaining relevant data found in
the streams, including dense graph streams. The DSMa-
trix is designed for stream mining of frequent patterns with
window-sliding models. The corresponding tree-based hori-

zontal mining algorithm builds a tree for data in the current
window captured in the DSMatrix. Moreover, our frequency
counting technique effectively avoids the recursive building
of FP-trees for projected databases, and thus saving space.
Furthermore, our vertical mining algorithm takes advantage
of the data representation of the DSMatrix to mine frequent
patterns efficiently. As the proposed DSMatrix can gener-
ally be applicable to different kinds of streaming data, it can
be used in graph streams where memory requirements are
very demanding.

This paper is organized as follows. Background is pro-
vided in Section 2. Section 3 presents our DSMatrix struc-
ture for capturing important information from dense streams
and describes how our DSMatrix can efficiently mine fre-
quent patterns from graph streams. Then, we discuss how
we make use of the DSMatrix for horizontal (Section 4) and
vertical (Section 5) mining of frequent patterns extracted
from graph streams. Section 6 focuses on an analytical eval-
uation of the properties of the DSMatrix structure in com-
parison with other similar (stream) frequent pattern struc-
tures. Section 7 shows experimental results. Finally, con-
clusions are given in Section 8.

2. BACKGROUND

To mine frequent patterns, an exact stream mining algo-
rithm [21] first constructs a Data Stream Tree (DSTree),
which is then used as a global tree for recursively generat-
ing smaller FP-trees (as local trees) for projected databases.
Due to the dynamic nature of data streams (as seen in Prop-
erties 1 and 2), frequencies of items are continuously af-
fected by the insertion of new batches (and the removal of
old batches) of transactions. Arranging items in frequency-
dependent order may lead to swapping—which, in turn, can
cause merging and splitting—of tree nodes when frequen-
cies change. Hence, in the DSTree, transaction items are ar-
ranged according to some canonical order (e.g., alphabetical
order), which can be specified by the user prior to the tree
construction or mining process. Consequently, the DSTree
can be constructed using only a single scan of the graph
streams. Note that the DSTree is designed for processing
streams within a sliding window. So, for a window size of
w batches, each tree node keeps (i) an item and (ii) a list of
w frequency values (instead of a single frequency count in
each node of the FP-tree for frequent pattern mining from
static databases). Each entry in this list captures the fre-
quency of the item in each batch of dynamic streams in the
current window. By so doing, when the window slides (i.e.,
when new batches are inserted and old batches are deleted),
frequency information can be updated easily. Consequently,
the resulting DSTree preserves the usual tree properties that
(i) the total frequency (i.e., sum of w frequency values) of
any node is at least as high as the sum of total frequencies
of its children and (ii) the ordering of items is unaffected by
the continuous changes in item frequencies.

With the aforementioned DSTree, the mining is “delayed”
until it is needed. Hence, once the DSTree is constructed,
it is always kept up-to-date when the window slides. The
exact mining algorithm mines frequent patterns from the
updated DSTree by performing the following steps. It first
traverses/extracts relevant tree paths upwards and sums the
frequency values of each list in a node representing an item
(or itemset)—to obtain its frequency in the current slid-
ing window—for forming an appropriate projected database.

241

Afterwards, the algorithm constructs a FP-tree for the pro-
jected database of each of these frequent patterns of only
1 item (i.e., l-itemset) such as an {z}-projected database
(in a similar fashion as in the FP-growth algorithm for min-
ing static data [16]). Thereafter, the algorithm recursively
forms subsequent FP-trees for projected databases of fre-
quent k-itemsets where k > 2 (e.g., {z,y}-projected data-
base, {z, z}-projected database, etc.) by traversing paths in
these FP-trees. As a result, the algorithm finds all frequent
patterns. Note that, as items are consistently arranged ac-
cording to some canonical order, the algorithm guarantees
the inclusion of all frequent items using just upward traver-
sals. Moreover, there is also no worry about possible omis-
sion or double-counting of items during the mining process.
Furthermore, as the DSTree is always kept up-to-date, all
frequent patterns—which are embedded in batches within
the current sliding window—can be found effectively.

In the remainder of this paper, we call the aforementioned
exact algorithm that uses the DSTree as the global tree, from
which FP-trees for subsequent projected databases can be
constructed recursively, the (global DSTree, local FP-
trees) mining option. It works well when memory space
is not an issue. The success of this algorithm mainly re-
lies on the assumption—usually made for many tree-based
algorithms [16]—that all tree (i.e., the global tree together
with subsequent FP-trees) fit into the memory. For example,
when mining frequent patterns from the {x,y, z}-projected
database, the global tree and two subsequent FP-trees (for
the {z}-, {z,y}- and {z,vy, z}-projected databases) are all
assumed to be fit into memory.

However, there are situations where the memory is so lim-
ited that not all the trees can fit into memory, like the case
of streaming generated from graph data sources. To han-
dle these situations, the Data Stream Table (DSTable)
[6] was proposed. The DSTable is a two-dimensional table
that captures on the disk the contents of transactions in all
batches within the current sliding window. Each row of the
DSTable represents a domain item. Like the DSTree, items
in the DSTable are arranged according to some canonical
order (e.g., alphabetical order), which can be specified by
the user prior to the construction of the DSTable. As such,
table construction requires only a single scan of the graph
stream. Each entry in the resulting DSTable is a “pointer”
that points to the location of the table entry (i.e., which row
and which column) for the “next” item in the same transac-
tion. When dealing with graph streaming data, the DSTable
also keeps w boundary values (to represent the boundary
between w batches in the current sliding window) for each
item. By doing so, when the window slides, transactions in
the old batch can be removed and transactions in the new
batch can be added easily.

Similar to mining with the DSTree, the mining with this
DSTable is also “delayed” until it is needed. Once the DSTable
is constructed and kept up-to-date when the window slides,
the mining algorithm first traverses/extracts relevant trans-
actions from the DSTable. Then, the algorithm (i) con-
structs a FP-tree for the projected database of each of these
1-itemsets and (ii) recursively forms subsequent FP-trees for
projected databases of frequent k-itemsets (where k > 2) by
traversing the paths of these FP-trees. As a result, the al-
gorithm finds all frequent patterns. In the remainder of this
paper, we call this the (global DSTable, local FP-trees)
mining option.

Figure 1: A graph stream (Example 1).

Ezxample 1. For illustrative purpose, let us consider a slid-
ing window of size w = 2 batches (i.e., only two batches
are kept) and the following segments in a stream of graphs,
where each graph G = (V, E) consists of |V| = 4 vertices
(Vertices a, 8,7 and §) and |E| < 6 edges:

o At time T3, E = {(a, 8), (, 8), (5,7), (7,0) };

o At time T3, E = {(a, 8), (8,7), (8,9), (7,6)};

o At time T3, E = {(a, B), (a,7), (0, 6) };

o At time Ty, E = {(a, 8), (a,, 8), (v, 6)};

o At time 7"57 E = {(a,ﬁ), (av 6)7 (ﬂ’ ’Y)v (’%6)}7 and
o At time Ty, E = {(o,7), (a,8), (8,7)}.

See Figure 1. These graphs may represent some interactions
in meetings or friendships among social individuals. For
simplicity, we represent these edges by six symbols a, b, ¢, d, e
and f. Consequently, we get (i) transactions t1 = {a, ¢, d, f},
ts = {a,d,e, f} and ¢35 = {a,b,c} in the first batch Bu;
as well as (ii) transactions t4 = {a,c, f},ts = {a,¢,d, f}
and t¢ = {b,c¢,d} in the second batch Bs. Let the user-
specified minsup threshold be 2. Then, the DSTable stores
the following information:

DSTable:

Row BOUNDARIES CONTENTS
Edge a: | Cols3&5 | (¢, 1),(d,2),(b,1);(c,3),(c,4)
Edgeb: | Cols1& 2 | (c¢,2);(c,5)
Edge c: Cols 2 & 5 | (d,1), end; (f,3),(d,3),(d,4)
Edged: | Cols2& 4 | (f,1),(e,1);(f,4), end
Edgee: | Cols1&1 | (f,2);
Edge f: | Cols2 & 4 | end, end; end, end

In the DSTree, the first entry in Row a with value (¢, 1)—
which captures a transaction starting edge/item a and hav-
ing c as the second edge—points to the 1st column of Row c.
Its value (d, 1) points to the 1st column of Row d, which cap-
tures the value (f,1). This indicates the third and fourth
edges are d and f, respectively. Then, the 1st column of
Row e with value “end” indicates the end of the transac-
tion containing {a,c,d, f}. Based on contents of the entire
DSTable, the mining algorithm first finds frequent single-
tons {a}, {b},{c},{d} and {f}. The algorithm then con-
structs an FP-tree for the {a}-projected database (i.e., trans-
actions containing a) to get frequent 2-itemsets {a, c}, {a, d}
and {a, f}. From this FP-tree, the algorithm recursively
constructs subsequent FP-trees (e.g., for {a,c}-, {a,c,d}-
and {a, d}-projected databases). Afterwards, the algorithm
constructs an FP-tree for the {b}-projected database (i.e.,
transactions containing b), from which subsequent FP-trees
are constructed. Similar steps apply to {c}- and {d}-proj-
ected databases.

242

The boundary information “Cols 3 & 5” for Row a indi-
cates that (i) the boundary between batches B; and Bs is
at the end of column 3 and (ii) batch Bz ends at column 5.
Hence, when a new batch comes in, the old batch is removed.
In this case, the first three columns of Row a (due to “Cols 3
& 5” in Row a), the first 1 column of Row b (due to “Cols 1
& 2” in Row b), the first 2 columns of Rows ¢ and d, the first
1 column of Row e, as well as the first 2 columns of Row f
can be removed. [J

Observed from the above example, mining with the (global
DSTree, local FP-trees) option may suffer from several prob-
lems when handling data streams (especially, dense graph
streams) with limited memory. Some of these problems are
listed as follows:

P1. To facilitate easy insertion and deletion of contents
in the DSTable when the window (of size w batches)
slides, the DSTable keeps w boundary values for each
row (representing each of the m domain items). Hence,
the DSTable needs to keep a total of m x w boundary
values.

P2. Each table entry is a “pointer” that indicates the lo-
cation in terms of row name (e.g., Row ¢) and col-
umn number (e.g., Column 1) of the table entry for
the “next” item in the same transaction. When the
data stream is sparse, only a few “pointers” need to
be stored. However, when the graph stream is dense,
many “pointers” need to be stored. Given a total of
|T'| transactions in all batches within the current slid-
ing window, there are potentially m x |T'| “pointers”
(where m is the number of domain items).

P3. During the mining process, multiple FP-trees need to
be constructed and kept in memory (e.g., FP-trees for
all {a}-, {a,c}- and {a,c, d}-projected databases are
required to be kept in memory).

3. THE DSMatrix DATA STRUCTURE

In attempt to solve the above problems while mining fre-
quent patterns from data streams (especially, dense graph
streams) with limited memory, we propose a 2-dimensional
structure called Data Stream Matrix (DSMatrix). This
matrix structure captures the contents of transactions in all
batches within the current sliding window by storing them
on the disk. Note that the DSMatrix is a binary matrix,
which represents the presence of an item z in transaction ¢;
by a “1” in the matrix entry (¢;,z) and the absence of an
item y from transaction t; by a “0” in the matrix entry (¢;,).
With this binary representation of items in each transaction,
each column in the DSMatrix captures a transaction. Each
column in the DSMatrix can be considered as a bit vector.

Similar to the DSTable, our DSMatrix also keeps track
of any boundary between two batches so that, when the
window slides, transactions in the older batches can be eas-
ily removed and transactions in the newer batches can be
easily added. Note that, in the DSTable, boundaries may
vary from one row (representing an item) to another row
(representing another item) due to the potentially differ-
ent number of items present. Contrarily, in our DSMatrix,
boundaries are the same from one row to another because
we put a binary value (0 or 1) for each transaction.

Example 2. Let us revisit Example 1. The information
captured by that DSTable can be effectively captured by
our DSMatrix, but in less space:

Our DSMatrix:

BounDARIES: Cols 3 & 6
Row CONTENTS
Row a: 111;110
Row b: 001;001
Row c: 101;111
Row d: 110;011
Row e: 010;000
Row f: 110;110

When compared with the DSTable, we do not need to store
the same boundary information multiple times (for the m do-
main items). We only need to store it once. []

Hence, with our DSMatrix, we solve previous Problems P1
and P2 of the DSTree, as follows:

S1. Recall that the DSTable needs to keep a total m x
w boundary values. In contrast, our DSMatrix only
keeps w boundary values (where w < m x w) for the
entire matrix, regardless how many domain items (m)
are here.

S2. Recall that each table entry in the DSTable captures
both the row name and column number to represent a
“pointer” to the next item in a transaction. The com-
putation of column number requires the DSTable to
constantly keep track of the index of the last item in
each row representing a domain item. Moreover, each
“pointer” requires two integer (row name/number and
column number). For P items in |T'| transactions, the
DSTable requires 2 x 32 x P bits (for 32-bit integer
representation). For dense data streams, the DSTable
requires potentially 64m x |T| bits. In contrast, our
DSMatrix uses a bit vector to indicate the presence or
absence of items in a transaction. The computation
does not require us to keep track of the index of the
last item in every row and thus incurring a lower com-
putation cost. Moreover, given a total of |T| transac-
tions in all batches within the current sliding window,
there are |T'| columns in our DSMatrix. Each column
requires only m bits. In other words, our DSMatrix
takes m x |T'| bits (cf. potentially 64m x |T'| bits for
dense data streams required by the DSTree).

4. TREE-BASED HORIZONTAL FRE-
QUENT PATTERN MINING

Whenever a new batch of streaming data (e.g., streaming
graph data) comes in, the window slides. Transactions in the
oldest batch in the sliding window are then removed from
our DSMatrix so that transactions in this new batch can be
added. Following the aforementioned mining routines, the
mining is “delayed” until it is needed. Once the DSMatrix
is constructed, it is kept up-to-date on the disk.

To find frequent patterns, we propose a tree-based horizon-
tal mining algorithm. When the user needs to find frequent
patterns, we extract relevant transactions from the DSMa-
trix to form an FP-tree for each projected database of every
frequent singleton. Key ideas of the algorithm are illustrated
in Example 3.

243

FP-tree for {a}-proj DB

FP-tree for {b}-proj DB
c4 root El 2
f:4 SN
d:3 [f:1
f:3 d:1

d:2

FP-tree for {a,d}-proj DB

3 :3
c2 |

c2

FP-tree for {a,f}-proj DB

El c3

FP-tree for {a,d,c}-proj DB
f:2

Figure 2: Multiple FP-trees built for {a}-, {b}-, ...
projected DBs from the DSMatrix (Example 3).

Ezample 3. Continue with Example 2. To form the {a}-
projected database, we examine Row a. For every column
with a value “1”, we extract its column downwards (e.g.,
from edges/items b to e if they exist). Specifically, when
examining Row a, we notice that columns 1, 2, 3, 4 and
6 contain values “1” (which means that a appears in those
five transactions in the two batches of streaming graph data
in the current sliding window). Then, from Column 1, we
extract {c,d, f}. Similarly, we extract {d,e, f} and {b,c}
from Columns 2 and 3. We also extract {c, f} and {c,d, f}
from columns 4 and 5. All these form the {a}-projected
database, from which an FP-tree can be built. From this FP-
tree for the {a}-projected database, we find that 2-itemsets
{a,c},{a,d} and {a, f} are frequent. Hence, we then form
{a,d}- and {a, f}-projected databases, from which FP-trees
can be built. (Note that we do not need to form the {a, c}-
projected database as it is empty after forming both {a, d}-
and {a, e}-projected databases.) When applying this step
recursively in a depth-first manner, we obtain frequent 3-
itemsets {a, c,d}, {a,c, f} and {a,d, f}, which leads to FP-
trees for the {a, d, c}-projected database. (Again, we do not
need to form the {a, f,c}- or {a,d, f}-projected databases
as they are both empty.) At this moment, we keep FP-trees
for the {a}-, {a,d}- and {a,d, c}-projected databases. Af-
terwards, we also find that 4-itemset {a,c,d, f} is frequent.
In the context of graph streams, this is a frequent collection
of 4 edges—namely, Edges a, ¢,d and f. See Figure 2.

We backtrack and examine the next frequent singleton
{b}. When examining Row b, we notice that Columns 3
and 6 contain values “1” (which means that b appears in
those two transactions in the current sliding window). For
these two columns, we extract downward to get {c} and
{¢,d} that appear together with b (i.e., to form the {b}-
projected database. Asshown in Figure 2, the corresponding
FP-tree contains {c}:2 meaning that ¢ occurs twice with b
(i.e., 2-itemset {b, c} is frequent with frequency 2). Similar
steps are applied to other frequent singletons {c}, {d} and
{f} in order to discover all frequent patterns. []

Note that, during the mining process, we require multi-
ple FP-trees to be kept in the memory during the mining
process (i.e., Problem P3 of the (global DSTree, local FP-
trees) mining option). However, when the memory space
is limited, not all of the multiple FP-trees can fit into the
memory.

/ FP-tree for {a}-proj DB\

root

c:4
f:4
d:3 c4
{a,c}:4
f:3 f:1
{af}:3 +{a,fi1={af4
{a,c,f}:3 ‘
d:2 d:1

{a,d}:2 +{a,d}:1={a,d}:3,

{a,c,d}:2
{a,d,f}:2 +{a,d,f1:1={a,d,f}:3
{a,c,d,f}:2

Figure 3: FP-tree for {a}-proj. DB (Example 4).

To solve this problem, which identifies the Problem P3
above, we propose the following effective frequency counting
technique:

S3. Once an FP-tree for the projected database of a fre-
quent singleton is built, we traverse every tree node in
a depth-first manner (e.g., pre-order, in-order, or post-
order traversal). For every first visit of a tree node, we
generate the itemset represented by the node and its
subsets. We also compute their frequencies.

Example 4. Based on the DSMatrix in Example 2, we first
construct an FP-tree for the {a}-projected database. Then,
we traverse every node in such an FP-tree. When traversing
the leftmost branch (c:4, b:1), we visit nodes “c:4” (which
represents itemset {a, ¢} with frequency 4) and “b:1” (which
gives {a,b} with frequency 1 and {a,b,c} with frequency
1). Next, we traverse the middle branch (c:4, f:3, d:2). By
visiting nodes “f:3” and “d:2”, we get {a, f} and {a,c, f}
both with frequencies 3, as well as {a,d}, {a,c,d}, {a,d, f}
and {a, ¢, d, f} all with frequencies 2. Finally, we visit nodes
“f:1” and “d:1” in the rightmost branch (f:1, d:1), from which
we get the frequency 1 for both {a,d}, {a,d, f} and {a, f}.
This frequency value is added to the existing frequency count
of 2 (from the middle branch) to give the frequency of {a, d}
and {a,d, f} equal to 3. Hence, with the minsup threshold
set to 2, we obtain frequent patterns {a,c}:4, {a,c,d}:2,
{a,¢,d, f}:2, {a,c, f}:3, {a,d}:3, {a,d, f}:3 and {a,f}:4.
Note that, during this mining process for the {a}-projected
database, we count frequencies of itemsets without recursive
construction of FP-trees. See Figure 3.

Afterwards, we build an FP-tree for the {b}-projected
database and count frequencies of all frequent patterns con-
taining item b. Similar steps are applied to the FP-trees for
the {c}- and {d}-projected databases. [

Note that, at any moment during the mining process, only
one FP-tree needs to be constructed and kept in the memory
for this (global DSMatrix, local FP-tree) mining process (cf.
multiple FP-trees required for the {global DSTree, multiple
local FP-trees) mining option). This solves Problem P3.

5. VERTICAL FREQUENT PATTERN
MINING

244

In Section 4, we described a tree-based horizontal frequent
pattern mining algorithm that makes good use of the DS-
Matrix to form FP-trees for frequent singletons. From each
of these FP-trees, the algorithm applies an effective fre-
quency counting technique to find all frequent patterns with
their frequency information in such a way that the algo-
rithm avoids recursive construction of FP-trees for frequent
k-itemsets (where k > 2).

In this section, we present a vertical frequent pattern min-
ing algorithm. Given that the contents stored in our DS-
Matrix can be considered as a collection of bit vectors. It
becomes logical to consider vertical mining. To mine fre-
quent singletons, we examine each row (representing a do-
main item). The row sum (i.e., total number of 1s) gives the
frequency of the item represented by that row. Once the
frequent singletons are found, we intersect the bit vectors
for two items. If the row sum of the resulting intersection
> the user-specified minsup threshold, then we find a fre-
quent 2-itemset. We repeat these steps by intersecting two
bit vectors of frequent patterns to find frequent patterns of
higher cardinality.

Ezample 5. Based on the DSMatrix in Example 1, we
first compute the row sum for each row (i.e., for each do-
main item). As a result, we find that edges/items a,b, ¢, d
and f are all frequent with frequencies 5, 2, 5, 4 and 4,
respectively. Afterwards, we intersect the bit vector of a
(i.e., Row a) with any one of the remaining four bit vectors
(i.e., any one of the four rows) to find frequent 2-itemsets
{a,c},{a,d} and {a, f} with frequencies 4, 3 and 4, respec-
tively, because (i) the intersection of @ and ¢ gives a bit vec-
tor 101110, (ii) the intersection of @ and d gives a bit vector
110010, and (iii) the intersection of @ and fgives a bit vector
110110. Next, we intersect (i) @ with ad, (i) a¢ with af and
(iii) (71 with a_} to find frequent 3-itemsets {a, ¢, d}, {a,c, f}
and {a,d, f}. We also intersect acd with a—cf> to find fre-
quent 4-itemset {a,c,d, f}. These are all frequent patterns
containing item a.

Afterwards, we repeat similar steps with the bit vectors
for the other singletons. For instance, we intersect b with
¢ d and f We find out that, among them, only {b,c} is
frequent with frequency 2. We also intersect ¢ with d and
f to find frequent 3-itemsets {¢,d} and {c, f}, each with
frequencies of 3. We also find frequent 4-itemsets {c,d, f}

— - - e
by intersecting c¢d and cf. Finally, we intersect d and f to
find frequent 2-itemset {d, f} with frequency 3. [J

6. ANALYTICAL EVALUATION

Recall from Section 1 that FP-streaming [14] is an approx-
imate algorithm, which uses an “immediate” mode for min-
ing. During the mining process for each batch of the stream-
ing data, FP-streaming builds a global FP-tree and O(f x d)
subsequent local FP-trees, where f is the number of fre-
quent items in the domain and d is the height/depth of the
global FP-tree. At any time during the mining process for
each batch, the global FP-tree and O(d) subsequent local
FP-trees are stored in the memory. Hence, storage cost in-
cludes the memory space for the global FP-tree plus all O(d)
subsequent local FP-trees for each batch. In terms of effi-
ciency, when the number of batches in the data stream in-
creases, the CPU cost for the mining process increases. For

example, let us consider a sliding window of w=>5 batches.
When handling a stream of S=100 batches, FP-streaming
builds the global FP-tree plus all subsequent local FP-trees,
and mines frequent patterns from these FP-trees for each
of the 100 batches. In other words, FP-streaming builds
100 sets of the global and subsequent local FP-trees. More-
over, the computation effort for the first 95 batches is wasted
(when users request frequent patterns at the end of the 100th
batch).

Recall from Section 2 that mining with the DSTree [21] or
DSTable [6] uses a “delayed” mode for mining. So, the actual
mining of frequent patterns is delayed until they are needed
to be returned to the user. Hence, for S=100 batches, the
mining algorithm needs to build a global DSTree or DSTable
and updates it S—w = 100—5 = 95 times. Once an up-
dated DSTree or DSTable has captured the 96th to the
100th batches, multiple FP-trees are constructed to find fre-
quent patterns. Note that only one set of the updated global
DSTree (or DSTable) and multiple FP-trees are required (cf.
building 100 sets of a global tree and O(f x d) FP-trees by
FP-streaming, one set for each of the 100 batches). More-
over, at any time during the mining process of the (global
DSTree, local FP-trees) option, only the global DSTree and
multiple FP-trees are needed to be present (cf. one global
FP-tree and O(d) subsequent FP-trees are needed to be
present in FP-streaming). When using the (global DSTable,
local FP-trees) option, the global DSTable is kept on disk.
Thus, only multiple FP-trees are needed to be kept in the
memory.

In contrast, the DSMatrix resides on disk. Being special-
ized to dense graph streams, it can serve as an alternative to
the global FP-tree when memory is limited. Moreover, the
size of the DSMatrix is independent of the user-specified
minimum support threshold (minsup). Hence, it is useful
for interactive mining, especially when users keep adjust-
ing minsup, which is relevant for mining graph streams. It
should be noted that the DSMatrix captures the transac-
tions in the current sliding window. During the mining pro-
cess, the algorithm skips infrequent items (i.e., items having
support lower than minsup) and only includes frequent items
when building subsequent FP-trees for projected databases.
Furthermore, with our frequency counting technique, we do
not even need to build too many FP-trees. Instead, we only
need to build FP-trees for frequent singleton (i.e., for {z}-
projected databases, where z is a frequent item). When
users adjust minsup during the interactive mining process,
we do not need to rebuild the DSMatrix. In contrast, when
minsup changes, FP-streaming needs to rebuild the global
FP-tree.

In terms of disk space, the DSTable [6] requires 64 x P bits
(for 32-bit integer representation), where P is the total num-
ber of items in |T| transactions in the w batches of the data
streams. In the worst case, the DSTable requires poten-
tially 64m x |T| bits for dense data streams. In contrast,
our DSMatrix requires only m x |T'| bits, which is desirable
for applications that require dense graph stream mining.

7. EXPERIMENTAL EVALUATION

To acquire dense graph stream datasets, we first generated
random graph models via a Java-based generator by varying
model parameters (e.g., topology, average fan-out of nodes,
edge centrality, etc.). We then generated graph streams as
nodes and node-edge relationships derived from the above

245

Memory (Connect4)

Runtime (Connect4)

2500 - &

2000

1500

1000

Memory space required (in MB)

T T

<global DSTree, recursive local FP-trees> —-&— |

<global DSTable/DSMatrix, recursive local FP-trees> —&—
<global DSMatrix, FP-trees for only frequent singletons> %

Runtime (in seconds)

200 T T T T

a Vertical mining &
Horizontal mining w/ FP-trees for only frequent singletons ——

180 | Horizontal mining w/ recursive local FP-trees --&-— -

160 - g
140 | 4
120
100 -
80
60
40 -

20 [

0.7 0.75 0.8 0.85 0.9
Minimum support threshold (in percentage)

(a) Main memory consumption

800

.
0.7 0.75 08 0.85 0.9 0.95
Minimum support threshold (in percentage)

(b) Runtime

Disk (Dense data)

600 -

400 -

Disk space required (in MB)

200 -

DSTable ———-
DSMatrix

!
0 5 10

20 25 30

Density of data stream (in percentage)

(c) Disk consumption

Figure 4: Experimental results.

graph models, and obtained node values from popular data
stream sets available in literature (stored in the projected
database). In addition, we also used many different data-
bases including IBM synthetic data, real-life databases (e.g.,
connect4) from the UC Irvine Machine Learning Depository
as well as those from the Frequent Itemset Mining Imple-
mentation (FIMI) Dataset Repository. For example, con-
nect4d is a dense data set containing 67,557 records with
an average transaction length of 43 items, and a domain
of 130 items. Each record represents a graph of legal 8-ply
positions in the game of connect 4.

All experiments were run in a time-sharing environment
in a 1 GHz machine. We set each batch to be 6K records
and the window size w=>5 batches. The reported figures
are based on the average of multiple runs. Runtime in-
cludes CPU and I/Os; it includes the time for both tree
construction and frequent pattern mining steps. In the ex-
periments, we mainly evaluated the accuracy and efficiency
of our DSMatrix by comparing with related works such as
(i) DSTree [21] and (ii) DSTable [6].

In the first experiment, we measured the accuracy of the
following four mining options: (i) (global DSTree, recur-
sive local FP-trees); (ii) (global DSTable, recursive local
FP-trees); (iii) (global DSMatrix, recursive local FP-trees);
(iv) (global DSMatrix, local FP-trees for only frequent sin-
gletons) options. Experimental results show that mining
with any of these four options give the same mining results.

While these four options gave the same results, their per-
formance varied. In the second and third experiments, we
measured the space and time efficiency of our proposed DS-
Matrix. Results show that the (DSTree, recursive FP-trees)
option required the largest main memory space as it stores
one global DSTree and multiple local FP-trees in main mem-
ory. The (DSTable, recursive FP-trees) and (DSMatrix,
recursive FP-trees) options required less memory as their
DSTable and DSMatrix were kept on disk. Among the four
mining options, the (DSMatrix, FP-trees for only frequent
singletons) option required the smallest main memory space
because at most m FP-trees needed to be generated during
the entire mining process, one for each frequent domain item.
Note that not all m domain items were frequent. Moreover,
at any mining moment, only one of these FP-trees needs to
be presented. In other words, not all < m FP-trees were
generated at the same time. See Figure 4(a).

There are tradeoffs between memory consumption vs. run-
time performance. Runtime performance of the three op-
tions also varied. For instance, vertical mining does not
consume too much memory. While the bitwise operation
(e.g., intersection) is quick, but vertical mining required
many scans to read bit vectors from the DSMatrix. In con-
trast, horizontal mining with FP-trees built for only fre-
quent singletons consumes more memory because it keeps
these < m FP-trees from < m frequent singletons in mem-
ory. Along the same direction, horizontal mining with FP-

246

trees recursively built for subsequent frequent patterns con-
sumes even more memory because it keeps all FP-trees (i.e.,
those for frequent singletons and their subsequent frequent
k-itemsets, where k > 2) in memory. See Figure 4(a). It is
important to note that reading from disk would be a logical
choice in a limited main memory environment.

Moreover, we perform some additional experiments, by
testing with the usual experiment (e.g., the effect of min-
sup). As shown in Figure 4(b), the runtime decreased when
minsup increased. In another experiment, we tested scal-
ability with the number of transactions. The results show
that mining with our proposed DSMatrix was scalable (see
Figure 4(c)). In particular, Figure 4(c) compares the disk
consumption between the DSTable and our DSMatrix, and it
clearly shows that our DSMatrix requires a constant amount
of disk space, where the DSTable requires different amounts
depending on the density of data streams. An interesting
observation that, for dense data, our DSMatrix is beneficial
due to its bit vector representation. As future work, we plan
to conduct more extensive experiments on various datasets
(including Big data) with different parameter settings (e.g.,
varying minsup and transaction lengths that represent the
complexity of graphs).

8. CONCLUSIONS

As technology advances, streams of data (including graph
streams) can be produced in many applications. Key con-
tributions of this paper include (i) a simple yet powerful
alternative disk-based structure—called DSMatriz—for ef-
ficient frequent pattern mining from streams (e.g., dense
graph streams) with limited memory and (ii) two frequent
pattern mining algorithms: a tree-based horizontal mining
algorithm and a vertical mining algorithm. To avoid keeping
too many FP-trees in memory when the space is limited,
we also described an effective frequency counting technique,
which requires only one FP-tree for a projected database to
be kept in the limited memory. Analytical and experimental
results show the benefits of our DSMatrix structure and its
corresponding mining algorithms.

9. ACKNOWLEDGEMENTS

This project is partially supported by NSERC (Canada) and
University of Manitoba.

10. REFERENCES

[1] C.C. Aggarwal. On classification of graph streams. In Proc.
SDM 2011, pp. 652-663.

[2] C.C. Aggarwal, Y. Li, P.S. Yu, & R. Jin. On dense pattern
mining in graph streams. PVLDB, 3(1-2), pp. 975-984
(2010).

[3] R. Agrawal & R. Srikant. Fast algorithms for mining
association rules. In Proc. VLDB 1994, pp 487-499.

[4] A. Bifet, G. Holmes, B. Pfahringer, & R. Gavalda. Mining
frequent closed graphs on evolving data streams. In Proc.
ACM KDD 2011, pp. 591-599.

[5] G. Buehrer, S. Parthasarathy, & A. Ghoting. Out-of-core
frequent pattern mining on a commodity. In Proc. ACM
KDD 2006, pp. 86-95.

[6] J.J. Cameron, A. Cuzzocrea, & C.K. Leung. Stream mining
of frequent sets with limited memory. In Proc. ACM SAC
20183, pp. 173-175.

[7] J.J. Cameron, C.K. Leung, & S.K. Tanbeer. Finding strong
groups of friends among friends in social networks. In Proc.
SCA 2011, pp. 824-831.

[8] L. Chi, B. Li, & X. Zhu. Fast graph stream classification
using discriminative clique hashing. In Proc. PAKDD
2013, Part I, pp. 225-236.

[9] D.Y. Chiu, Y.H. Wu, & A. Chen. Efficient frequent
sequence mining by a dynamic strategy switching
algorithm. VLDBJ, 18(1), pp. 303-327 (2009).

[10] A. Cuzzocrea. CAMS: OLAPing Multidimensional Data
Streams Efficiently. In Proc. DaWaK 2009, pp. 48—62.

[11] A. Cuzzocrea & S. Chakravarthy. Event-based lossy
compression for effective and efficient OLAP over data
streams. Data & Knowledge Engineering, 69(7),
pp. 678-708 (2010).

[12] A. Cuzzocrea, F. Furfaro, G.M. Mazzeo & D. Sacca. A

Grid Framework for Approximate Aggregate Query

Answering on Summarized Sensor Network Readings. In

Proc. OTM Workshops 2004, pp. 144-153.

A. Fariha, C.F. Ahmed, C.K. Leung, S.M. Abdullah, & L.

Cao. Mining frequent patterns from human interactions in

meetings using directed acyclic graphs. In Proc. PAKDD

2013, Part I, pp. 38-49.

C. Giannella, J. Han, J. Pei, X. Yan, & P.S. Yu. Mining

frequent patterns in data streams at multiple time

granularities. In Data Mining: Next Generation Challenges

and Future Directions, ch. 6 (2004).

G. Grahne & J. Zhu. Mining frequent itemsets from

secondary memory. In Proc. IEEE ICDM 2004, pp. 91-98.

[16] J. Han, J. Pei, & Y. Yin. Mining frequent patterns without

candidate generation. In Proc. ACM SIGMOD 2000,

pp. 1-12.

R. Jin & G. Agrawal. An algorithm for in-core frequent

itemset mining on streaming data. In Proc. IEEE ICDM

2005, pp. 210-217.

[18] C.K. Leung. Mining frequent itemsets from probabilistic
datasets. In Proc. EDB 2013, pp. 137-148.

[19] C.K. Leung & C.L. Carmichael. Exploring social networks:
a frequent pattern visualization approach. In Proc. IEEE
SocialCom 2010, pp. 419-424.

[20] C.K. Leung, A. Cuzzocrea, & F. Jiang. Discovering
frequent patterns from uncertain data streams with
time-fading and landmark models. LNCS TLDKS, 8,
pp. 174-196 (2013).

[21] C.K. Leung & Q.I. Khan. DSTree: a tree structure for the
mining of frequent sets from data streams. In Proc. IEEE
ICDM 2006, pp. 928-932.

[22] C.K. Leung & S.K. Tanbeer. PUF-tree: a compact tree
structure for frequent pattern mining of uncertain data. In
Proc. PAKDD 2013, Part I, pp. 13-25.

[23] F. Mandreoli, R. Martoglia, G. Villani, & W. Penzo:

Flexible query answering on graph-modeled data. In Proc.

EDBT 2009, pp. 216-227.

O. Papapetrou, M. Garofalakis, & A. Deligiannakis.

Sketch-based querying of distributed sliding-window data

streams. PVLDB, 5(10), pp. 992-1003 (2012).

[25] S.K. Tanbeer, F. Jiang, C.K. Leung, R.K. MacKinnon, &

I.J.M. Medina. Finding groups of friends who are

significant across multiple domains in social networks. In

Proc. CASoN 2013, pp. 21-26.

S. Tirthapura & D.P. Woodruff. A general method for

estimating correlated aggregates over a data stream. In

Proc. IEEE ICDE 2012, pp. 162-173.

E. Valari, M. Kontaki, & A.N. Papadopoulos. Discovery of

top-k dense subgraphs in dynamic graph collections. In

Proc. SSDBM 2012, pp. 213-230.

F. Wei-Kleiner. Finding nearest neighbors in road

networks: a tree decomposition method. In Proc.

EDBT/ICDT 2013 Workshops (GraphQ), pp. 233-240.

(13

[14

(15

[17

[24

[26

27

[28

247

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

