
Quantifying the Connectivity of a Semantic Warehouse

Yannis Tzitzikas1,2, Nikos Minadakis1, Yannis Marketakis1,
Pavlos Fafalios1,2, Carlo Allocca1, Michalis Mountantonakis1,2

1 Institute of Computer Science, FORTH-ICS, GREECE, and
2 Computer Science Department, University of Crete, GREECE

{tzitzik,minadakn,marketak,fafalios,carlo,mountant}@ics.forth.gr

ABSTRACT
In many applications one has to fetch and assemble pieces of
information coming from more than one SPARQL endpoints.
In this paper we describe the corresponding requirements
and challenges, and then we present a process for construct-
ing such a semantic warehouse. We focus on the aspects
of quality and value of the warehouse, and for this reason
we introduce various metrics for quantifying its connectiv-
ity, and consequently its ability to answer complex queries.
We demonstrate the behavior of these metrics in the context
of a real and operational semantic warehouse. The results
are very promising: the proposed metrics-based matrixes al-
low someone to get an overview of the contribution (to the
warehouse) of each source and to quantify the benefit of the
entire warehouse. The later is useful also for monitoring the
quality of the warehouse after each reconstruction.

1. INTRODUCTION
An increasing number of datasets are already available

as Linked Data. For exploiting this wealth of data, and
building domain specific applications, in many cases there
is the need for fetching and assembling pieces of informa-
tion coming from more than one SPARQL endpoints. These
pieces are then used for constructing a warehouse, for o↵er-
ing more complete browsing and query services (in compar-
ison to those o↵ered by the underlying sources).

We shall use the term Semantic Warehouse (for short
warehouse) to refer to a read-only set of RDF triples fetched
(and transformed) from di↵erent sources that aims at serv-
ing a particular set of query requirements.

We can distinguish domain independent warehouses, like
the Sindice RDF search engine [9], or the Semantic Web
Search Engine (SWSE) [4], but also domain specific, like
TaxonConcept1 and marineTLO-based warehouse [12].

In this paper we focus on the requirements for building do-
main specific semantic warehouses. Such warehouses aim to

1http://www.taxonconcept.org/

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

serve particular needs, for particular communities of users,
consequently their “quality” requirements are more strict. It
is therefore worth elaborating on the process that can be
used for building such warehouses, and on the related dif-
ficulties and challenges. In brief, for building such a ware-
house one has to tackle various challenges and questions,
e.g. how to define the objectives and the scope of such a
warehouse, how to connect the fetched pieces of informa-
tion (common URIs or literals are not always there), how
to tackle the various issues of provenance that arise, how to
keep the warehouse fresh, i.e. how to automate its construc-
tion or refreshing. In this paper we focus on the following
questions:

• How to measure the value and quality (since this is
important for e-science) of the warehouse?

• How to monitor its quality after each reconstruction
or refreshing (as the underlying sources change)?

We have encountered these questions in the context of a
real semantic warehouse for the marine domain which har-
monizes and connects information from di↵erent sources of
marine information. Past works have focused on the notion
of conflicts, and have not paid attention to connectivity. We
use the term connectivity to express the degree up to which
the contents of the semantic warehouse form a connected
graph that can serve, ideally in a correct and complete way,
the query requirements of the semantic warehouse, while
making evident how each source contributes to that degree.
To this end in this paper we introduce and evaluate sev-
eral metrics for quantifying the connectivity of the ware-
house. These metrics allow someone to get an overview of
the contribution (to the warehouse) of each source (enabling
the discrimination of the important from the non important
sources) and to quantify the benefit of such a warehouse

The paper is organized as follows: Section 2 describes the
main requirements, related works, and what distinguishes
the current work. Section 3 provides the context by de-
scribing the process used for constructing such warehouses.
Section 4 introduces the quality metrics and demonstrates
their use. Finally, Section 5 concludes the paper.

2. REQUIREMENTS AND RELATED WORK
The context of this work is the ongoing iMarine project2

that o↵ers an operational distributed infrastructure that
serves hundreds of scientists from the marine domain. As
regards semantically structured information, the objective is
to integrate information from various marine sources, specif-

2FP7, Research Infrastructures, http://www.i-marine.eu/

249

ically from WoRMS3, Ecoscope4, FishBase5, FLOD6 and
DBpedia7.

The integrated warehouse (its first version is described
in [12])8 is now operational and it is exploited in various
applications, including generators of fact sheets (e.g. Tu-
naAtlas9), or for enabling exploratory search services (e.g.
X-ENS [3] that o↵ers semantic post-processing of search re-
sults). Below we list the main functional and non functional
requirements for constructing such warehouses.

Functional Requirements
• Multiplicity of Sources. Ability to query SPARQL end-

points (and other sources), get the results, and ingest
them to the warehouse.

• Mappings, Transformations and Equivalences. Abil-
ity to accommodate schema mappings, perform trans-
formations and create sameAs relationships between
the fetched content for connecting the corresponding
schema elements and entities.

• Reconstructibility. Ability to reconstruct the ware-
house periodically (from scratch or incrementally) for
keeping it fresh.

Non Functional Requirements
• Scope control. Make concrete and testable the scope

of the information that should be stored in the ware-
house. Since we live in the same universe, everything
is directly or indirectly connected, therefore without
stating concrete objectives there is the risk of contin-
uous expansion without concrete objectives regarding
its contents, quality and purpose.

• Connectivity assessment. Ability to check and assess
the connectivity of the information in the warehouse.
Putting triples together does not guarantee that they
will be connected. In general, connectivity concerns
both schema and instances and it is achieved through
common URIs, common literals and sameAs relation-
ships. Poor connectivity a↵ects negatively the query
capabilities of the warehouse. Moreover, the contribu-
tion of each source to the warehouse should be mea-
surable, for deciding which sources to keep or exclude
(there are already hundreds of SPARQL endpoints).

• Provenance. More than one levels of provenance can
be identified and are usually required, e.g. warehouse
provenance (from what source that triple was fetched),
information provenance (how the fact that the x species
is found in y water area was produced), and query
provenance (which sources and how contributed to the
answer of this query).

• Consistency and Conflicts. Ability to specify the de-
sired consistency level of the warehouse e.g. do we
want to tolerate an association between a fish com-
mercial code and more than one scientific names? Do
we want to consider this as inconsistency (that makes

3http://www.marinespecies.org/
4http://www.ecoscopebc.ird.fr/EcoscopeKB/
ShowWelcomePage.action
5http://www.fishbase.org/
6http://www.fao.org/figis/flod/
7http://dbpedia.org/
8URL of the warehouse (restricted access): http://
virtuoso.i-marine.d4science.org:8890/sparql
9http://vmecoscopebc-proto.mpl.ird.fr:8080/
semantic-atlas/ShowWelcomePage

the entire warehouse, or parts of it, unusable), or as
resolvable (through a rule) conflict, or as a normal case
(and allow it as long as the provenance is available).

2.1 Related Approaches
Below we refer and discuss in brief the more related sys-

tems, namely ODCleanStore and Sieve.

ODCleanStore [8, 6, 5] is a tool that can download content
(RDF graphs) and o↵ers various transformations for clean-
ing it (deduplication, conflict resolution), and linking it to
existing resources, plus assessing the quality of the outcome.
It names conflicts the cases where two di↵erent quads (e.g.
sources) have di↵erent object values for a certain subject s
and predicate p. To such cases conflict resolution rules are
o↵ered that either select one or more of these conflicting val-
ues (e.g. ANY, MAX, ALL), or compute a new value (e.g.
AVG). [5] describes various quality metrics (for scoring each
source based on conflicts), as well for assessing the overall
outcome.

Another related system is Sieve [7] which is part of the
Linked Data Integration Framework (LDIF)10. This work
proposes metrics like schema completeness and conciseness.
However, such metrics are not useful for the case of do-
main specific warehouses that have a top-level ontology, in
the sense that the schema mappings and the transformation
rules can tackle these problems. This is true in our ware-
house (it is also assumed in the scenarios of ODCleanStore).

Overall, we can say that the quality metrics introduced by
other works focus more on conflicts. The aspect of connec-
tivity, is not covered su�ciently. The aspect of connectivity
is important in warehouses whose schema is not small, and
consequently the queries contain paths. The longer such
paths are, the more the query capability of the warehouse is
determined by the connectivity.

Of course, the issue of data warehouse quality is older
than the RDF world, e.g. [10, 1]. A discussion of related
works for the RDF world is available in [2], that also focuses
on describing data sources in terms of their completeness in
query answering. Another quality perspective identified in
[13] is that of the specificity of the ontology-based descrip-
tions under ontology evolution, an issue that is raised when
ontologies and vocabularies evolve over time.

Finally, we could mention that works like [11], which focus
on the statistical evaluation of the metadata elements of a
repository, are not directly related, since they do not con-
sider the characteristics of RDF and Linked Data, nor they
try to evaluate the contribution of the underlying sources.

3. THE INTEGRATION PROCESS
For making clear the context, here we describe in brief

the steps of the process that we follow for creating the ware-
house. Figure 1 shows an overview of the warehouse’s con-
tents, while Figure 2 sketches the construction process11.

The first step is to define requirements in terms of compe-
tency queries. It is a set of queries (provided by the commu-
nity) indicating the queries that the warehouse is intended
to serve. Some indicative queries are given in Appendix A,

10http://www4.wiwiss.fu-berlin.de/bizer/ldif/
11Extra material is available at http://www.ics.forth.gr/
isl/MarineTLO/#applications.

250

Figure 1: Overview of the warehouse

the full list is web accessible12. It is always a good practice
to have (select or design) a top-level schema/ontology as it
alleviates the schema mapping e↵ort (avoids the combinato-
rial explosion of pair-wise mappings) and allows formulating
the competency queries using that ontology (instead of using
elements coming from the underlying sources, which change
over time). For our case in iMarine, the ontology is called
MarineTLO [12]13.

The next step is to fetch the data from each source and this
requires using various access methods (SPARQL endpoints,
HTTP accessible files, JDBC) and specifying what exactly
to get from each source (all contents or a specific part). For
instance, and for the case of the iMarine warehouse, we fetch
all triples from FLOD through its SPARQL endpoint, all
triples from Ecoscope obtained by fetching OWL files from
its web page, information about species (ranks, scientific and
common names) from WoRMS, information about species
from DBpedia’s SPARQL endpoint, and finally information
about species, water areas, ecosystems and countries from
the relational tables of FishBase.

Warehouse construction and

evolution process
Define requirements in terms

of competency queries

Fetch the data from the selected sources
(SPARQL endpoints, services, etc)

!"#$%#&

Transform and Ingest to the Warehouse

Inspect the connectivity of the
Warehouse

Formulate rules creating sameAs
relationships

Apply the rules to the warehouse

'"(#&)*+$)

,-&./-0#)

1/.02%-3)

!"#$%! &'()*$!

Ingest the sameAs relationships
to the warehouse

Test and evaluate the Warehouse
(using competency queries, metrics)

!"#$%#&

4/$#2+"&#

'"()*!#&

5$%6(#&

*&#&

*&#&

*&#&

MatWare

MatWare

MatWare

MatWare

MatWare

Figure 2: The process for constructing and evolving
the warehouse

The next step is to transform and ingest the fetched data.
12http://www.ics.forth.gr/isl/MarineTLO/competency_
queries/MarineTLO_Competency_Queries_Version_v3.
pdf

13http://www.ics.forth.gr/isl/MarineTLO

Some data can be stored as they are fetched, while oth-
ers have to be transformed, i.e. a format transformation
and/or a logical transformation has to be applied for be-
ing compatible with the top-level ontology. For example,
a format transformation may be required to transform in-
formation expressed in DwC-A (a format for sharing bio-
diversity data), to RDF. A logical transformation may be
required for transforming a string literal to a URI, or for
splitting a literal for using its constituents, or for creating
intermediate nodes (e.g. instead of (x,hasName,y) to have
(x,hasNameAssignement,z),(z,name,y),(z,date,d), etc.

This step also includes the definition of the required schema
mappings that are required for associating the fetched data
with the schema of the top level ontology. Another im-
portant aspect for domain specific warehouses, is the man-
agement of provenance. In our case we support what we
call “warehouse”-provenance, i.e. we store the fetched (or
fetched and transformed) triples from each source in a sepa-
rate graphspace (a graphspace is a named set of triples which
can be used for restricting queries and updates in a RDF
triple store). In this way we know which source has pro-
vided what facts and this is exploitable also in the queries.
As regards conflicts (e.g. di↵erent values for the same prop-
erties), the adopted policy in our case is to make evident
the di↵erent values and their provenance, instead of making
decisions, enabling in this way the users to select the desired
values, and the content providers to spot their di↵erences.
The adoption of separate graphspaces also allows refreshing
parts of the warehouse, i.e. the part that corresponds to one
source. Furthermore, it makes feasible the computation of
the metrics that are introduced in the next section.

The next step is to inspect and test the connectivity of the
“draft” warehouse. This is done through the competency
queries as well as through the metrics that we will introduce.
The former (competency queries) require manual inspection,
but automated tests are also supported. In brief, let q be a
query in the set of competency queries. Although we may
not know the“ideal”answer of q, we may know that it should
certainly contain a particular set of resources, say Pos, and
should not contain a particular set of resources, say Neg.
Such information allows automated testing. If ans(q) is the
answer of q as produced by the warehouse, we would like to
hold Pos ✓ ans(q) and Neg \ ans(q) = ;. Since these con-
ditions may not hold, it is beneficial to adopt an IR-inspired
evaluation, i.e. compute the precision and recall defined as:
precision = 1�

|Neg\ans(q)|

|ans(q)|

, recall = |Pos\ans(q)|

|Pos|

. The big-

ger the values we get the better (ideally 1). The better we
know the desired query behaviour, the bigger the sets Pos
and Neg are, and consequently the more safe the results of
such evaluation are.

Based also on the results of the previous step, the next
step is to formulate rules for instance matching, i.e. rules
that can produce sameAs relationships for obtaining the de-
sired connections. For this task we employ the tool SILK[14]14.
Then, we apply the instance matching rules (SILK rules in
our case) for producing (and then ingesting to the ware-
house) sameAs relationships.

Finally we have to test the produced repository and eval-
uate it. This is done through the competency queries and
through the metrics that we will introduce.

Periodic Reconstruction Above we have described the

14http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

251

steps required for the first time. After that the warehouse
is reconstructed periodically for getting refreshed content.
This is done automatically through a tool that we have de-
veloped called MatWare. The metrics that we will intro-
duce are very important for monitoring the warehouse after
reconstructing it. For example by comparing the metrics in
the past and new warehouse, one can understand whether
a change in the underlying sources a↵ected negatively the
quality (e.g. connectivity) of the warehouse.

4. CONNECTIVITY METRICS
The objective is to define metrics for assisting humans on

assessing in concrete terms the quality and the value o↵ered
by the warehouse.

To aid understanding, after defining each metric we show
the values of these metrics as computed over the iMarine
warehouse which is built using data from FLOD, WoRMS,
Ecoscope, DBpedia, and FishBase. The warehouse is real
and operational15. This also allows testing whether the met-
rics are successful.

At first we introduce some required notations. Let S =
S

1

, . . . Sk be the set of underlying sources. Each contributes
to the warehouse a set of triples (i.e. a set of subject-
predicate-object statements), denoted by triples(Si). This
is not the set of all triples of the source. It is the subset that
is contributed to the warehouse (fetched mainly by running
SPARQL queries). We shall use Ui to denote the URIs that
appear in the triples in triples(Si). Hereafter, we consider
only those URIs that appear as subjects or objects in a triple.
We do not include the URIs of the properties because they
concern the schema and this integration aspect is already
tackled by the top level schema.

Let W denote the triples in the warehouse, i.e. W =
[

1..ktriples(Si).

On Comparing URIs
For computing the metrics that are defined next, we need
methods to compare URIs coming from di↵erent sources.
There are more than one methods, or policies, for doing so.
Below we distinguish three main policies:

i Exact String Equality. We treat two URIs u
1

and u2
as equal, denoted by u

1

⌘ u
2

, if u
1

= u
2

(i.e. strings
equality).

ii Su�x Canonicalization. Here we consider that u
1

⌘ u
2

if last(u
1

) = last(u
2

) where last(u) is the string ob-
tained by (a) getting the substring after the last ”/” or
”#”, and (b) turning the letters of the picked substring
to lowercase and deleting the underscore letters that
might exist. According to this policy
http://www.dbpedia.com/Thunnus_Albacares ⌘

http://www.ecoscope.com/thunnus_albacares
since their canonical su�x is the same, i.e. thunnusal-
bacares. Another example of a equivalent URIs:
http://www.s1.com/entity#thunnus_albacares ⌘

http://www.s2.org/entity/thunnusAlbacares.
iii Entity Matching. Here consider u

1

⌘ u
2

if u
1

sameAs
u

2

according to the entity matching rules that are (or
will be eventually) used for the warehouse. In general

15In the evaluation of related tools, like Sieve [7] and OD-
CleanStore [8], real datasets have been used but not “real”
operational needs. In our evaluation we use an operational
warehouse with concrete (query) requirements which are de-
scribed by the competency queries.

such rules create sameAs relationships between URIs.
In our case we use SILK for formulating and applying
such rules.

Note that if two URIs are equivalent according to policy
[i], then they are equivalent according to [ii] too. Policy
[i] is very strict (probably too strict for matching entities
coming from di↵erent sources), however it does not pro-
duce any false-positive. Policy [ii] achieves treating as equal
entities across di↵erent namespaces, however false-positives
may occur. For instance, Argentina is a country (http://
www.fishbase.org/entity#Argentina) but also a fish genus
(http://www.marinespecies.org/entity#WoRMS:
125885/Argentina). Policy [iii] is fully aligned with the in-
tended query behaviour of the warehouse (the formulated
rules are expected to be better as regards false-negatives
and false-positives), however for formulating and applying
these entity matching rules, one has to know the contents of
the sources. Consequently one cannot apply policy [iii] the
first time, instead policies [i] and [ii] can be applied auto-
matically without requiring any human e↵ort. We could also
note that policy [ii] can be used for providing hints regarding
what entity matching rules to formulate.

Below we define and compute the metrics assuming policy
[ii], i.e. whenever we have a set operation we assume equiv-
alence according to [ii] (e.g. A \ B means { a 2 A | 9 b 2

B s.t. a ⌘

[ii] b}. Then, in Section 4.1, we report results
according to policy [iii].

Matrix of Percentages of Common URIs
The number of common URIs between two sources Si and
Sj , is given by |Ui \ Uj |. We can define the percentage of
common URIs (a value ranging [0..1]), as follows: curii,j =

|U
i

\U
j

|

min(|U
i

|,|U
j

|)

. In the denominator we use min(|Ui|, |Uj |) in-

stead of |Ui [Uj | as in the Jaccard similarity. With Jaccard
similarity the integration of a small triple set with a big one
would always give small values, even if the small set contains
many URIs that exist in the big set. For this reason we use
min.

We now extend the above metric and consider all sources
aiming at giving an overview of the warehouse. Specifically,
we compute a k ⇥ k matrix where ci,j = curii,j . The higher
values this matrix contains, the more glued its“components”
are. However note that we may have 3 sources, such that
each pair of them has a high curi value, but the intersection
of the URIs of all 3 sources is empty. This is not necessar-
ily bad, for example, consider a source contributing triples
of the form person-lives-placeName, a second source con-
tributing placeName-has-postalCode, and a third one con-
tributing postCode-isAddressOf-cinema. Although these
three sources may not contain even one common URI, their
hosting in a warehouse allows answering queries: “give me
the cinemas in the area where the x person leaves”.

On the other hand, in a case where the three sources were
contributing triples of the form person-lives-placeName,
person-worksAt-Organization and person-owns-car, then
it would be desired to have common URIs in all sources,
as that would allow having more complete information for
many persons. Finally, one might wonder why we do not
introduce a kind of average path length, or diameter, for the
warehouse. Instead of doing that, we inspect the paths that
are useful for answering the queries of the users, and this is
done through the competency queries.

For the warehouse at hand, Table 1 shows the matrix of

252

the common URIs, while Table 2 shows the matrix of the
common URI percentages. The percentages range from 0.3%
to 27.39%. We can see that in some cases we have a sig-
nificant percentage of common URIs between the di↵erent
sources. The biggest intersection is between FishBase and
DBpedia.

����S

i

S

j FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 173,929 239 523 631 887
WoRMS 80,485 200 1,714 3,596
Ecoscope 5,824 192 225
DBpedia 70,246 9,578
FishBase 34,974

Table 1: Common URIs (|Ui \ Uj |)

����S

i

S

j FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 0.3% 8.98% 0.9% 2.54%

WoRMS 1 3.43% 2.44% 10.28%

Ecoscope 1 3.3% 3.86%

DBpedia 1 27.39%

FishBase 1

Table 2: Common URIs % (curii,j =
|U

i

\U
j

|

min(|U
i

|,|U
j

|)

)

Percentage of Common literals between two sources
The percentage of common literals, between two sources Si

and Sj can be computed by cliti,j =
|Lit

i

\Lit
j

|

min(|Lit
i

|,|Lit
j

|)

. To

compare 2 literals coming from di↵erent sources, we convert
them to lower case, to avoid cases like comparing “Thunnus”
from one source and “thunnus” from another.

Table 3 shows the matrix of the common literals, while
Table 4 shows the percentages. We can see that as regards
the literals the percentages of similarity are even smaller
than the ones regarding common URIs. The percentages
range from 2.71% to 12.37%.

����S

i

S

j FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 111,164 3,624 1,745 5,668 9,505

WoRMS 51,076 382 2,429 4,773

Ecoscope 14,102 389 422

DBpedia 123,887 14,038

FishBase 138,275

Table 3: Common Literals (|Liti \ Litj |)

Increase in the Average Degree
Now we introduce another metric for expressing the degree of
common URIs. Let E be the entities of interest (or all URIs).
If T is a set of triples, then we can define the degree of an
entity e in T as: degT (e) = |{(s, p, o) 2 T | s = e or o = e}|,
while for a set of entities E we can define their average degree
in T as degT (E) = avge2E(degT (e)).

Now for each source Si we can compute the average degree
of the elements in E considering triples(Si). If the sources
of the warehouse contain common elements of E, then if we
compute the degrees in the graph of W (i.e. degW (e) and
degW (E)), we will get higher values. So the increase in the
degree is a way to quantify the gain, in terms of connectivity,
that the warehouse o↵ers.

For each source Si, Table 5 shows the average degree of its
URIs (i.e. of those in Ui), and the average degree of the same

����S

i

S

j FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 7.1% 12.37% 5.1% 8.55%

WoRMS 1 2.71% 4.76% 9.34%

Ecoscope 1 2.76% 2.99%

DBpedia 1 11.33%

FishBase 1

Table 4: Common Literals % (cliti,j =
|Lit

i

\Lit
j

|

min(|Lit
i

|,|Lit
j

|)

)

S

i

avg deg

S

i

(U
i

) avg deg

W

(U
i

) increase

FLOD 7.18 9.18 27.84%

WoRMS 3.3 7.33 122.36%

Ecoscope 22.84 31.18 36.56%

DBpedia 41.41 42.11 1.7%

FishBase 18.86 29.81 58.08%

AVERAGE 18.72 23.92 27.78%

Table 5: Average degrees in sources and in the ware-
house

URIs in the warehouse graph. It also reports the increment
percentage (computed by warehouse/source * 100). The last
row of the table shows the average values of each column.
We observe that the average degree is increased from 18.72
to 23.92

Restricting the Metrics (to the Entities of Interest)
The above metrics can be refined so that to consider not all
URIs, but only those that serve the purpose of the ware-
house. For example, one could define the above metrics by
considering only URIs that are instances of a particular class
or classes (e.g. Persons, Locations), or those returned by the
competency queries. In general, we can consider that the set
of URIs (or entities) of interest is a set E that is defined ex-
tensionally (by listing its elements) or intentionally (through
a query).

Complementarity of Sources
We now define metrics for quantifying the complementarity
of the sources.

The “contribution” of each source Si can be quantified
by counting the triples it has provided to the warehouse, i.e.
by |triples(Si)|. We can also define its“unique contribution”
by excluding from triples(Si) those belonging to the triples
returned by the other sources. Formally, we can define
triplesUnique(Si) = triples(Si) \ ([

1jk,j �=itriples(Sj)).
It follows that if a source Si provides triples which are also
provided by other sources, then we have triplesUnique(Si) =
;. Consequently, and for quantifying the contribution of
each source to the warehouse, we can compute and report
the number of its triples |triples(Si)|, the number of unique
triples |triplesUnique(Si)|, and the percentage of unique

triples |triplesUnique(S
i

)|

|triples(S
i

)|

. To count the unique triples of each
source, for each triple of that source we perform su�x canon-
icalization on its URIs, convert its literals to lower case, and
then we check if the resulting (canonical) triple exists in the
canonical triples of a di↵erent source. If not, we count this
triple as unique.

Let triplesUniques be the union of the unique triples of all
sources, i.e. triplesUniques = [itriplesUnique(Si). This
set can be proper subset of W (i.e. triplesUniques ⇢ W),
since it does not contain triples which have been contributed
by two or more sources.

Table 6 shows for each source the number of its triples

253

|triples(Si)|, the number of unique triples |triplesUnique(Si)|,

and the percentage of unique triples |triplesUnique(S
i

)|

|triples(S
i

)|

. We

can see that every source contains a very high (> 99%) per-
centage of unique triples, so we can conclude that all sources
are important.

S

i

a = |triples(S
i

)| b = |triplesUnique(S
i

)| b/a

FLOD 665,456 664,703 99.89%

WoRMS 461,230 460,741 99.89%

Ecoscope 54,027 53,641 99.29%

DBpedia 450,429 449,851 99.87%

FishBase 1,425,283 1,424,713 99.96%

Table 6: (Unique) triple contributions of the sources

We now define another metric for quantifying the value
of the warehouse for the entities of interest. Specifically we
define the complementarity factor for an entity e, denoted
by cf(e), as the number of sources that provided unique
material about e. It can be defined declaratively as:

cf(e) = |{ i | triplesW (e) \ triplesUnique(Si) 6= ;}|

i.e. it is the number of sources which have provided unique
content for e. Note that if k = 1, i.e. if we have only one
source, then for every entity e we will have cf(e) = 1 . If
k = 2, i.e. if we have two sources, then we can have the
following cases:
� cf(e) = 0 if both sources have provided the same triple
(or triples) about e,
� cf(e) = 1 if the triples provided by the one source (for e)
are subset of the triples provided by the other,
� cf(e) = 2 if each source has provided at least one di↵erent
triple for e (of course they can also have contributed common
triples).

Consequently for the entities of interest we can compute
and report the average complementarity factor as a way to
quantify the value of the warehouse for these entities.

Table 7 shows (indicatively) the complementarity factors
for a few entities which are important for the problem at
hand. We see that for the entities “Thunnus” and “Shark”
each source provides unique information (with the term en-
tity we mean any literal or URI that contains the word
“thunnus” for example). For the entity “Greece” and “As-
trapogon” we take unique information from three sources.
The fact that the complementarity factor is big means that
the warehouse provides information about each entity from
all/many sources.

Kind of Entity cf(·)/5

Thunnus 5/5

Greece 3/5

Shark 5/5

Astrapogon 3/5

Table 7: Complementarity factor (cf) of some enti-
ties

4.1 After applying the rule-derived ‘sameAs’
relationships and the transformation rules

So far in the computation of the above metrics we have
used policy [ii] (su�x canonicalized URIs) when comparing
URIs. Here we show the results from computing again these
metrics using policy [iii]. This means that now when com-
paring URIs we consider the sameAs relationships that have

been produced by the entity matching rules of the ware-
house. In the current warehouse we use 11 SILK rules. An
indicative SILK rule is the following: “If an Ecoscope indi-
vidual’s attribute preflabel (e.g. Thunnus albacares) in lower
case is the same with the attribute label in latin of a FLOD
individual (e.g. ‘thunnus albacares’@la), then these two in-
dividuals are the same”.

We should also note that previously, in policy [ii] we con-
sidered the triples as they are fetched form the sources. Here
we consider the triples as derived from the transformation
rules (described in §3).

Computing the metrics using policy [iii], not only allows
evaluating the gain achieved by these relationships, but it
also better reflects the value of the warehouse since query
answering considers the sameAs relationships.

Table 8 shows the matrix of the common URIs after the
rule-derived sameAs relationships and the execution of the
transformation rules, and Table 9 shows the corresponding
percentages. We can see that, compared to the results of
Tables 1 and 2, after considering the sameAs relationships
the number of common URIs between the di↵erent sources
is significantly increased (more than 7 times in some cases).

����S

i

S

j FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 190,733 434 1,897 4,009 6,732

WoRMS 80,486 805 1,754 3,596

Ecoscope 7,805 1,245 2,116

DBpedia 74,381 10,385

FishBase 34,974

Table 8: Common URIs (|Ui \ Uj |)

����S

i

S

j FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 0.54% 24.3% 5.39% 19.25%

WoRMS 1 10.31% 2.36% 10.28%

Ecoscope 1 15.95% 27.1%

DBpedia 1 29.69%

FishBase 1

Table 9: Common URIs % (curii,j =
|U

i

\U
j

|

min(|U
i

|,|U
j

|)

)

Table 10 shows the average degree of the URIs of each
source Si (i.e. of those in Ui), and the average degree of the
same URIs in the warehouse graph. It also reports the in-
crement percentage (computed by warehouse/source * 100).
The last row of the table shows the average values of each
column. We can see that the average degree, of all sources,
after the inclusion of the sameAs relationships is significantly
bigger than before. In comparison to Table 5, the increase
is from 2 to almost 8 times bigger. This means that we
achieve a great increase in terms of the connectivity of the
information in the warehouse.

As regards the unique contribution of each source, Table
11 shows the number of the triples of each source |triples(Si)|,
the number of unique triples |triplesUnique(Si)|, and the

percentage of unique triples |triplesUnique(S
i

)|

|triples(S
i

)|

. We observe
that the values in the column “a” are increased in compar-
ison to Table 6. This is because of the execution of the
transformation rules after the ingestion of the data to the
warehouse, which results to the creation of new triples for
the majority of sources. Finally we observe that, in general,

254

S

i

avg deg

S

i

(U
i

) avg deg

W

(U
i

) increase

FLOD 7.18 54.31 656.51%

WoRMS 3.3 9.93 201.36%

Ecoscope 22.84 165.24 623.6%

DBpedia 41.41 84.2 103.36%

FishBase 18.86 50.6 168.32%

AVERAGE 18.72 72.86 289.21%

Table 10: Average degrees in sources and in the
warehouse

the percentage of unique triples provided by each source is
decreased. This happens because the transformation rules
and the same-as relationships have turned previously di↵er-
ent triples, the same.

S

i

a = |triples(S
i

)| b = |triplesUnique(S
i

)| b/a

FLOD 810,301 798,048 98.49%

WoRMS 582,009 527,358 99.88%

Ecoscope 138,324 52,936 38.27%

DBpedia 526,016 517,242 98.33%

FishBase 1,425,283 1,340,968 94.08%

Table 11: (Unique) triple contributions of the
sources

4.2 Detecting Redundancies or other Patho-
logical Cases

The metrics can be used also for detecting various patho-
logical cases, e.g. sources that do not have any common URI
or literal, or “redundant sources”. To test this we created
two artificial sources, let’s call them Airports and Clone-
Source. The first contains triples about airports which were
fetched from the DBpedia public SPARQL endpoint, while
the second is a subset of Ecoscope’s and DBpedia’s triples
as they are stored in the warehouse.

In the sequel, we computed the metrics for all 7 sources.
Table 12 shows the unique triples and Table 13 shows the
average degrees. As regards Airports, the percentage of com-
mon URIs was very low, and the average degree for the en-
tities of that source was very low too (2.22% due to some
common country names), while its unique contribution was
100%. As regards CloneSource we got 0 unique contribution
(as expected, since it was composed from triples of existing
sources).

S

i

a =
|triples(S

i

)|
b =

|triplesUnique(S
i

)| b/a

FLOD 665,456 664,703 99.89%

WoRMS 461,230 460,741 99.89%

Ecoscope 54,027 17,951 33.23%

DBpedia 450,429 429,426 95.34%

Fishbase 1,425,283 1,424,713 99.96%

CloneSource 56,195 0 0%
Airports 31,628 31,628 100%

Table 12: (Unique) triple contributions of the
sources

Rules for Detecting Pathological Cases
It follows that we can detect pathological cases using two
rules: (a) if the average increase of the degree of the entities
of a source is low, then this means that its contents are not
connected with the contents of the rest sources (this is the

case of Aiports where we had only 2.22% increase), (b) if the
unique contribution of a source is very low (resp. zero), then
this means that it does not contribute significantly (resp. at
all) to the warehouse (this is the case of CloneSource where
the unique contribution was zero).

S

i

avg deg

S

i

(U
i

) avg deg

W

(U
i

) increase

FLOD 7.18 54.31 656.51%

WoRMS 3.3 9.93 201.36%

Ecoscope 22.84 165.24 623.6%

DBpedia 41.41 84.2 103.36%

FishBase 18.86 50.6 168.32%

CloneSource 44.43 84.2 89.52%

Airports 70.99 72.56 2.22%

AVERAGE 29.86 74.43 149.26%

Table 13: Average degrees in sources and in the
warehouse

4.3 Implementation
As regards implementation, the above metrics are com-

puted by the tool MatWare that we have developed. The
values of the metrics are exposed in the form of an HTML
page (as shown in Figure 3) providing in this way a kind of
quantitative documentation of the warehouse. As regards
time, the current warehouse (containing 3,772,919 triples)
takes about 7 hours to reconstruct.16

Figure 3: Metrics results displayed in HTML as pro-
duced by MatWare

5. SYNOPSIS AND CONCLUSION
For many applications one has to fetch and assemble pieces

of information coming from more than one SPARQL end-
points. In this paper we have described the main require-
ments and challenges, based also on our experience so far
in building a semantic warehouse for marine resources. We
have presented a process for constructing such warehouses
and then we introduced metrics for quantifying the connec-
tivity of the outcome.

The results are very positive. By inspecting the proposed
metrics-based matrixes one can very quickly get an overview

16Virtuoso and machine spec: Openlink Virtuoso V6.1,
Ubuntu 12.10 64bit, Quad-Core, 4 GB RAM.

255

of the contribution of each source and the tangible benefits
of the warehouse. The main metrics proposed are: (a) the
matrix of percentages of the common URIs and/or liter-
als, (b) the complementarity factor of the entities of inter-
est, (c) the table with the increments in the average degree
of each source, and (d) the unique triple contribution of
each source. The values of (a),(b),(c) allow valuating the
warehouse, while (c) and (d) mainly concern each particular
source.

For instance, and for the warehouse at hand, by combin-
ing the unique triples contribution (from Table 11) and the
increment of the average degrees (of Table 10), we can un-
derstand that not only we get unique information from all
sources, but also how much the average degree of the en-
tities of the sources has been increased in the warehouse.
Moreover, redundant sources can be spotted through their
low unique contribution, while unconnected sources through
their low average increase of the degree of their entities. Of
course one could combine the above metrics and derive var-
ious other single-valued metrics for expressing the quality
(connectivity, redundancy) of each source, as well as for the
entire warehouse.

The ability to assess the quality of a semantic warehouse
(using methods like those presented in this paper, as well
those presented in §2.1) is very important for judging whether
the warehouse can be used in e-Science. It is also important
because in the long run we expect that datasets and ware-
houses will be peer-reviewed, evaluated and cited, and this
in turn will justify actions for their future preservation.

In future we plan to continue along this direction, focusing
also on methods that compare the metrics of two di↵erent
warehouse versions for monitoring the evolution of the ware-
house over time.

Acknowledgement
This work was partially supported by the ongoing project
iMarine (FP7 Research Infrastructures, 2011-2014).

6. REFERENCES
[1] D. P. Ballou and G. K. Tayi. Enhancing data quality

in data warehouse environments. Communications of
the ACM, 42(1):73–78, 1999.

[2] F. Darari, W. Fariz, W. Nutt, G. Pirro, and
S.Razniewski. Completeness Statements about RDF
Data Sources and their Use for Query Answering. In
The Semantic Web–ISWC 2013, pages 66–83.
Springer, 2013.

[3] P. Fafalios and Y. Tzitzikas. X-ENS: Semantic
Enrichment of Web Search Results at Real-Time. In
SIGIR’13, pages 1089–1090, Dublin, Ireland, 2013.
ACM.

[4] A. Hogan, A. Harth, J. Umbrich, S. Kinsella,
A. Polleres, and S. Decker. Searching and Browsing
Linked Data with SWSE: The Semantic Web Search
Engine. Web Semantics: Science, Services and Agents
on the World Wide Web, 9(4), 2011.

[5] T. Knap and J. Michelfeit. Linked Data Aggregation
Algorithm: Increasing Completeness and Consistency
of Data, http://www.ksi.mff.cuni.cz/~knap/files/
aggregation.pdf.

[6] T. Knap, J. Michelfeit, J. Daniel, P. Jerman,
D. Rychnovskỳ, T. Soukup, and M. Nečaskỳ.

ODCleanStore: a Framework for Managing and
Providing Integrated Linked Data on the Web. In Web
Information Systems Engineering-WISE 2012, pages
815–816. Springer, 2012.

[7] P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve:
Linked Data Quality Assessment and Fusion. In
Proceedings of the 2012 Joint EDBT/ICDT
Workshops, pages 116–123. ACM, 2012.

[8] J. Michelfeit and T. Knap. Linked Data Fusion in
ODCleanStore. In International Semantic Web
Conference (Posters & Demos), 2012.

[9] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
Document-Oriented Lookup Index for Open Linked
Data. Int. J. Metadata Semant. Ontologies,
3(1):37–52, 2008.

[10] G. G. Shanks and P. Darke. Understanding Data
Quality and Data Warehousing: A Semiotic Approach.
In Third Conference on Information Quality (IQ’98),
pages 292–309, 1998.

[11] E. Tsiflidou and N. Manouselis. Tools and Techniques
for Assessing Metadata Quality. In 7th Metadata and
Semantics Research Conference (MTSR’13), 2013.

[12] Y. Tzitzikas, C. Alloca, C. Bekiari, Y. Marketakis,
P. Fafalios, M. Doerr, N. Minadakis, T. Patkos, and
L. Candela. Integrating Heterogeneous and
Distributed Information about Marine Species through
a Top Level Ontology. In Proceedings of the 7th
Metadata and Semantic Research Conference
(MTSR’13), Thessaloniki, Greece, November 2013.

[13] Y. Tzitzikas, M. Kampouraki, and A. Analyti.
Curating the Specificity of Ontological Descriptions
under Ontology Evolution. Journal on Data
Semantics, pages 1–32, 2013.

[14] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk -
A Link Discovery Framework for the Web of Data. In
Proceedings of the WWW’09 Workshop on Linked
Data on the Web, 2009.

APPENDIX
A. COMPETENCY QUERIES

Figure 4 displays the textual description for some compe-
tency queries as they were supplied by the communities.

!"#$%& !"# $ '()$*+),)(*-.$ "% $ '/$()$' &'()(01#**#' 234-(-%$' "# 56%6.)+%- 7%-'')($/'*+

%,-./),0' 1'

" 23' 4,"5"),6$5 '-0,#"-1'-27 &'()($(6'&'+$.'* ,- 83,63 23' '/$()$' 3$7 4''-)*+%68#($8 $-. 1"#'

)'-'#$5 .'76#,92,0' ,-%"#1$2,"- "% ,2 &7:63 $7 23' (6#*+%&*

" ,27 (6..6* *-.$' $-. 23',# 6"195'1'-2$#; ,-%" &'()(3-*9#-9$' $-. (6#*+%)$' 83'#' 23'; $#'

:7'.*

" 23' :-+$% -%$-' $-. 23',# ;2< (68$' ,- 83,63 23' '/$()$' ,7 *-+)=$

" 23' (6#*+%)$' ,- 83,63 23' '/$()$' 3)=$'

" 23' :-+$% -%$-' $-. 23' ;2< 9"#2,"-,-) (68$ $77"6,$2'. 8,23 $ 6":-2#;

" 23' 9#'7'-2$2,"- 8(#(2 76#*+%&+ >(6'&'+$.+ ?-+$% 2%$- $-. >@(3#')=$ >(6*6.)(-3 A6*$ &"% 23'

8$2'# $#'$*

" 23' 9#"<'62,"- 8(#(2(>(6'&'+$. $-. 76./$+)+6%+ 9#"0,.,-) %"# '$63 6"19'2,2"# 23')8$*+),)(-+)6*

)*,6%.-+)6* &'()(7'0'#$5 6".'7 9#"0,.'. 4; .,%%'#'-2 "#)$-,=$2,"-7*

" $ 1$9 8(#(2(76#*+%& $-. 5%$8-+6%+ 9#"0,.,-) %"# '$63 9#'.$2"# 4"23 23')8$*+),)(-+)6*)*,6%.-+)6*

$-. 23' 4)6369)(-3 (3-''),)(-+)6*

" :16 .,76"0'#'. ,2+ ,- 83,63 &$-%+ 23' 4)6369)(-3 (3-''),)(-+)6*+ 23')8$*+),)(-+)6*)*,6%.-+)6*+ 23'

(6..6* *-.$' > 9#"0,.,-) %"# '$63 6"11"- -$1' 23' 3-*9#-9$+ 23' (6#*+%)$' 83'#' ,2 ,7 :7'.

,-(

Figure 4: Some indicative competency queries

256

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

