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ABSTRACT 
We present an approach for scalable processing of SPARQL 
queries to RDF views of numerical data stored in relational 
databases (RDBs). Such queries include numerical expressions, 
inequalities, comparisons, etc. inside FILTERs. We call such 
FILTERs numerical expressions and the queries - numerical 
SPARQL queries. For scalable execution of numerical SPARQL 
queries over RDBs, numerical operators should be pushed into 
SQL rather than executing the filters as post-processing outside 
the RDB; otherwise the query execution is slowed down, since a 
lot of data is transported from the RDB server and furthermore 
indexes on the server are not utilized. The NUMTranslator 
algorithm converts numerical expressions in numerical 
SPARQL queries into corresponding SQL expressions. We 
show that NUMTranslator improves substantially the scalability 
of SPARQL queries based on a benchmark that analyses 
numerical logs stored in an RDB. We compared the performance 
of our approach with the performance of other systems 
processing SPARQL queries to RDF views of RDBs and show 
that NUMTranslator improves substantially the scalability of 
numerical queries compared to the other  systems’  approaches.   

Keywords 
SPARQL queries; RDF views of relational databases; numerical 
expressions; query rewrites; query optimization 

1. INTRODUCTION 
The Semantic Web provides uniform data representation for 
integrating data from different data sources by using established 
well-known formats like RDF, RDFS, OWL, and the standard 
query language SPARQL. Semantic Web seems promising to 
integrate and search industrial data [2]. 

Our application scenario is from the industrial domain, where 
sensors on machines such as trucks, pumps, kilns, etc., produce 
large volumes of log data. Such log data describes measured 
values of certain components at different times and can be used 
for analyzing machine behavior. Furthermore, the geographic 
locations of machines are often widely distributed and 
maintained locally in autonomous RDBs called log databases. 
We are developing the FLOQ (Federated LOg database Query) 
system, which is a system for historical analyses over 
federations of autonomous log databases using SPARQL 

queries. To discover abnormal machine behaviors, a user of 
FLOQ defines SPARQL queries to these log databases. FLOQ 
processes a SPARQL query by first finding the relevant log 
databases containing the desired data, then sending local 
SPARQL queries to them, and finally collecting the local query 
results to obtain the final result. 

In this paper we concentrate on scalable historical analyses by 
SPARQL queries of log data stored in a single relational 
database. Suspected abnormal machine behaviors are discovered 
and analyzed by specifying numerical SPARQL queries to an 
RDF view of the RDB. The queries analyze log data through 
numerical FILTERs containing numerical operators [11]. For 
example, query Q1 retrieves the machine identifiers m for which 
a sensor has measured values mv of measurement class A higher 
than the expected values ev by a threshold value @thA during 
the time from bt to time et. Here <prod> denotes the URI for 
the RDF view of the RDB.   

 
In FLOQ, SPARQL queries to RDBs are processed by 
generating a local execution plan containing calls to one or 
several SQL queries sent to a back-end RDBMS for evaluation. 
SPARQL queries that cannot be completely processed by SQL 
are instead partially processed by an execution plan interpreter 
in FLOQ. However, in order for the SQL queries to return the 
minimal required data, it is desirable that as much as possible of 
the SPARQL query is translated to SQL [8].  

In FLOQ numerical SPARQL queries are defined over an 
automatically generated RDF view over an RDB expressed in 
ObjectLog [6], which is a Datalog dialect that supports objects 
for representing URIs and typed literals [9], disjunctive queries 
for UNION expressions, and foreign predicates to represent 
numerical operators in queries. The SPARQL queries are parsed 
into ObjectLog queries to the RDF view. Internally representing 
queries in ObjectLog permits domain calculus query 
transformations and optimizations before generating the 
execution plan. Calls to tuple calculus SQL query strings are 
made as foreign predicates. Foreign predicates are also used for 
accessing URIs in the execution plan. Doing all processing in 
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Q1: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresA  log:mA_BySensor  ?sensor. 
       ?measuresA  log:mA/bt        ?bt. 
       ?measuresA  log:mA/et        ?et. 
       ?measuresA  log:mA/m         ?m. 
       ?measuresA  log:mA/mv        ?mv. 
       ?sensor     log:sensor/ev    ?ev. 
       FILTER (?mv > (?ev + @thA))         }  
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the RDB is complicated, and requires implementing SPARQL 
operators not supported by SQL as RDB-specific UDFs. We 
show that ObjectLog query transformations enable scalable 
execution by the RDBMS. 

Numerical SPARQL queries contain variables bound to numbers 
and calls to numerical functions and operators. For scalable 
execution, it is important that such numerical expressions are 
pushed into corresponding SQL expressions and executed on the 
RDBMS server, which is the subject of this paper. The 
NUMTranslator algorithm converts numerical SPARQL queries 
into SQL queries where numerical expressions are pushed into 
SQL. For example, Q1 is converted into SQL query SQL1, 
where the numerical expression in the SPARQL FILTER is 
translated into a corresponding SQL expression. 

 
A particular problem is that SPARQL and ObjectLog are 
domain calculus languages where variables can be bound to 
numbers, while SQL is a tuple calculus language where 
variables have to be bound to tuples in relations.  The 
NUMTranslator algorithm translates domain calculus 
expressions into corresponding SQL tuple calculus expressions 
after having applied domain calculus transformation on the 
ObjectLog representation.  

We show that NUMTranslator improves substantially the query 
performance for numerical SPARQL queries compared to other 
approaches used by other systems. 

In summary the contributions are: 

x We propose a table driven approach to translate 
numerical domain calculus operators into numerical 
SQL tuple calculus operators.   

x We present the NUMTranslator algorithm that extracts 
numerical ObjectLog expressions and translates them 
into corresponding numerical SQL expressions. 

x We compare the performance of numerical SPARQL 
queries to RDF views of RDBs with and without 
applying NUMTranslator, and show that the algorithm 
substantially improves the query performance.  

x We compare the performance of our approach with the 
performance of other systems processing SPARQL 
queries over RDF views of RDBs and show 
substantially better performance. 

The rest of this paper is organized as follows: Section 2 presents 
a scenario where the approach is applicable. Section 3 overviews 
the system architecture. Section 4 describes the NUMTranslator 
algorithm. Section 5 discusses performance experiments. 
Section 6 describes related work. Conclusions and future work 
are described in section 7. 

2. MOTIVATING SCENARIO 
We present a common scenario from an industrial setting where 
it is desirable to analyze historical log data in order to find 
abnormal machine behavior. Log data from embedded sensors is 
stored in a relational log database.  

Figure 1 shows the schema of the RDB storing log data 
measured by sensors embedded in machine installations. Table 
Machine(m, mm) stores meta-data about each machine 
installation, i.e. machine identifier and model name. The table 
Sensor(m, s, sm, mc, ev, ad, rd) stores information about each 
sensor installation, i.e. the machine installation m where a sensor 
s is embedded, sensor model name sm, the kind of measurement 
(measurement class) mc, expected sensor value ev, absolute 
error ad and relative error rd. The attribute mc, measurement 
class is used to identify different kind of measurements, e.g. oil 
pressure, temperature, etc. The tables MeasuresA(m, s, bt, et, 
mv) and MeasuresB(m, s, bt, et, mv)  store log data of kind A and 
B read from sensors s embedded in machine installations m. The 
begin time bt and the ending time et for a sensor reading are also 
stored, while the measured value for a certain time stamp is 
denoted by mv. The columns m, (m, s), and (m, s, bt) are primary 
keys in the tables Machine, Sensor, and MeasuresA and 
MeasuresB, respectively. The column m in tables MeasuresA, 
MeasuresB, and Sensor references the column m in the table 
Machine as foreign key. Furthermore, columns (m, s) in tables 
MeasuresA and MeasuresB reference columns (m, s) in table 
Sensor as a composite foreign key.  

The RDF view of the RDB is illustrated by the RDF graph in 
Figure 2. 

SQL1: 
SELECT m.m, bt, et  
FROM MeasuresA m, SENSOR s  
WHERE m.m=s.m AND  
      m.s=s.s AND  
      m.mv > s.ev + @thA                                           
 

Machine(m, mm) 

Sensor(m, s, sm, mc, ev, ad, rd) 

MeasuresA(m, s, bt, et, mv) 

MeasuresB(m, s, bt, et, mv) 

 Figure 1. RDB schema for log data 
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Figure 2. RDF graph of the RDF view for  
the example RDB  
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Next we define two more typical numerical SPARQL queries to 
the log database, Q2 and Q3, that discover abnormal machine 
behaviors. Query Q2 identifies a potential failure by retrieving 
for machine models M_1, M_2, and M_3 those machineid 
where, during the time interval (bt, et), the measured value mv 
was above 75% of the allowed deviation @thA from the 
expected value ev. 

 
Query Q3 identifies abnormal behaviors of machines of a 
measurement class based on absolute deviations: when and for 
which machine identifiers did the pressure reading of class B 
deviate more than @thB from its expected value ev? 

 

3. FLOQ OVERVIEW AND QUERY 
PROCESSING 
Figure 3 illustrates processing of numerical SPARQL queries by 
FLOQ. 

 
The RDF view over the RDB is automatically generated based 
on the database schema and ontology mapping tables in FLOQ. 

The used mappings conform to the direct mapping 
recommended by W3C [10]. 

We define a unique RDFS class for each relational table, except 
for link tables [10] representing set-valued properties as many-
to-many relationships. In addition, RDF properties are defined 
for each column in a table. For example, the RDFS class with 
the URI <log:mA> represents the table MeasuresA, while 
<log:mA/bt> and <log:mA/et> represent the columns bt and et 
in MeasuresA, respectively. 

The RDF view is defined in terms of: 

x Source predicates R(a1, a2,  …,   an) that represent the 
content of each referenced relational database table R 
where the tuple (a1,  …,  an) represents a row in R. 

x URI-constructor predicates that construct URIs to 
identify rows in tables.  

x Mapping tables that map relational schema elements 
to RDF concepts. 

The complete RDF view definitions can be found in [9]. The 
query processing steps in FLOQ are shown in Figure 4. 

 
The SPARQL parser first transforms the SPARQL query into an 
ObjectLog expression where each triple pattern in the query 
becomes a reference to the RDF view of the RDB. Then the 
ObjectLog transformer generates a simplified disjunctive normal 
form (DNF) predicate. The NUMTranslator algorithm performs 
the extractor and finalizer steps. The extractor collects from 
conjunctions predicates that can be translated to SQL, called 
access filters. The query decomposer then optimizes the query, 
producing a query execution plan where access filters are called. 
The finalizer traverses the execution plan to translate the 
extracted predicates in the access filters into SQL expressions. 
When the execution plan is interpreted, the generated SQL 
statements are sent to the RDB for execution. The non-extracted 
predicates are not translated to SQL and have to be processed 
outside the RDB by post-processing operators. For example, 

Q2: 
SELECT ?machineid ?bt ?et 
FROM <prod> 
WHERE{?measuresA log:mA_bySensor  ?sensor. 
      ?measuresA log:mA/bt        ?bt. 
      ?measuresA log:mA/et        ?et. 
      ?measuresA log:mA/mv        ?mv. 
      ?measuresA log:mA_atMachine ?machineid. 
      ?machineid log:machine/mm   ?mm. 
      FILTER (?mm in ('M_1','M_2','M_3')).  
      ?sensor    log:sensor/ev    ?ev. 
      FILTER (?mv > (?ev + 0.75*@thA))    } 
 

Q3: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresB  log:mB/bt       ?bt. 
       ?measuresB  log:mB/et       ?et. 
       ?measuresB  log:mB/mv       ?mv. 
       ?measuresB  log:mB_bySensor ?sensor. 
       ?sensor     log:sensor/m    ?m. 
       ?sensor     log:sensor/ev   ?ev. 
       BIND ((?mv-?ev) as ?temp). 
       FILTER (abs(?temp) > @thB)       }  
 

SQL 

SPARQL query 

SPARQL parser 

RDB 

Query Decomposer 

Finalizer 
 

Extractor 

ObjectLog transformer 

Post-processing 

Figure 4. Query processing steps 

SPARQL query 

SQL 

FLOQ 

RDF view 

Query processor 

NUMTranslator 

RDB 

Figure 3. FLOQ query processor 
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such operators are URI-constructors and numerical expressions 
not supported by the SQL engine. 

4. THE NUMTRANSLATOR 
ALGORITHM 
The NUMTranslator uses a table-driven approach to define 
which SPARQL operators to extract and translate into 
corresponding SQL operators and functions. Table 1 defines the 
SPARQL to SQL operator translations: 

Table 1. SPARQL to SQL operators to translate 
SPARQL SQL INFIX FUNCTION 

> > True False 
< < True False 
= = True False 
!= <> True False 
+ + True True 
- - True True 

ABS ABS False True 
UCASE UPPER False True 

etc. 

In Table 1 there is one row for each SPARQL operator or 
function (column SPARQL) that can be translated into SQL. The 
column SQL defines the corresponding SQL operator or 
function. A value in the column INFIX is true when the 
corresponding SQL operator is an infix operator op on operands 
x and y, i.e. x op y (e.g. x+y); otherwise it is an SQL function on 
format f(x,y,..). The column FUNCTION is true when the 
operator is a non-Boolean function returning a value.  

4.1 The NUMTranslator extractor 
The extractor is applied on each ObjectLog conjunction in the 
simplified predicate received by the ObjectLog transformer. The 
extractor collects predicates that can be translated to SQL. Such 
predicates are i) source predicates SPs representing RDB tables, 
and ii) non-source predicates (NSPs) that are defined in Table 1 
as translatable to SQL.   

Figure 5 shows the ObjectLog representation of Q1 after it has 
been transformed by the ObjectLog transformer. 

     
In this case all predicates in Q1 are translatable to SQL since 
MeasuresA and Sensor are SPs, and  > and + are NSPs defined 
in Table 1. 

The steps of the extractor are the following:  

1. Initialize a variable Xpreds for the first found SP, 
denoted R1, in the conjunction and bind a variable 
Rest to the other predicates.  

2. Iteratively extract from Rest the predicates that have 
some common variable with some extracted predicate 
in Xpreds, which are either SPs or NSPs defined in 
Table 1. 

3. Construct an access filter of all extracted predicates in 
Xpreds since those can be fully translated to SQL. 

4. While there are some remaining SP, R2, in Rest, re-
initialize Xpreds by R2 and Rest by the remaining 
predicates, and repeat steps 2-3. 

5. Finally, construct a conjunction of the access filters 
and Rest.   

For example, for Q1 the predicates in Xpreds are extracted in the 
following order:  

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.  
2. >(mv, v36) (line 2) since > is defined in Table 1 and 

the variable mv is common with the extracted 
MeasuresA. 

3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP 
having common variables (m and s) with MeasuresA(). 

4. V36 = ev + @thA (line 3) since + is defined in Table 
1 and the variable ev is common with the extracted 
Sensor predicate. 

Then the following conjunctive access filter F1 is formed by the 
predicates in Xpreds:   

 F1(m,s,bt,et,mv,ev):- 
1  MeasuresA(m, s, bt, et, mv)      and 
2  Sensor(m, s, _, _, ev, _, _)     and 
3  v36= ev + @thA                   and 
4  mv > v36  

No non-translatable predicates remain in Rest.  

4.2 Query decomposition 
To optimize the query produced by the extractor, the query 
decomposer uses cost-based optimization [6] to produce an 
optimized execution plan. Based on heuristics and statistic of the 
queried RDB, execution cost and selectivities of access filter are 
estimated. Default cost parameters are used by the optimizer to 
estimate the execution cost and selectivities of predicates if no 
statistic is available. The decomposer will then reorder the 
access filters and the post processed predicates to generate an 
optimized execution plan. We do not further elaborate the query 
decomposer here. 

4.3 The NUMTranslator finalizer 
The finalizer translates access filters in the decomposed 
execution plan into calls to an SQL interface operator, sql that 
sends generated SQL strings to the back-end RDB for execution. 

ObjectLog numerical expressions are translated into SQL 
numerical expressions by recursively replacing all ObjectLog 
domain variables that represent numerical expressions with their 
bound expressions. For example, the variable v36 in line 4 in F1 
doesn’t   represent   a   relational   column and is replaced by its 
bound expression in line 3, and then the obtained expressions is 
mv > ev + @thA. Thus for Q1 the execution plan P1 becomes 
the following: 

 
The execution plan contains an algebra expression where the 
apply operator   γ fn(..) calls the foreign predicate sql(ds, q, 
result) implemented in Java. The foreign predicate sql sends an 

Figure 5. ObjectLog of query Q1 

Q1(m, bt, et):- 
1  MeasuresA(m, s, bt, et, mv)         and        
2  mv > v36                            and     
3  v36 = ev + @thA                     and 
4  Sensor(m, s, _, _, ev, _, _)         
 
 
 
 

(m, bt, et) 

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA 
m, SENSOR s WHERE m.mv > s.ev + @thA AND 
m.m=s.m AND m.s=s.s", (m, bt, et)) 

Figure 6. Execution plan P1 with NUMTranslator 
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SQL query q to the RDBMS data source ds for execution and 
iteratively returns bindings of tuples, result.  

If NUMTranslator had not been applied, all numerical operators 
would have to be post-processed, which would slow down the 
query execution since filtering cannot be made in the database 
server. 

For example, if NUMTranslator is turned off, for Q1 the 
following execution plan P2 is produced that doesn’t   contain  
any numerical SQL operators corresponding to numerical 
SPARQL operators, which are instead post-processed:    

 
 

Comparing the two execution plans P1 and P2 it can be seen 
that the sql operator in P2 retrieves much more data than P1, so 
if NUMTranslator is turned off lots of data needs to be filtered 
out outside the RDB server. Furthermore, the utilization of 
indexes on the SQL numerical expression by the back-end 
database server makes significant performance difference. We 
show in the next section that applying NUMTranslator  
substantially improves the query performance of numerical 
SPARQL queries. 

5. PERFORMANCE MEASUREMENTS 
We compared the performance for executing the numerical 
queries Q1, Q2, and Q3 in FLOQ with and without applying 
NUMTranslator. Furthermore, we compared the query 
performance of FLOQ with the query performance of D2RQ [1] 
for Q1, Q2, and Q3, for the same back-end relational database. 
We tried to run the queries with both ontop [7] and Virtuoso [3] 
as well, but none of our numerical SPARQL queries could be 
run, indicating that those systems do not provide full support for 
processing numerical SPARQL queries. 

All experiments are carried out on a MS SQL Server 2008 R2 
installed on a server machine with 8 AMD OpteronTM 6128 
processors, 2.00 GHz CPU and 16GB RAM. The RDB is 
populated by loading sensor data into the MS SQL server. B-tree 
indexes are created on the columns mm, mv, bt, et, ev, ad, and rd 
to speed up the queries.  

All measurements were taken both for cold and warm runs. The 
cold runs were made immediately after the RDBMS server was 
started, which implied that there were no data cached in the 
buffer pool and the   executed   query   wasn’t   optimized   by   the  
RDBMS. Thus a measured query execution time for a cold run 
includes the time for i) reading data from disk, ii) SQL query 
optimization on the RDBMS server, iii) communication, and iv) 
post-processing of data on the client. The warm runs were made 
after a query was executed once. Since the back-end RDBMS 
has a statement cache a same SQL query executed twice will be 
optimized the first time it is run. Therefore, warm executions do 
not include RDBMS query optimization time. 

The plotted values are mean values of three measurements. The 
standard deviation is less than 10% in all cases. To investigate 
the SQL query produced by all the other systems we use the 
system profiling tool of MS SQL server when running a query.  

The following notations are used in the performance diagrams:   

x NUMTranslator: FLOQ with NUMTranslator turned 
on, i.e. the SPARQL numerical expressions are 
translated into corresponding SQL expressions. 

x Naive: FLOQ with NUMTranslator turned off, i.e. the 
SPARQL numerical expressions are not translated into 
corresponding SQL numerical expressions.  

x D2RQ: D2RQ version [0.8.1] configured with the 
system’s  default  mappings. 

Figure 8, 9 and 10 show the execution times for both cold and 
warm runs for Q1, Q3, and Q2 while scaling the databases size 
from 1 GB to 15 GB.  

 
 

 
Figure 9.  Execution times for Q3 

Figure 8 and 9 show that NUMTranslator substantially improves 
the query execution scalability compared to Naïve for numerical 
SPARQL queries like Q1 and Q3 with highly selective 
numerical FILTERs: 0.04% for Q1 and 3% for Q3. In these 
cases pushing the numerical FILTERs to SQL is more profitable 
than filtering large data amounts on the client. The performance 
of D2RQ is worse than Naïve since D2RQ sends to the RDBMS 
an SQL query that  doesn’t  contain  numerical expressions, and is 
a much more complex query with more joins. Furthermore, Q3 
had to be manually changed for D2RQ to remove the BIND 
operator, since otherwise D2RQ wouldn’t return correct result.  

Measurement results for Q2 are shown in Figure 10. For Q2 the 
results for NUMTranslator and Naïve are presented in a separate 
diagram, since they are very close. It can be seen on Figure 10 
that NUMTranslator doesn’t improve the query performance for 
non-selective queries like Q2 where the FILTER selects 43% of 
the data. In this case pushing the numerical SPARQL filters to 
be executed to the RDBMS server doesn’t   make   a   significant 
difference compared to post-filtering data on the client.  

D2RQ performs worse for Q2 since it doesn’t translate any of 
the FILTERs and it furthermore generates a very complex SQL 
query with many joins.     

(v36) 

(mv) 

(m, bt, et) 

(ev) 

γ >(mv, v36) 

γ +(ev, @thA) 

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev 
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND 
m.s=s.s", (m, s, bt, et, mv, ev)) 

Figure 7. Execution plan P2 without NUMTranslator 

Figure 8. Execution times for Q1  
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Figure 10.  Execution times for Q2 

In general, the experiments show that NUMTranslator 
substantially improves the query performance of numerical 
SPARQL queries where the numerical FILTERs have high 
selectivity.  

6. RELATED WORK 
Virtuoso RDF Views [3] and D2RQ [1] are other systems that 
process SPARQL queries to RDF views of RDBs. These 
systems implement compilers that translate SPARQL directly to 
SQL. By contrast, FLOQ first generates ObjectLog queries to a 
declarative RDF view of the RDB, and then transforms the 
SPARQL queries to SQL by logical transformations.   

We   didn’t find any publication of how D2RQ compiles 
numerical SPARQL queries into SQL and the documentation for 
Virtuoso’s   SQL   generation is very limited [3]. However, by 
using the profiling tool of the RDBMS and the debug logging of 
Virtuoso we were able to analyze what queries were actually 
sent to the RDBMS, showing that neither of those systems 
translates numerical SPARQL expressions into corresponding 
SQL expressions.  

The ontop system [7] also enables SPARQL queries to RDF 
views of RDBs by translating SPARQL to Datalog programs, 
which are rewritten and translated to SQL. A difference to ontop 
is the table driven NUMTranslator algorithm, which makes it 
very easy to extend for new operators. Furthermore, FLOQ 
generates execution plans containing calls to SQL intermixed 
with expressions interpreted in the client. This enables FLOQ to 
interpret in the client SPARQL operators not available in SQL. 
In addition NUMTranslator translates the domain calculus 
SPARQL queries into tuple calculus SQL queries by substituting 
variables with their bound expressions. 

7. CONCLUSIONS AND FUTURE WORK 
We presented the FLOQ system where the NUMTranslator 
algorithm uses a table driven approach to translate numerical 
domain calculus SPARQL expressions into corresponding 
numerical SQL expressions. This enables scalable processing of 
numerical SPARQL queries to RDF views over RDBs.  

The approach was evaluated on a benchmark scenario in an 
industrial setting where logged data stored in an RDB was 
analyzed using numerical SPARQL queries. We compared the 
performance of the SPARQL queries with and without applying 
NUMTranslator. The experiments show that NUMTranslator 
substantially improves the query performance of numerical 

SPARQL queries in particular when the numerical expressions 
inside FILTERs are highly selective.  

We also compared our approach with other systems that 
translate SPARQL queries to SQL. Only D2RQ could execute 
our queries, but substantially slower since D2RQ does not 
employ an approach similar to NUMTranslator.  

As our next step, we will investigate numerical SPARQL 
queries searching large numbers of distributed log databases 
combined through an ontology. Another issue is creating 
benchmarks based on randomly generating SPARQL queries 
[5]. Furthermore, query processing and mediation strategies over 
other back-ends than RDBs [4] in our setting should be 
investigated. 
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