
Scalable Numerical SPARQL Queries over
Relational Databases

Minpeng Zhu, Silvia Stefanova, Thanh Truong, Tore Risch

Department of Information Technology, Uppsala University
Box 337, SE-75105 Uppsala, Sweden

{Minpeng.Zhu, Silvia.Stefanova, Thanh.Truong, Tore.Risch}@it.uu.se

ABSTRACT
We present an approach for scalable processing of SPARQL
queries to RDF views of numerical data stored in relational
databases (RDBs). Such queries include numerical expressions,
inequalities, comparisons, etc. inside FILTERs. We call such
FILTERs numerical expressions and the queries - numerical
SPARQL queries. For scalable execution of numerical SPARQL
queries over RDBs, numerical operators should be pushed into
SQL rather than executing the filters as post-processing outside
the RDB; otherwise the query execution is slowed down, since a
lot of data is transported from the RDB server and furthermore
indexes on the server are not utilized. The NUMTranslator
algorithm converts numerical expressions in numerical
SPARQL queries into corresponding SQL expressions. We
show that NUMTranslator improves substantially the scalability
of SPARQL queries based on a benchmark that analyses
numerical logs stored in an RDB. We compared the performance
of our approach with the performance of other systems
processing SPARQL queries to RDF views of RDBs and show
that NUMTranslator improves substantially the scalability of
numerical queries compared to the other systems’ approaches.

Keywords
SPARQL queries; RDF views of relational databases; numerical
expressions; query rewrites; query optimization

1. INTRODUCTION
The Semantic Web provides uniform data representation for
integrating data from different data sources by using established
well-known formats like RDF, RDFS, OWL, and the standard
query language SPARQL. Semantic Web seems promising to
integrate and search industrial data [2].

Our application scenario is from the industrial domain, where
sensors on machines such as trucks, pumps, kilns, etc., produce
large volumes of log data. Such log data describes measured
values of certain components at different times and can be used
for analyzing machine behavior. Furthermore, the geographic
locations of machines are often widely distributed and
maintained locally in autonomous RDBs called log databases.
We are developing the FLOQ (Federated LOg database Query)
system, which is a system for historical analyses over
federations of autonomous log databases using SPARQL

queries. To discover abnormal machine behaviors, a user of
FLOQ defines SPARQL queries to these log databases. FLOQ
processes a SPARQL query by first finding the relevant log
databases containing the desired data, then sending local
SPARQL queries to them, and finally collecting the local query
results to obtain the final result.

In this paper we concentrate on scalable historical analyses by
SPARQL queries of log data stored in a single relational
database. Suspected abnormal machine behaviors are discovered
and analyzed by specifying numerical SPARQL queries to an
RDF view of the RDB. The queries analyze log data through
numerical FILTERs containing numerical operators [11]. For
example, query Q1 retrieves the machine identifiers m for which
a sensor has measured values mv of measurement class A higher
than the expected values ev by a threshold value @thA during
the time from bt to time et. Here <prod> denotes the URI for
the RDF view of the RDB.

In FLOQ, SPARQL queries to RDBs are processed by
generating a local execution plan containing calls to one or
several SQL queries sent to a back-end RDBMS for evaluation.
SPARQL queries that cannot be completely processed by SQL
are instead partially processed by an execution plan interpreter
in FLOQ. However, in order for the SQL queries to return the
minimal required data, it is desirable that as much as possible of
the SPARQL query is translated to SQL [8].

In FLOQ numerical SPARQL queries are defined over an
automatically generated RDF view over an RDB expressed in
ObjectLog [6], which is a Datalog dialect that supports objects
for representing URIs and typed literals [9], disjunctive queries
for UNION expressions, and foreign predicates to represent
numerical operators in queries. The SPARQL queries are parsed
into ObjectLog queries to the RDF view. Internally representing
queries in ObjectLog permits domain calculus query
transformations and optimizations before generating the
execution plan. Calls to tuple calculus SQL query strings are
made as foreign predicates. Foreign predicates are also used for
accessing URIs in the execution plan. Doing all processing in

(c) 2014, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,
2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0.

Q1:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresA log:mA_BySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.
 ?measuresA log:mA/m ?m.
 ?measuresA log:mA/mv ?mv.
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + @thA)) }

257

the RDB is complicated, and requires implementing SPARQL
operators not supported by SQL as RDB-specific UDFs. We
show that ObjectLog query transformations enable scalable
execution by the RDBMS.

Numerical SPARQL queries contain variables bound to numbers
and calls to numerical functions and operators. For scalable
execution, it is important that such numerical expressions are
pushed into corresponding SQL expressions and executed on the
RDBMS server, which is the subject of this paper. The
NUMTranslator algorithm converts numerical SPARQL queries
into SQL queries where numerical expressions are pushed into
SQL. For example, Q1 is converted into SQL query SQL1,
where the numerical expression in the SPARQL FILTER is
translated into a corresponding SQL expression.

A particular problem is that SPARQL and ObjectLog are
domain calculus languages where variables can be bound to
numbers, while SQL is a tuple calculus language where
variables have to be bound to tuples in relations. The
NUMTranslator algorithm translates domain calculus
expressions into corresponding SQL tuple calculus expressions
after having applied domain calculus transformation on the
ObjectLog representation.

We show that NUMTranslator improves substantially the query
performance for numerical SPARQL queries compared to other
approaches used by other systems.

In summary the contributions are:

x We propose a table driven approach to translate
numerical domain calculus operators into numerical
SQL tuple calculus operators.

x We present the NUMTranslator algorithm that extracts
numerical ObjectLog expressions and translates them
into corresponding numerical SQL expressions.

x We compare the performance of numerical SPARQL
queries to RDF views of RDBs with and without
applying NUMTranslator, and show that the algorithm
substantially improves the query performance.

x We compare the performance of our approach with the
performance of other systems processing SPARQL
queries over RDF views of RDBs and show
substantially better performance.

The rest of this paper is organized as follows: Section 2 presents
a scenario where the approach is applicable. Section 3 overviews
the system architecture. Section 4 describes the NUMTranslator
algorithm. Section 5 discusses performance experiments.
Section 6 describes related work. Conclusions and future work
are described in section 7.

2. MOTIVATING SCENARIO
We present a common scenario from an industrial setting where
it is desirable to analyze historical log data in order to find
abnormal machine behavior. Log data from embedded sensors is
stored in a relational log database.

Figure 1 shows the schema of the RDB storing log data
measured by sensors embedded in machine installations. Table
Machine(m, mm) stores meta-data about each machine
installation, i.e. machine identifier and model name. The table
Sensor(m, s, sm, mc, ev, ad, rd) stores information about each
sensor installation, i.e. the machine installation m where a sensor
s is embedded, sensor model name sm, the kind of measurement
(measurement class) mc, expected sensor value ev, absolute
error ad and relative error rd. The attribute mc, measurement
class is used to identify different kind of measurements, e.g. oil
pressure, temperature, etc. The tables MeasuresA(m, s, bt, et,
mv) and MeasuresB(m, s, bt, et, mv) store log data of kind A and
B read from sensors s embedded in machine installations m. The
begin time bt and the ending time et for a sensor reading are also
stored, while the measured value for a certain time stamp is
denoted by mv. The columns m, (m, s), and (m, s, bt) are primary
keys in the tables Machine, Sensor, and MeasuresA and
MeasuresB, respectively. The column m in tables MeasuresA,
MeasuresB, and Sensor references the column m in the table
Machine as foreign key. Furthermore, columns (m, s) in tables
MeasuresA and MeasuresB reference columns (m, s) in table
Sensor as a composite foreign key.

The RDF view of the RDB is illustrated by the RDF graph in
Figure 2.

SQL1:
SELECT m.m, bt, et
FROM MeasuresA m, SENSOR s
WHERE m.m=s.m AND
 m.s=s.s AND
 m.mv > s.ev + @thA

Machine(m, mm)

Sensor(m, s, sm, mc, ev, ad, rd)

MeasuresA(m, s, bt, et, mv)

MeasuresB(m, s, bt, et, mv)

 Figure 1. RDB schema for log data

 mA/mv

 mA/bt

 mA/et
Figure 1

 mA/m mA/s

mB/m
mB/s

mB/bt

mB/et

 mB/mv

sensor/ev

sensor/s

sensor/m

machine/m

machine/mm

mB_atMachine

mA_atMachine

mA_bySensor
sensor_ofMachine

mB_bySensor Sensor

MeasuresB

MeasuresA
Machine

xsd:string xsd:int

xsd:float xsd:int

xsd:int

....

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

Figure 2. RDF graph of the RDF view for
the example RDB

258

Next we define two more typical numerical SPARQL queries to
the log database, Q2 and Q3, that discover abnormal machine
behaviors. Query Q2 identifies a potential failure by retrieving
for machine models M_1, M_2, and M_3 those machineid
where, during the time interval (bt, et), the measured value mv
was above 75% of the allowed deviation @thA from the
expected value ev.

Query Q3 identifies abnormal behaviors of machines of a
measurement class based on absolute deviations: when and for
which machine identifiers did the pressure reading of class B
deviate more than @thB from its expected value ev?

3. FLOQ OVERVIEW AND QUERY
PROCESSING
Figure 3 illustrates processing of numerical SPARQL queries by
FLOQ.

The RDF view over the RDB is automatically generated based
on the database schema and ontology mapping tables in FLOQ.

The used mappings conform to the direct mapping
recommended by W3C [10].

We define a unique RDFS class for each relational table, except
for link tables [10] representing set-valued properties as many-
to-many relationships. In addition, RDF properties are defined
for each column in a table. For example, the RDFS class with
the URI <log:mA> represents the table MeasuresA, while
<log:mA/bt> and <log:mA/et> represent the columns bt and et
in MeasuresA, respectively.

The RDF view is defined in terms of:

x Source predicates R(a1, a2, …, an) that represent the
content of each referenced relational database table R
where the tuple (a1, …, an) represents a row in R.

x URI-constructor predicates that construct URIs to
identify rows in tables.

x Mapping tables that map relational schema elements
to RDF concepts.

The complete RDF view definitions can be found in [9]. The
query processing steps in FLOQ are shown in Figure 4.

The SPARQL parser first transforms the SPARQL query into an
ObjectLog expression where each triple pattern in the query
becomes a reference to the RDF view of the RDB. Then the
ObjectLog transformer generates a simplified disjunctive normal
form (DNF) predicate. The NUMTranslator algorithm performs
the extractor and finalizer steps. The extractor collects from
conjunctions predicates that can be translated to SQL, called
access filters. The query decomposer then optimizes the query,
producing a query execution plan where access filters are called.
The finalizer traverses the execution plan to translate the
extracted predicates in the access filters into SQL expressions.
When the execution plan is interpreted, the generated SQL
statements are sent to the RDB for execution. The non-extracted
predicates are not translated to SQL and have to be processed
outside the RDB by post-processing operators. For example,

Q2:
SELECT ?machineid ?bt ?et
FROM <prod>
WHERE{?measuresA log:mA_bySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.
 ?measuresA log:mA/mv ?mv.
 ?measuresA log:mA_atMachine ?machineid.
 ?machineid log:machine/mm ?mm.
 FILTER (?mm in ('M_1','M_2','M_3')).
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + 0.75*@thA)) }

Q3:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresB log:mB/bt ?bt.
 ?measuresB log:mB/et ?et.
 ?measuresB log:mB/mv ?mv.
 ?measuresB log:mB_bySensor ?sensor.
 ?sensor log:sensor/m ?m.
 ?sensor log:sensor/ev ?ev.
 BIND ((?mv-?ev) as ?temp).
 FILTER (abs(?temp) > @thB) }

SQL

SPARQL query

SPARQL parser

RDB

Query Decomposer

Finalizer

Extractor

ObjectLog transformer

Post-processing

Figure 4. Query processing steps

SPARQL query

SQL

FLOQ

RDF view

Query processor

NUMTranslator

RDB

Figure 3. FLOQ query processor

259

such operators are URI-constructors and numerical expressions
not supported by the SQL engine.

4. THE NUMTRANSLATOR
ALGORITHM
The NUMTranslator uses a table-driven approach to define
which SPARQL operators to extract and translate into
corresponding SQL operators and functions. Table 1 defines the
SPARQL to SQL operator translations:

Table 1. SPARQL to SQL operators to translate
SPARQL SQL INFIX FUNCTION

> > True False
< < True False
= = True False
!= <> True False
+ + True True
- - True True

ABS ABS False True
UCASE UPPER False True

etc.

In Table 1 there is one row for each SPARQL operator or
function (column SPARQL) that can be translated into SQL. The
column SQL defines the corresponding SQL operator or
function. A value in the column INFIX is true when the
corresponding SQL operator is an infix operator op on operands
x and y, i.e. x op y (e.g. x+y); otherwise it is an SQL function on
format f(x,y,..). The column FUNCTION is true when the
operator is a non-Boolean function returning a value.

4.1 The NUMTranslator extractor
The extractor is applied on each ObjectLog conjunction in the
simplified predicate received by the ObjectLog transformer. The
extractor collects predicates that can be translated to SQL. Such
predicates are i) source predicates SPs representing RDB tables,
and ii) non-source predicates (NSPs) that are defined in Table 1
as translatable to SQL.

Figure 5 shows the ObjectLog representation of Q1 after it has
been transformed by the ObjectLog transformer.

In this case all predicates in Q1 are translatable to SQL since
MeasuresA and Sensor are SPs, and > and + are NSPs defined
in Table 1.

The steps of the extractor are the following:

1. Initialize a variable Xpreds for the first found SP,
denoted R1, in the conjunction and bind a variable
Rest to the other predicates.

2. Iteratively extract from Rest the predicates that have
some common variable with some extracted predicate
in Xpreds, which are either SPs or NSPs defined in
Table 1.

3. Construct an access filter of all extracted predicates in
Xpreds since those can be fully translated to SQL.

4. While there are some remaining SP, R2, in Rest, re-
initialize Xpreds by R2 and Rest by the remaining
predicates, and repeat steps 2-3.

5. Finally, construct a conjunction of the access filters
and Rest.

For example, for Q1 the predicates in Xpreds are extracted in the
following order:

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.
2. >(mv, v36) (line 2) since > is defined in Table 1 and

the variable mv is common with the extracted
MeasuresA.

3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP
having common variables (m and s) with MeasuresA().

4. V36 = ev + @thA (line 3) since + is defined in Table
1 and the variable ev is common with the extracted
Sensor predicate.

Then the following conjunctive access filter F1 is formed by the
predicates in Xpreds:

 F1(m,s,bt,et,mv,ev):-
1 MeasuresA(m, s, bt, et, mv) and
2 Sensor(m, s, _, _, ev, _, _) and
3 v36= ev + @thA and
4 mv > v36

No non-translatable predicates remain in Rest.

4.2 Query decomposition
To optimize the query produced by the extractor, the query
decomposer uses cost-based optimization [6] to produce an
optimized execution plan. Based on heuristics and statistic of the
queried RDB, execution cost and selectivities of access filter are
estimated. Default cost parameters are used by the optimizer to
estimate the execution cost and selectivities of predicates if no
statistic is available. The decomposer will then reorder the
access filters and the post processed predicates to generate an
optimized execution plan. We do not further elaborate the query
decomposer here.

4.3 The NUMTranslator finalizer
The finalizer translates access filters in the decomposed
execution plan into calls to an SQL interface operator, sql that
sends generated SQL strings to the back-end RDB for execution.

ObjectLog numerical expressions are translated into SQL
numerical expressions by recursively replacing all ObjectLog
domain variables that represent numerical expressions with their
bound expressions. For example, the variable v36 in line 4 in F1
doesn’t represent a relational column and is replaced by its
bound expression in line 3, and then the obtained expressions is
mv > ev + @thA. Thus for Q1 the execution plan P1 becomes
the following:

The execution plan contains an algebra expression where the
apply operator γ fn(..) calls the foreign predicate sql(ds, q,
result) implemented in Java. The foreign predicate sql sends an

Figure 5. ObjectLog of query Q1

Q1(m, bt, et):-
1 MeasuresA(m, s, bt, et, mv) and
2 mv > v36 and
3 v36 = ev + @thA and
4 Sensor(m, s, _, _, ev, _, _)

(m, bt, et)

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA
m, SENSOR s WHERE m.mv > s.ev + @thA AND
m.m=s.m AND m.s=s.s", (m, bt, et))

Figure 6. Execution plan P1 with NUMTranslator

260

SQL query q to the RDBMS data source ds for execution and
iteratively returns bindings of tuples, result.

If NUMTranslator had not been applied, all numerical operators
would have to be post-processed, which would slow down the
query execution since filtering cannot be made in the database
server.

For example, if NUMTranslator is turned off, for Q1 the
following execution plan P2 is produced that doesn’t contain
any numerical SQL operators corresponding to numerical
SPARQL operators, which are instead post-processed:

Comparing the two execution plans P1 and P2 it can be seen
that the sql operator in P2 retrieves much more data than P1, so
if NUMTranslator is turned off lots of data needs to be filtered
out outside the RDB server. Furthermore, the utilization of
indexes on the SQL numerical expression by the back-end
database server makes significant performance difference. We
show in the next section that applying NUMTranslator
substantially improves the query performance of numerical
SPARQL queries.

5. PERFORMANCE MEASUREMENTS
We compared the performance for executing the numerical
queries Q1, Q2, and Q3 in FLOQ with and without applying
NUMTranslator. Furthermore, we compared the query
performance of FLOQ with the query performance of D2RQ [1]
for Q1, Q2, and Q3, for the same back-end relational database.
We tried to run the queries with both ontop [7] and Virtuoso [3]
as well, but none of our numerical SPARQL queries could be
run, indicating that those systems do not provide full support for
processing numerical SPARQL queries.

All experiments are carried out on a MS SQL Server 2008 R2
installed on a server machine with 8 AMD OpteronTM 6128
processors, 2.00 GHz CPU and 16GB RAM. The RDB is
populated by loading sensor data into the MS SQL server. B-tree
indexes are created on the columns mm, mv, bt, et, ev, ad, and rd
to speed up the queries.

All measurements were taken both for cold and warm runs. The
cold runs were made immediately after the RDBMS server was
started, which implied that there were no data cached in the
buffer pool and the executed query wasn’t optimized by the
RDBMS. Thus a measured query execution time for a cold run
includes the time for i) reading data from disk, ii) SQL query
optimization on the RDBMS server, iii) communication, and iv)
post-processing of data on the client. The warm runs were made
after a query was executed once. Since the back-end RDBMS
has a statement cache a same SQL query executed twice will be
optimized the first time it is run. Therefore, warm executions do
not include RDBMS query optimization time.

The plotted values are mean values of three measurements. The
standard deviation is less than 10% in all cases. To investigate
the SQL query produced by all the other systems we use the
system profiling tool of MS SQL server when running a query.

The following notations are used in the performance diagrams:

x NUMTranslator: FLOQ with NUMTranslator turned
on, i.e. the SPARQL numerical expressions are
translated into corresponding SQL expressions.

x Naive: FLOQ with NUMTranslator turned off, i.e. the
SPARQL numerical expressions are not translated into
corresponding SQL numerical expressions.

x D2RQ: D2RQ version [0.8.1] configured with the
system’s default mappings.

Figure 8, 9 and 10 show the execution times for both cold and
warm runs for Q1, Q3, and Q2 while scaling the databases size
from 1 GB to 15 GB.

Figure 9. Execution times for Q3

Figure 8 and 9 show that NUMTranslator substantially improves
the query execution scalability compared to Naïve for numerical
SPARQL queries like Q1 and Q3 with highly selective
numerical FILTERs: 0.04% for Q1 and 3% for Q3. In these
cases pushing the numerical FILTERs to SQL is more profitable
than filtering large data amounts on the client. The performance
of D2RQ is worse than Naïve since D2RQ sends to the RDBMS
an SQL query that doesn’t contain numerical expressions, and is
a much more complex query with more joins. Furthermore, Q3
had to be manually changed for D2RQ to remove the BIND
operator, since otherwise D2RQ wouldn’t return correct result.

Measurement results for Q2 are shown in Figure 10. For Q2 the
results for NUMTranslator and Naïve are presented in a separate
diagram, since they are very close. It can be seen on Figure 10
that NUMTranslator doesn’t improve the query performance for
non-selective queries like Q2 where the FILTER selects 43% of
the data. In this case pushing the numerical SPARQL filters to
be executed to the RDBMS server doesn’t make a significant
difference compared to post-filtering data on the client.

D2RQ performs worse for Q2 since it doesn’t translate any of
the FILTERs and it furthermore generates a very complex SQL
query with many joins.

(v36)

(mv)

(m, bt, et)

(ev)

γ >(mv, v36)

γ +(ev, @thA)

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND
m.s=s.s", (m, s, bt, et, mv, ev))

Figure 7. Execution plan P2 without NUMTranslator

Figure 8. Execution times for Q1

261

Figure 10. Execution times for Q2

In general, the experiments show that NUMTranslator
substantially improves the query performance of numerical
SPARQL queries where the numerical FILTERs have high
selectivity.

6. RELATED WORK
Virtuoso RDF Views [3] and D2RQ [1] are other systems that
process SPARQL queries to RDF views of RDBs. These
systems implement compilers that translate SPARQL directly to
SQL. By contrast, FLOQ first generates ObjectLog queries to a
declarative RDF view of the RDB, and then transforms the
SPARQL queries to SQL by logical transformations.

We didn’t find any publication of how D2RQ compiles
numerical SPARQL queries into SQL and the documentation for
Virtuoso’s SQL generation is very limited [3]. However, by
using the profiling tool of the RDBMS and the debug logging of
Virtuoso we were able to analyze what queries were actually
sent to the RDBMS, showing that neither of those systems
translates numerical SPARQL expressions into corresponding
SQL expressions.

The ontop system [7] also enables SPARQL queries to RDF
views of RDBs by translating SPARQL to Datalog programs,
which are rewritten and translated to SQL. A difference to ontop
is the table driven NUMTranslator algorithm, which makes it
very easy to extend for new operators. Furthermore, FLOQ
generates execution plans containing calls to SQL intermixed
with expressions interpreted in the client. This enables FLOQ to
interpret in the client SPARQL operators not available in SQL.
In addition NUMTranslator translates the domain calculus
SPARQL queries into tuple calculus SQL queries by substituting
variables with their bound expressions.

7. CONCLUSIONS AND FUTURE WORK
We presented the FLOQ system where the NUMTranslator
algorithm uses a table driven approach to translate numerical
domain calculus SPARQL expressions into corresponding
numerical SQL expressions. This enables scalable processing of
numerical SPARQL queries to RDF views over RDBs.

The approach was evaluated on a benchmark scenario in an
industrial setting where logged data stored in an RDB was
analyzed using numerical SPARQL queries. We compared the
performance of the SPARQL queries with and without applying
NUMTranslator. The experiments show that NUMTranslator
substantially improves the query performance of numerical

SPARQL queries in particular when the numerical expressions
inside FILTERs are highly selective.

We also compared our approach with other systems that
translate SPARQL queries to SQL. Only D2RQ could execute
our queries, but substantially slower since D2RQ does not
employ an approach similar to NUMTranslator.

As our next step, we will investigate numerical SPARQL
queries searching large numbers of distributed log databases
combined through an ontology. Another issue is creating
benchmarks based on randomly generating SPARQL queries
[5]. Furthermore, query processing and mediation strategies over
other back-ends than RDBs [4] in our setting should be
investigated.

8. ACKNOWLEDGMENTS
This work is supported by EU FP7 project Smart Vortex and the
Swedish Foundation for Strategic Research under contract
RIT08-0041.

9. REFERENCES
[1] Bizer, C., Cyganiak, R., Garbers, G., Maresch, O., and

Becker, C. 2009. The D2RQ Platform v0.7 - Treating Non-
RDF Relational Databases as Virtual RDF Graph,
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/

[2] Björkelund, A., Edström, L., etc. 2011. On the integration
of skilled robot motions for productivity in manufacturing,
In Proc. of IEEE International Symposium on Assembly
and Manufacturing, Tampere, Finland.

[3] Erling, O. and Mikhailov, I. 2009. RDF Support in the
Virtuoso DBMS, Studies in Computational Intelligence,
Vol. 221

[4] Langegger, A., Wöß, W., and Blöchl, M. 2008. A Semantic
Web Middleware for Virtual Data Integration on the Web,
5th European Semantic Web Conference ESWC 2008.

[5] Langegger, A. and Wöß, W. 2009. RDFStats – The
Extensible RDF Statistics Generator and Library, 8th
International Workshop on Web Semantics, DEXA 2009,
Linz, Austria, August 31-September 40.

[6] Litwin, W. and Risch, T. 1992. Main Memory Oriented
Optimization of OO Queries using Typed Datalog with
Foreign Predicates, IEEE Transactions on Knowledge and
Data Engineering, Vol. 4, No. 6.

[7] Rodriguez-Muro, M., Rezk, M., Hardi, J., Slusnys, M.,
Bagosi, T., and Calvanese, D. 2013. Evaluating SPARQL-
to-SQL Translation in Ontop, ORE 2013

[8] Sequeda, J. F., and Miranker, D. P. 2013. Ultrawrap:
SPARQL Execution on Relational Data, Tech. Report,
Univ. of Texas at Austin.
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-
2078.pdf

[9] Stefanova, S., and Risch, T. 2011. Optimizing Unbound-
property Queries to RDF Views of Relational Databases. 7t
International workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2011), Bonn, Germany.

[10] Arenas, M., Bertails, A., Prud’hommeaux, E., and Sequeda,
J. 2012. A Direct Mapping of Relational Data to RDF,
http://www.w3.org/TR/rdb-direct-mapping/

[11] Harris, S., and Seaborne, A. 2013. SPARQL 1.1 Query
Language, http://www.w3.org/TR/sparql11-query/

262

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Scheduling MapReduce Jobs on Unrelated Processors
	Binary Theta-Joins using MapReduce: Efficiency Analysis and Improvements
	On the design space of MapReduce ROLLUP aggregates
	Determining the k in k-means with MapReduce
	Tagged Dataflow: a Formal Model for Iterative Map-Reduce
	Processing Regular Path Queries on Giraph
	Graph-Parallel Entity Resolution using LSH & IMM
	Modular Data Clustering - Algorithm Design beyond MapReduce

	Bidirectional Transformations (BX)
	Preface to the Third International Workshop on Bidirectional Transformations
	Implementing a Bidirectional Model Transformation Language as an Internal DSL in Scala
	Towards a Framework for Multidirectional Model Transformations
	Formalizing Semantic Bidirectionalization with Dependent Types
	BenchmarX
	Towards a Repository of Bx Examples
	Intersection Schemas as a Dataspace Integration Technique
	Bidirectional Transformations in Database Evolution: A Case Study ``At Scale''
	Entangled State Monads
	Spans of lenses

	Energy Data Management (EnDM)
	Pipeline Production Data Model
	Renewable Energy Data Sources in the Semantic Web with OpenWatt
	A Generic Ontology for Prosumer-Oriented Smart Grid
	Computing Electricity Consumption Profiles from Household Smart Meter Data
	ECAST: A Benchmark Framework for Renewable Energy Forecasting Systems
	Energy Data Management: Where Are We Headed? (panel)

	Exploratory Search in Databases and the Web (ExploreDB)
	Exploratory Search in Databases and the Web
	Exploring Big Data using Visual Analytics
	On the Suitability of Skyline Queries for Data Exploration
	Hippalus: Preference-enriched Faceted Exploration
	The DisC Diversity Model
	Exploring RDF/S Evolution using Provenance Queries
	Skyline Ranking à la IR
	Multi-Engine Search and Language Translation

	Querying Graph Structured Data (GraphQ)
	An Event-Driven Approach for Querying Graph-Structured Data Using Natural Language
	GraphMCS: Discover the Unknown in Large Data Graphs
	Graph-driven Exploration of Relational Databases for Efficient Keyword Search
	Implementing Iterative Algorithms with SPARQL
	A Map-Reduce algorithm for querying linked data based on query decomposition into stars
	Performance optimization for querying social network data
	Frequent Pattern Mining from Dense Graph Streams

	Linked Web Data Management (LWDM)
	Quantifying the Connectivity of a Semantic Warehouse
	Scalable Numerical SPARQL Queries over Relational Databases
	Similarity Recognition in the Web of Data
	Mining of Diverse Social Entities from Linked Data
	TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples

	Multimodal Social Data Management (MSDM)
	Social Data and Multimedia Analytics for News and Events Applications
	Event Identification and Tracking in Social Media Streaming Data
	Recommendation of Multimedia Objects for Social Network Applications
	Estimating Completeness in Streaming Graphs

	Mining Urban Data (MUD)
	Mining Trajectory Data for Discovering Communities of Moving Objects
	Mobile Sensing Data for Urban Mobility Analysis: A Case Study in Preprocessing
	Crowd Density Estimation for Public Transport Vehicles
	Traffic Incident Detection Using Probabilistic Topic Model
	Predictive Trip Planning – Smart Routing in Smart Cities
	Addressing the Sparsity of Location Information on Twitter
	Efficient Dissemination of Emergency Information using a Social Network
	Crowdsourcing turning restrictions for OpenStreetMap
	Big data analytics for smart mobility: a case study
	Smart Applications for Smart City: a Contribution to Innovation
	Analysis of Relationships Between Road Traffic Volumes and Weather: Exploring Spatial Variation
	SiCi Explorer: Situation Monitoring of Cities in Social Media Streaming Data
	A Cascading Wavelet-Feed Forward Neural Network Approach for Forecasting Traffic Flow
	Combining a Gauss-Markov model and Gaussian process for traffic prediction in Dublin city center
	Sensing Urban Soundscapes

	Privacy and Anonymity in the Information Society (PAIS)
	A Hybrid Approach for Privacy-preserving Record Linkage
	Clustering-based Multidimensional Sequence Data Anonymization
	Efficient Multi-User Indexing for Secure Keyword Search
	Community Detection in Anonymized Social Networks
	Secure Multi-Party linear Regression
	Data Anonymization: The Challenge from Theory to Practice
	A Privacy Preserving Model for Ownership Indexing in Distributed Storage Systems

